其它大学电脑作业大学论文50页

上传人:沈*** 文档编号:68281472 上传时间:2022-04-02 格式:DOC 页数:60 大小:202.50KB
收藏 版权申诉 举报 下载
其它大学电脑作业大学论文50页_第1页
第1页 / 共60页
其它大学电脑作业大学论文50页_第2页
第2页 / 共60页
其它大学电脑作业大学论文50页_第3页
第3页 / 共60页
资源描述:

《其它大学电脑作业大学论文50页》由会员分享,可在线阅读,更多相关《其它大学电脑作业大学论文50页(60页珍藏版)》请在装配图网上搜索。

1、广东技术师范学院摘 要1Abstract1第一章 绪论11.1工业机器人的发展现状11.2 虚拟样机技术简介11.2.1 虚拟样机的定义和特点11.2.2 研究现状和发展趋势21.3 视景仿真技术简介31.3.1 视景仿真的定义和特点31.3.2 工业机器人视景仿真系统研究的意义31.4 本文要研究的主要内容3第二章 机器人运动学52.1 空间点和坐标系的表示52.1.1 空间点的向量表示52.1.2坐标系在固定参考坐标系中的表示52.2 坐标系的变换62.2.1 齐次变换62.2.2 坐标系相对于旋转坐标系的变换72.2.3 变换矩阵的逆82.3 机器人的正逆运动学82.3.1正运动学的D-

2、H表示法92.3.2逆运动学方程的求解102.4 微分运动10第三章 基于ADAMS的机器人的虚拟样机分析123.1 ADAMS概述123.2 ADAMS中机器人模型的建立123.2.1 设置建模环境133.2.2机器人实体建模133.2.3 机器人模型的设置133.3 轨迹规划仿真分析143.3.1 轨迹规划方法的理论分析143.3.2 轨迹规划仿真分析17第四章 基于模型的视景仿真系统的设计与实现194.1 OpenGL概述194.1.1 OpenGL工作方式204.1.2 OpenGL绘制过程204.2 机器人三维可视化框架建立204.2.1 利用MFC建立单文档应用程序框架204.2.

3、2 设置OpenGL绘图环境214.3 机械手三维模型的建立234.3.1 导入机械手模型234.3.2 在OpenGL中建立机械手的模型244.4 建立仿真场景264.4.1 纹理贴图的实现264.4.2 设置光照284.5 基于模型的视景仿真的实现304.5.1 数据的读取314.5.2 利用读取的数据控制机械手的运动324.5.3 实现观察视角的交互式键盘控制34结 论36致 谢52摘 要 虚拟样机技术就是在建造第一台物理样机之前,设计师利用计算机技术建立机械系统的数字化模型,进行仿真分析并以图形方式显示该系统在真实工程条件下的各种特性,从而修改并得到最优设计方案的技术。ADAMS软件是

4、目前国际上应用最为广泛的虚拟样机分析软件,用户可以运用该软件非常方便地对虚拟机械系统进行静力学、运动学和动力学分析。但针对复杂的机器人机械系统,要想准确的控制其运动,仅依靠ADAMS软件自身也很难做到;MATLAB软是Mathworks公司开发的一种集计算、图形可视化和编辑功能于一体的优秀数学应用软件,具有强大的计算能力,能够建立复杂的控制模型准确控制复杂机器人系统的运动;OpenGL(开放式图形库全称)是SGI公司开发的底层三维图形API,目前在图形开发领域已成为工业标准。使用OpenGL可以创建视觉质量接近射线跟踪程序的精致漂亮的3D图形。Visual C+ 6.0已经成为集编辑、编译。运

5、行、调试为一体的功能强大的集成编程环境,在Windows编程中占有重要地位。OpenGL和Visual C+ 6.0有紧密接口,利用二者可以开发出优秀的视镜仿真系统。ADAMS、MATLAB和Visual C+ 6.0由于定位不同,都有各自的优势和缺点,但是三者之间又可以通过接口联合控制或者混合编程。本文分别利用ADAMS对三自由度机器人的运动学和轨迹优化方案进行研究,利用Visual C+ 6.0、OpenGL和从MATLAB里导出的控制模型的数据对三自由度机器人进行了视景仿真的研究。论文首先通过建立坐标系和矩阵变换,对刚体的空间表示进行了阐述,然后采用通用的D-H法则,将机器人关节角度参数

6、化,推导出其正运动学方程和逆运动关节角,并计算出机器人手部的初始坐标。其次采用ADAMS软件,详细介绍了机器人三维建模过程,包括整体框架构建,单个构件绘图和布尔运算等,并对机器人关节点进行了参数化设计。最后从机器人轨迹规划的基本原理和方法出发,比较分析了关节空间轨迹规划和直角坐标空间轨迹规划的差别,并采用三次多项式和五次多项式对机器人进行了轨迹规划,利用ADAMS软件中内嵌的Step函数对运动轨迹进行了仿真分析。然后在Windows XP Professional的系统环境下,以Visuall C+6.0为开发工具,建立了三自由度机械手视景仿真系统模型,实现了仿真系统对MATLAB控制模型导出

