外骨骼机器人研究发展综

上传人:ai****ue 文档编号:54236284 上传时间:2022-02-13 格式:DOCX 页数:16 大小:213.20KB
收藏 版权申诉 举报 下载
外骨骼机器人研究发展综_第1页
第1页 / 共16页
外骨骼机器人研究发展综_第2页
第2页 / 共16页
外骨骼机器人研究发展综_第3页
第3页 / 共16页
资源描述:

《外骨骼机器人研究发展综》由会员分享,可在线阅读,更多相关《外骨骼机器人研究发展综(16页珍藏版)》请在装配图网上搜索。

1、标准文档外骨骼机器人研究开展综述李罗川实用大全摘要外骨骼机器人又称可穿戴机器人,是一种结合了人的智能和机械动力装 置的机械能量的机器人.外骨骼机器人融合了传感、限制、驱动、信息融合、 移动计算等综合技术为作为操作者的人提供一种可穿戴的机械机构.本文介绍了外骨骼机器人的开展历史以及国内外研究现状, 对外骨骼机器人的关键 技术:机械结构设计,驱动单元,限制策略进行了研究,分析了其技术难点 最后对其开展前景进行了说明.关键词:外骨骼机器人关键技术目录引言 41. 开展历史及现状 51.1国外开展历史现状 51.2国内开展历史现状 82. 关键技术分析 102.1外骨骼机器人的结构设计 102.2外骨

2、骼机器人驱动单元 112.3外骨骼机器人的限制策略 113. 外骨骼机器人技术难点分析 144. 前景展望 164.1外骨骼机器人的研究方向 164.2外骨骼机器人技术的应用 16引言现代机器人所具有的机械动力装置使得机器人可以轻易地完成很多艰苦的 任务,比方举起、搬运沉重的负载等.虽然现代机器人限制技术有了长足的开展, 还远达不到人的智力水平,包括决策水平和对环境的感知水平. 与此同时,人类 所具有的智能是任何生物和机械装置所无法比较的,人所能完成的任务不受人的 智能的约束,而仅受人的体能的限制.因此,将人的智能与机器人所具有的强大 的机械能量结合起来,综合为一个系统,将会带来前所未有的变化

3、,这便是外骨 骼机器人的设计思想.外骨骼机器人实质上是一种可穿戴机器人,穿戴在操作者 的身体外部,为操作者提供了诸如保护、身体支撑等功能,同时又融合了传感、 限制、驱动、信息融合等机器人技术,使得外骨骼能够在操作者的限制下完成一 定的功能和任务.本文通过介绍外骨骼机器人的开展历史及研究现状进一步分析 了外骨骼机器人的关键技术,并对其技术难点以及开展前景作了说明, 以期在全 面熟悉外骨骼机器人根底上对其开展进一步深入研究.1. 开展历史及现状1.1国外开展历史现状外骨骼系统的最早研究始于 20世纪60年代.1962年,美国空军就要 求康奈尔航空实验室进行一项采用主从限制方式的人力放大器系统的可行

4、 性研究.从1960年到1971年,美国通用电器公司开始研发一种基于主从控 制 的外骨骼原型机,名字叫做“ Hardiman如图1所示.图【Hardinum外竹骼系统Hardiman采用电机驱动方式,可以像举起 10磅那样来举起250磅的重物. 但是,由于技术的限制,导致Hardiman的体积和重量过大,无法进行实际应用, 慢慢停止了开展.同时期进行外骨骼研究的还有贝尔格莱德大学的 Vukobratovic等人,他们的研究主要用于辅助下肢瘫痪患者进行运动康复.尽 管只实现了局部运动形式,但是研究过程中得到的平衡算法在双足步行机器人中 得到了广泛应用.随后尽管人体外骨骼机器人经历过一段时间的寂静

5、,但到 20世纪末,由于 传感技术、材料技术和限制技术等技术的开展和各种军事、 民用需求的凸显使得 人体外骨骼