7、数据的读取和利用。AbstractBefore manufacturing the first physical prototype, the designers used computer technology to build a mechanical system of digital model for analysis simulation, which showed that the system works in real conditions of the various characteristics, so as to be revised and Optimal desi

8、gn. This process is called Virtual prototyping technology. Now ADAMS software is widely used in virtual prototyping analysis in the world, it is very convenient for the user to use this software ot do the statics, kinematics and dynamics analysis for the virtual machine system.But to the complicated

9、 robot mechanical system,it is also very hard to do the accurate control of its movement only rely on ADAMS software itself ;MATLAB is one of the outstanding mathematics application software integrating calculation, graphical visualization and editing functions developed by the Mathworks company , a

10、nd it has strong ability in complex calculation, being able to create the control model to do accurate control of the robot systems complicated movement . OpenGL(the full name of Open graphics libraries) is a 3D graphics Application Programming Interface in the bottom,now having been the industry st

11、andard in the area of graphics developing.You can create delicate and beautiful 3D graphics using OpenGL,whose visual quality is close to ray tracing program . Visual C + + 6.0 has become powerful integrated programming environment with editing, compiling. Operating and debugging, and occupies an im

12、portant position in the Windows programming. Visual C + + 6.0 and OpenGL has close interface, using them we can develop good endoscopic simulation system. Because of the different due , ADAMS, Visual C + + 6.0 and MATLAB have their own respective advantages and disadvantages, but we can also do the

13、joint control or mixing programming through the interface between the three.In this paper, the author do research tokinematics and track optimization scheme of 3-dof robot based on ADAMS , also do the Visual simulation research of 3-dof robot using the data of the control model derived from the MATL

14、AB based on Visual C + + 6.0 and OpenGL.First of all, through the establishment of coordinates and matrix transformation, the rigid body of the space that was elaborated, and then use the D-H rule, Robot parameters of the joint were gained, equations of motion were given, and the joints angle were k

15、nown , initial coordinates of Robot hand can be calculated. Followed by ADAMS software, we processed details of the robot three-dimensional modeling, including the overall framework for building, mapped a single component and Boolean operation, designed parameters for the robot and the key points. F

16、inally, we introduced the basic principles and methods of robot trajectory planning, and compared differences between the joint space trajectory planning and rectangular coordinates space trajectory planning. the cubic polynomial and five polynomial of the robot trajectory planning were carried out,

17、 the Step function were used on a trajectory simulation analysis of ADAMS software.Then in Windows XP system environment, using Visual C + + 6.0 as development tool, the author establish a 3-dof manipulator visual simulation system, realizing the accessing and using to the data of control model deri

18、ved from MATLAB .Key words: kinematics trajectory planning ADAMS virtual prototyping technology Visual simulation Texture mappi第一章 绪论1.1工业机器人的发展现状1961年,美国的Consolided Control Corp和AMF公司联合制造了第一台实用的示教再现型工业机器人,迄今为止,世界上对工业机器人的研究已经经历了四十余年的历程,日本、美国、法国、德国的机器人产业已日趋成熟和完善。工业机器人由操作机(机械本体)、控制器、伺服驱动系统和检测传感装置构成,是一

19、种仿人操作、自动控制、可重复编程、能在三维空间完成各种作业的机电一体化自动化生产设备。特别适合于多品种、变批量的柔性生产。【1】 它对稳定、提高产品质量,提高生产效率改善劳动条件和产品的快速更新换代起着十分重要的作用。采用工业机器人,不仅可提高产品的质量与产量,而且对保障人身安全,改善劳动环境,减轻劳动强度,提高劳动生产率,节约原材料消耗以及降低生产成本,有着十分重要的意义。和计算机、网络技术一样,工业机器人的广泛应用正在日益改变着人类的生产和生活方式。在制造业中,尤其是在汽车产业中,工业机器人得到了广泛的应用。如在毛坯制造(冲压、压铸、锻造等)、机械加工、焊接、热处理、表面涂覆、上下料、装配

20、、检测及仓库堆垛等作业中,机器人都已逐步取代了人工作业。如,2004年德国汽车制造业中每1万名工人中拥有工业机器人的数量为1140台。【2】在国外,工业机器人技术日趋成熟,已经成为一种标准设备被工业界广泛应用。从而,相继形成了一批具有影响力的、著名的工业机器人公司,它们包括:瑞典的ABB Robotics,日本的FANUC、Yaskawa,德国的KUKA Roboter,美国的Adept Technology、American Robot、意大利COMAU,英国的AutoTech Robotics公司,这些公司已经成为其所在地区的支柱性产业。在我国,工业机器人的真正使用到现在已经接近20多年了

21、,已经基本实现了试验、引进到自主开发的转变,促进了我国制造业、勘探业等行业的发展。2004年全年国产工业机器人数量(主要指在国内生产和组装的)突破1400台,产值突破8亿元人民币。进口机器人数量超过9000台,进口额达到2.6亿美元。国内各个工业机器人厂家都呈现出产销两旺的局面。截至2004年底,我国工业机器人市场已经突破30亿元人民币。【3】 现阶段,我国工业机器人正逐步发展成为一种有影响力的产业。1.2 虚拟样机技术简介1.2.1 虚拟样机的定义和特点虚拟样机技术就是在建造第一台物理样机之前,设计师利用计算机技术建立机械系统的数字化模型,进行仿真分析并以图形方式显示该系统在真实工程条件下的

22、各种特性,从而修改并得到最优设计方案的技术。该技术以机械系统运动学、动力学和控制理论为核心,加上成熟的三维计算机图形技术和基于图形的用户界面技术,将分散的零部件设计和分析技术集成在一起,提供一个全新研发机械产品的设计方法。它是一种计算机模型,它能够反映实际产品的特性,包括外观、空间关系以及运动学和动力学的特性。借助于这项技术,设计师可以在计算机上建立机械系统的模型,伴之以三维可视化处理,模拟在真实环境下系统的运动和动力特性,并根据仿真结果精化和优化系统。虚拟样机技术利用虚拟环境在可视化方面的优势以及可交互式地探索虚拟物体的功能,对产品进行几何、功能、制造等许多方面交互的建模与分析。它在CAD模

23、型的基础上,把虚拟技术与仿真方法相结合,为产品的研发提供了一个全新的设计方法。它具有以下特点:A 全新的研发模式虚拟样机技术实现了系统性的产品优化,使产品在概念设计阶段就可以迅速地分析、比较多种设计方案,确定影响性能的敏感参数,并通过可视化技术设计产品、预测产品在真实工况下的特征,从而获得最优工作性能。B 研发成本低、周期短、产品质量高通过计算机技术建立产品的数字化模型,可以完成无数次物理样机无法进行的虚拟试验,不但减少了物理样机的数量,降低了成本,而且缩短了研发周期、提高了产品质量。C 实现了动态联盟广泛地采用动态联盟, 通过Internet共享和交流,临时缔结成的一种虚拟企业,适应了快速变

24、化的全球市场,克服单个企业资源的局限性。1.2.2 研究现状和发展趋势虚拟样机技术在一些较发达国家,如美国、德国、日本等已得到广泛的应用,应用领域从汽车制造业、工程机械、航空航天业、到医学以及工程咨询等很多方面。美国航空航天局(NASA)的喷气推进实验室(JPL)研制的火星探测器“探路号”,就是JPL工程师利用虚拟样机技术仿真研究研发的。美国波音飞机公司的波音777飞机是世界上首架以无图方式研发及制造的飞机,其设计、装配、性能评价及分析就是采用了虚拟样机技术,不但缩短了研发周期、降低了研发成本,而且确保了最终产品一次接装成功。我国从“九五”期间开始跟踪和研究虚拟样机的相关技术,主要研究集中在虚

25、拟样机的概念、系统结构以及相关的支撑技术,应用多集中在一些高精尖领域。近年来,才尝试着将虚拟样机技术用于一般机械的开发研制。天津大学与河北工业大学采用虚拟样机技术联合开发了冲击式压实机,对其进行了仿真计算,得到各部件的运动规律曲线,验证了压实机各部件参数值的合理性。【4】虚拟样机概念正向广度和深度发展,今后的虚拟样机技术将更加强调部件、技术、知识的重用,强调便于虚拟样机柔性协同的运行管理的组织重构,强调跨领域技术的沟通支持,重点在以下几个方面进行研究:(1)基于虚拟样机的优化设计;(2)以虚拟样机为中心的并行设计设计;(3)分析和仿真工具的集成;(4)虚拟样机系统的容错性研究。1.3 视景仿真

26、技术简介1.3.1 视景仿真的定义和特点视景仿真又称虚拟仿真虚拟现实仿真。它是21世纪最有前景的高科技技术之一,它是计算机技术,图形图象技术,光学技术,控制技术等多种高科技的结合,是延伸人类感觉器官的一门科学,通过对现实世界或者是人类想象的虚拟世界进行三维建模并实时驱动,通过头盔显示器或者三维投影技术显示出来。视景仿真(Visual Simulation)是一种基于可计算信息的沉浸式交互环境,具体地说,就是采用以计算机技术为核心的现代高科技生成逼真的视、听、触觉一体化的特定范围的虚拟环境,用户借助必要的设备以自然的方式与虚拟环境中的对象进行交互作 用、相互影响,从而产生“沉浸”于等同真实环境的

27、感受和体验。其作为计算机技术中最为前沿的应用领域之一,它已经广泛应用于虚拟现实、模拟驾驶、场景再现、城市规划及其它应用领域。计算机仿真又称全数字仿真,是根据相似原理,利用计算机来逼真模仿研究系统中的研究对象,将研究对象进行数学描述,建模编程,并且在计算机中运行实现作为计算机仿真的组成部分,视景仿真采用计算机图形图像技术,根据仿真的目的构造仿真对象的三维模型并再现真实的环境,达到非常逼真的仿真效果目前,视景仿真技术在我国已广泛应用于各种研究领域:军事演练、城市规划仿真、大型工程漫游、名胜古迹虚拟旅游、模拟训练以及交互式娱乐仿真等视景仿真技术对作战装备的使用效果有很好的实时显示,给人以强烈的视觉上

28、的冲击,对提高武器装备的性能、研制效率有着重要的作用1.3.2 工业机器人视景仿真系统研究的意义由于机器人价格昂贵,以及机器人的作业空间需要较大而独立的试验场地等诸多原因,不可能达到每个需要学习机器人的人都能亲自操作机器人的要求。而可视化技术的出现,使得人们能够在三维图形世界中观察机器人,并通过计算机交互式对机器人进行示教仿真。基于VC+6.0的OpenGL上的工业机器人的视景仿真系统可以提供一个真实的实验平台,在不接触实际机器人及其工作环境的情况下,通过图形技术,提供一个和机器人进行交互的虚拟环境。此系统充分利用OpenGL的实时交互性,模拟工业机器人的示教/再现过程,可以在此系统上编辑工业

29、机器人的程序并动态模拟工业机器人的运动过程,观察工业机器人的运动结果,检验所编写工业机器人程序的正确性。进行实物实验之前,可以先在仿真系统上进行模拟仿真,观察实验的运动过程以及运动结果,避免直接在现实中操作对工业机器人及周围物体可能造成的伤害。另外,对于刚接触工业机器人的操作员来说,此系统可以提供与现实工业机器人几乎相同的操作步骤,在操作员真正操作工业机器人之前,可以增加其操作的熟练程度,增加安全系数。1.4 本文要研究的主要内容为了简化研究,本文采用一个3自由度关节机器人,分别通过ADAMS软件的建模和仿真,结合MATLAB的运算功能,进行了机器人运动学分析和空间坐标的轨迹规划,实现运动轨迹

30、的最优化。又在Windows XP环境下,利用Visual C+6.0和OpenGL完成了基于模型的视景仿真系统的设计与实现,具体工作如下:(1)进行运动学分析。按照通用的D-H法则,通过矩阵变换,得到了机器人的正运动学方程和初始坐标,推导出机器人逆运动学的关节角度。(2)在ADAMS/View中构造机器人部件,运用约束库中的移动和旋转副对部件进行链接,添加驱动力,实现机器人的运动,完成三维建模。(3)对机器人的运行轨迹进行多项式优化,利用ADAMS/View的仿真和后处理模块,绘制小臂末端处所取点的位置、速度、加速度、角速度和角加速度曲线,结合曲线进行三次多项式和五次多项式轨迹规划的仿真分析

31、,并进行比较分析。(4)利用Visual C+6.0和OpenGL导入并建立机械手模型,建立仿真场景,实现基于模型数据的运动仿真,并实现视角的交互式键盘控制。第二章 机器人运动学机器人运动学指研究机器人各个连杆相对运动的空间几何关系。在实际应用中,最为感兴趣的问题是机器人手部(即末端执行器)相对于参考坐标系的空间描述。机器人可以看成为一个开环的运动链,该链是由一组杆件相连而成,其一端固定在基座上,另一端固定在机器人手部上。两个杆件之间通过关节相连,关节由驱动器驱动,使杆件之间产生相对运动,从而使机器人手部达到期望的位置和姿态。在机器人运动学的研究过程中,又可以分为两类基本问题,即机器人运动学的

32、正问题与逆问题。其中,机器人运动学的正问题指在已知杆件几何结构参数和关节变量值的前提下,求解机器人手部相对于参考坐标系的位置与姿态的问题;机器人运动学的逆问题指根据机器人手部在笛卡尔坐标系中的位置与姿态求解机器人各关节的关节变量值的问题。【5】2.1 空间点和坐标系的表示2.1.1 空间点的向量表示在直角坐标系中,可以用一个31的位置矢量来表示空间内任意一点的位置。对于直角坐标系中任意一点p的位置可以用31的位置矢量P表示为 (2-1) 如图2-1所示, , 和 分别表示点P在当前坐标系中的三个坐标轴方向的分量。这里P称为位置矢量,这 种表示法也可变化为如下形式: 图2-1 空间点的位置表示

33、(2-2)加入一个比例因子 ,使得 , 为 的齐次坐标。【10】2.1.2坐标系在固定参考坐标系中的表示当一个坐标系位于另一个坐标系中时,如图2-2所示,通常用三个互相垂直的单位向量n、o、a表示,这三个变量分别代表法线(normal)、指向(orientation)与接近(approach)向量(如图2-2所示)。每一个单位向量都可以由它所在参考坐标系中的三个分量表示,这样,坐标系F就可以表示为由四个向量组成的矩阵: (2-3) 图2-2 一个坐标系在另一个坐标系中的表示式(2-3)中前三个列向量取w=0,表明该坐标系三个单位向量n、o、a的方向。而第四个列向量中w=1,表示该坐标系相对于参

34、考坐标系的位置。2.2 坐标系的变换坐标系的变换包括绕固定参考坐标系的变换和绕运动参考坐标系的变换。2.2.1 齐次变换空间中一个坐标系相对于固定的参考坐标系的运动称为齐次变换。齐次变换可以是平移运动,可以是旋转运动,也可以是平移与旋转的复合运动。(1) 纯平移齐次变换如果一个坐标系(它可能表示的是一个物体)在空间运动中相对于固定参考坐标系的姿态不发生变化,即该坐标系的三个单位向量方向不变,只改变它的坐标原点位置,则称这种运动为平移运动。如图2-3所示,坐标系A沿平移向量d平移到新的位置: (2-4)其中 是平移向量d相对于固定参考系三个坐标轴方向的分量。【7】 图2-3 坐标系的平移平移后新

35、的坐标系原点位置向量可以表示为原来坐标系的原点位置向量与位移向量d的矢量和。若采用矩阵形式,新坐标系的矩阵表示可以通过将坐标系左乘变换矩阵。由于平移过程中方向向量保持不变,所以平移变换矩阵T可以简单地表示为: (2-5)可以看到,矩阵的前三列没有旋转运动(等同于单位矩阵),而最后一列表示平移运动,这个方程可以用符号表示如下: (2-6)即 (2-7) (2) 绕轴纯旋转齐次变换为了简化旋转变换的推导,假设坐标系B位于坐标系A的原点。纯旋转就是B坐标系在空间中运动中相对于固定参考坐标系A的位置不发生变化,即只改变该坐标系三个单位向量的方向而不改变其原点位置。这样坐标系B可以由坐标系A经过旋转次变

36、换后得到,由此可以推广到其他旋转情况。设向量x, y, z为坐标系A的三个单位向量,空间任意一点p的位置可以用向量p表示。向量p在坐标系A中的表示为: (2-8)向量p在坐标系B中的表示为: (2-9)则向量 在坐标系A中的投影分别为 (2-10) (2-11) (2-12) 写成齐次矩阵形式则为: (2-13) (2-14)当坐标系B只相对于坐标系A单个轴转动时称为基本变换矩阵。如坐标系B只绕坐标系A的x轴转动角度时,基本转动变换矩阵记为Rot(x,),由式(2-14)可以计算得: (2-15)可以用同样的方法来分析坐标系B绕坐标系A的y轴和z轴旋转的情况,结果如下: (2-16) (2-1

37、7)(3) 复合齐次变换复合齐次变换是有由固定坐标系或当前运动坐标系的一系列沿轴平移和绕轴旋转变换所组成的,此时该固定坐标系在参考系中不仅原点位置发生变化,同时它的三个坐标轴单位向量的方向也发生变化。此时的变换顺序很重要,变换顺序不同,结果不同。我们假设坐标系(n, o, a)相对于参考坐标系(x ,y ,z)依次进行了下列四个变换:l绕z轴旋转度l绕z轴平移dl绕x轴平移al绕x轴旋转度则复合齐次变换 可由下式求解: (2-18)可见,齐次变换矩阵是由一组平移和旋转矩阵依次左乘获得,矩阵书写的顺序和进行变换的顺序正好相反,而且变换的顺序不能更改,否则结果会随之改变。【6】2.2.2 坐标系相

38、对于旋转坐标系的变换前面我们所讨论的所有变换都是相对于固定参考坐标系的。也就是说,所有平移和旋转都是相对于参考坐标系的轴来测量的。然而事实上,也有可能相对于运动坐标系或当前坐标系的轴的变换。例如,相对于运动坐标系(当前坐标系)的n轴而不是参考坐标系的x轴旋转度。为了计算当前坐标系中点的坐标相对于参考坐标系的变化,我们需要右乘变换矩阵而不是左乘。由于运动坐标系中的点或刚体的位置总是相对于运动坐标系测量的,所以必须右乘来表示该点或刚体的位置矩阵。2.2.3 变换矩阵的逆在分析机器人时,如果已知坐标系B相对于坐标系A的值 ,为了得到A相对于B的描述 ,需要求这个矩阵的逆。一个直接求逆的方法就是将4

39、4齐次变换求逆。同样,我们还可以通过变换的性质求逆。下面是关于x轴简单旋转矩阵的求逆过程。旋转矩阵如下: (2-19)我们采用以下的步骤来计算旋转矩阵的逆: 1)计算矩阵的行列式2)将矩阵转置3)将转置矩阵的每个元素用它的子行列式代替4)用转置后的矩阵除以行列式通过以上步骤我们得到: (2-20)关于x轴的旋转矩阵的逆与它的转置矩阵相同,即: (2-21) 2.3 机器人的正逆运动学对于一个已知构型的机器人,当它的连杆长度和关节角度都已知时,计算机器人手的位姿就称为正运动学。也就是说,如果已知机器人所有的关节变量,用正运动学方程就能计算任一瞬间机器人的位置和姿态。如果要将机器人的手放到一个期望

40、的位姿,就必须知道机器人所有关节的长度和角度。由机器人手的位姿来求关节和连杆变量的过程就称为机器人的逆运动学。对于正运动学,必须推导出一组特定方程,我们只要将已知的关节和连杆变量代入方程就能计算出机器人的位姿,然后再根据这些方程求解出逆运动学方程。在空间中,要确定一个物体的几何状态需要确定其3个位移坐标(位置)和三个旋转坐标(姿态)。机器人手部的空间位置和姿态的表示可以借助一个固连在它上面的参考坐标系来表示,只要这个坐标系可以在基座的参考坐标系的空间中表示出来,那么该机器人手部相对于基座的位姿就是已知的了,可采用齐次坐标变换的方法完成这两个坐标系的坐标转化。 图2-3 机器人手的位置和姿态描述

41、 机器人手部的位姿如图2-3所示,可由固接在机器人手部的坐标系B来表示。该坐标系由其原点位置和三个单位矢量(n, o, a)唯一确定。坐标系A表示固连在机器人基座上的固定参考坐标系。向量P为坐标系B原点在坐标系A中的位置矢量。前面已经讨论过了一个坐标系在固定坐标系的表示故这里直接给出坐标系B在坐标系A中的位姿的表示: (2-22)2.3.1正运动学的D-H表示法机器人建模采用的是Denavit和Hartenberg提出来的标准方法,我们简称为D-H模型,该模型可用于任何复杂的机器人构型。假设机器人由一系列的关节和连杆构成,这些关节包括滑动的和旋转的,连杆长度任意,确保在空间能构成任意想要的机器

42、人模型。为了表示这个模型,我们需要为每个关节指定一个参考坐标系,然后再考虑从一个关节到下一个关节的变换。假设一个机器人由任意多的连杆和关节以任意形式构成。如图2-4所示,任意三个顺序连接的关节和连杆,每个关节都可以平移或旋转。指定第一个关节为关节n,第二个第三个关节分别为n+1和n+2,连杆n位于关节n和n+1之间,连杆n+1位于关节n+1和关节n+2之间,这些关节和连杆前后还有其他连杆和关节。 图2-4 关节-连杆组合的通用D-H表示法D-H表示法建模的第一步是为每个关节指定本地参考坐标系,每个关节都必须指定x轴和 轴,由于D-H法不用y轴,一般不指定y轴。具体步骤如下:l所有关节用 轴表示

43、,如果关节是旋转, 轴位于按右手规则旋转的方向,如果关节是滑动的, 轴为沿直线运动的方向。关节n处 轴的下标记作n-1。对于旋转关节,绕 轴的旋转( 角)是关节变量,对于滑动关节,沿 轴的连杆长度d是关节变量。l如图2-4所示,通常关节不一定平行或相交,因此z轴通常是斜线,但总有一条公垂线,正交于任意两条斜线。通常在公垂线方向上定义本地参考坐标系的x轴。例如 表示 和 之间的公垂线, 的方向即沿 方向。l如果两个关节的 轴平行,那么它们之间就有无数条公垂线,我们可以挑选与前一公垂线共线的公垂线,从而简化模型。l若两相邻的关节 轴相交,则不存在公垂线,我们选择垂直于两轴平面的任意直线,同样简化了

44、模型。在图2-4中, 角表示绕 轴的旋转, 表示 轴上两相邻公垂线之间的距离, 表示每一条公垂线的长度, 角表示相邻两 轴的夹角。通常只有 和 是变量。从一个参考坐标系变换到另一个参考坐标系(例如从 - 到 - ),可以通过以下四步标准运动实现:l绕 轴旋转 ,使得 和 相互平行且共面。l沿 轴平移 距离,使得 和 共线。l沿 轴平移 距离,使得的原点重合,此时两个坐标系的原点在同一位置。l将 轴绕 旋转 ,使得 和 对准。至此,坐标系 和坐标系 +1完全一致,变换结束。在 +1和 +2坐标系间按照同样的运动顺序也可以实现坐标系间的变换。我们可以从参考坐标系开始,转换到机器人底座,再到第一个关

45、节,依次下去直至末端执行器。每个变换矩阵(记作A)都是由上述四个矩阵依次右乘的结果: (2-23) (2-24)从机器人基座到手(末端执行器)之间的总变换可以表示为: (2-25)为了简化计算,我们为关节和连杆参数制作一个表格,每个参数可以从机器人的原理图上读出,计算时再这些参数代入A矩阵。在本文中设计的简单三自由度机器人模型参数如图2-5所示。所有链接采用旋转关节,D-H参数如表2-1所示。 图2-5 简单三自由度机器人(单位:英寸)表2-1 机器人D-H参数表(逆转为正,顺转为负)连杆i da 19000020650-903-30020004- 3001500将上述角度值代入式(2-25)

46、,运用MATLAB进行计算出机器人初始位置坐标:2.3.2逆运动学方程的求解为了让机器人处于适当的位姿,我们需要求解每个关节的角度值,这就是机器人的逆运动学。我们可以通过矩阵 左乘 来求解,如下: (2-26)为了求解角度,我们从 开始,依次左乘上述矩阵,得到每个关节角度表达式: (2-27)因此,我们的三自由度机器人逆运动关节角度表达 (2-28)2.4 微分运动微分运动即机器人的微小运动,可以用它来推导不同部件之间的速度关系。 图2-6 (a)具有两自由度平面结构 (b)速度图如图所示的两个自由度的简单机构, 表示第一个连杆相对于参考坐标系的旋转角度, 表示第二个连杆相对于第一个连杆的旋转

47、角度。B点的速度可以计算如下: (2-29)将速度方程写成矩阵形式得到如下结果: (2-30)方程左边表示B点速度的x,y分量。B点的位置我们可以用下述方程表示: (2-31)对方程中的 和 微分,写成矩阵形式如下: (2-32)我们看到,(2-29)和(2-31)式在形式上很相像,只是前者表示的是速度关系,后者表示的是微分运动的关系。因此在机器人运动中,我们可以将关节的微分运动与速度联系起来。第三章 基于ADAMS的机器人的虚拟样机分析3.1 ADAMS概述美国MSC.Software公司在2003年3月收购了全球最大机构的仿真软件、咨询服务、系统集成供应商MDI/ADAMS。MSC.Sof

48、tware公司的ADAMS软件是虚拟样机领域内广泛使用的软件,可以使工程师、设计人员能够在物理样机构造前,建立机械系统的“模拟样机”,预估出机器的工作性能。ADAMS软件具有如下特点:(1)分析类型包括运动学、静力学分析以及线性和非线性动力学分析(2)具有二维和三维建模能力(3)具有50余种联结副、力和发生器组成的库和强大的函数库(4)具有组装、分析和动态显示模型的功能,包含刚体和柔体分析(5)具有与CAD、UG、Pro/E、Matlab、ANSYS等软件的专用接口(6)具有开放式结构,允许用户集成自己的子程序基于ADAMS的虚拟样机技术是在制造物理样机前,利用计算机技术建立该产品的数学模型,

49、通过基于实体的可视化仿真分析,模拟该系统在实际工作环境中的运动学和动力学特性,并反复修改设计,从而得到最优方案。A 创建模型创建机械系统模型时,首先要创建构成模型的各个零部件。零部件创建完后,需要使用运动关节约束库创建零部件之间的约束副,确定部件之间的连接情况以及仿真过程中构件之间的位置关系。最后,施加运动及各种载荷使样机按照设计要求进行仿真。B 测试验证模型并细化模型创建过程中和完成后,都可以对模型进行运动仿真测试。通过对模型的性能测试,验证设计方案的正确性,然后,在模型中增加更复杂的因素,进一步细化模型。为便于不同方案的比较,通过设计变量不同取值的迭代仿真,求出设计变量的最优值。C 优化设

50、计采用设计和优化分析的研究手段,确定各个设计变量相对于解算结果的灵敏度并最终确定目标函数的最优值。【8】3.2 ADAMS中机器人模型的建立本文机械手模型参考了PUMA机器人的结构,建模过程中依照模块化的思想先绘制各个部件,然后通过布尔运算和参数的调整,完成建模。【15】3.2.1 设置建模环境打开ADAMS/View,选择创建新模型,将机械手模型命名为model_2jixieshou,其他采用系统默认值,进入建模界面。在建模界面中,首先要设定工作栅格,点击菜单Settings中的Working Gird.如图3-1所示,根据建模需要,栅格范围设置为10001000(mm),大小为5050(m

51、m)。 图3-1 工作栅格设置设置完工作栅格就可以开始建模。3.2.2机器人实体建模ADAMS/View中集成了很多图形模板,包括点,线,面,体各方面。我们构建的是机器人的三维立体模型,其主要部件都是刚体。ADAMS中的刚体模板包括圆柱,圆锥,长方体,球体,拉伸体,平板等。我们选择圆柱体(圆盘)作为机器人的底座,圆柱体作为机器人的腰部,拉伸体作为机器人的手臂。在建模过程中,作者一直根据模块化的原则,在建立每一个部件的过程中都同时通过布尔运算等对模块进行优化,很好的美化了模型,并且是模型更加合理。这种工作方法为最后的总装提供和很大的便利和好处,节省了很多时间,提高了工作效率,值得在其他工作中借鉴

52、。由于建模过程主要是ADAMS软件的操作过程,如果对ADAMS比较熟悉这个过程就很简单。本文不再对建模过程做详细介绍。建立好的机械手实体模型如下图3-2所示: 图3-2 机械手实体模型3.2.3 机器人模型的设置机器人实体模型建好以后,应对其属性进行修改。我们设计用的机器人材料为铝材,初始位移为各个点的初始位置,初始速度设置为零。选定材料后,物体的密度就自动确定了,同时系统会自动计算构件的质量。然后对关节添加相应的约束和驱动力。如果我们要模拟某些特殊的工作过程,我们还应该在相应的位置处添加力和力矩。如我们模拟提升物体的操作过程,那么我们就在小臂(PART6)的端部PART6_MARKER_6处

53、添加一个大小为10N方向向下的力。完成这个设置后机器人的模型如下图3-3所示: 图3-3 机器人最终模型至此,我们已经完成了三自由度机器人的建模过程,通过软件自检功能,可以判定模型正确与否,建模完成以后就可以进行运动学仿真分析。3.3 轨迹规划仿真分析完成建模过程后,我们就可以运用软件的仿真功能对模型的运动学,静力学,动力学进行分析,本文对所建立的模型进行了运动学的理论分析,然后又结合轨迹规划进行了仿真分析。轨迹规划一般分为两种:一种是在关节空间进行规划,将关节变量表示成时间的函数,并规划它的一阶和二阶时间导数;另一种是在直角空间(笛卡尔空间)进行规划,将末端位姿、速度、加速度表示为时间的函数

54、,而相应的关节位移、速度和加速度由末端信息导出。【12】本文分别给出了对模型进行关节空间和直角空间轨迹规划方法的理论分析,并在ADAMS/View的仿真和后处理模块中利用ADAMS内嵌的step函数对关节空间内三次多项式和五次多项式轨迹规划进行了分析比较。3.3.1 轨迹规划方法的理论分析(1)关节空间内三次多项式轨迹规划假设机器人的初始位姿是已知的,通过逆运动学方程可以求得期望位姿对应的关节角。若考虑其中某一关节在运动开始时刻 的角度 ,希望该关节在 时刻运动到新的角度 ,使用多项式函数可以保证初始和末端的边界条件与已知条件相匹配,这些条件信息可以求解下面的三次多项式方程。 (3-1)这里的

55、初始条件和末端条件是: (3-2)对4-1式求导,得: (3-3)将4-2式分别代入4-1和4-3式得: (3-4)联立求解这四个方程就可以得到任意时刻的关节位置,控制器则据此来驱动关节。每个关节分别规划,同步运行。如果要求机器人依次通过多个点,则每一段末端求解出的速度和位置都可用作下一段的初始条件,每一段的轨迹都可采用上述的三次多项式来规划。针对本文设计的三自由度机器人,在其初始位置基础下,我们要求机器人手臂在6S后分别运动 =180, =60, =30。表4.1 三次多项式规划关节角度 00.00000.00000.0000113.33334.44442.2222246.666715.55

56、567.7778390.000030.000015.00004133.333344.444422.22225166.666755.555627.77786180.000060.000030.0000将上述边界条件代入4-4式,解得第一个关节轨迹参数为 =0, =0, =15, =-5/3轨迹方程为: ;同样可得出第二个关节轨迹参数 =0, =0, =5, =-5/9轨迹方程为: ;第三个关节参数 =0, =0, =5/2, =-5/18轨迹方程为: 我们将运动过程分为5段,则每秒钟机器人运动的关节角度如表4-1所示。(2)关节空间内五次多项式轨迹规划在三次多项式规划中,我们采用的边界条件是起点

57、和终点的位置与速度,如果同时指定起点和终点的加速度,这样边界条件就增加到6个,可以用同样的方法进行五次多项式的规划: (3-5) (3-6) (3-7) (3)关节空间内抛物线过渡的线性运动轨迹规划在关节空间轨迹规划的另一种方法就是让关节以恒定的速度在起点和终点之间运动,轨迹方程相当于一次多项式,速度为常数,加速度为零。这样意味着在起点和终点的加速度必须为无穷大,为避免这一情况,线性运动在起点和终点可以用抛物线来过渡。如图4-6,抛物线与直线过渡段在时间和处是对称的,由此得到: (3-8) 图4-6 抛物线过渡的线性段规划方法此时抛物线运动段的加速度为一常数,在A点和B点速度连续,将边界条件代

58、入得: 从而得出抛物线的方程为: (3-9)将零初速度,线性段常值速度 以及零末端速度代入上式,得到: (3-10)从而可求出过渡时间: (3-11)显然,不能大于总时间的一半,否则整个过程中只有加减速而没有直线运动。终点的抛物线段与起点是对称的,只是加速度为负而已。 我们依然用设计的三自由度机器人来进行规划。在其初始位置基础上,我们要求机器人手臂在6S后分别运动 =180, =60, =30中间匀速运动的速度分别为 , , ,那么过渡时间分别为: , , 匀加速,匀速,匀减速运动方程分别如下:第一个关节角 : 第二个关节角 : 第三个关节角 : 则在0s到6s关节的角度分别如表4-2所示:表4-2 抛物线过渡规划关节角度t 0000140/3632501893903015413042215500/3542761806030(4)直角空间轨迹规划直角坐标空间轨迹与机器人相对于直角坐标系的运动有关,机器人末端执行器的位姿就是沿循直角坐标空间的轨迹。实际上所有的关节空间轨迹规划的方法都可用于直角坐标空间的轨迹规划。其差别在于:对于关节空间的轨迹规划,规划函数生成的值就是关节值,而直角坐标空间轨迹规划函数生成的值是机器人末端执行器的位姿,必须通过反复求解逆运动学方程来计算关节角。其过程可以综合如下:将时间增加一个增量 ;利用所选择

展开阅读全文
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!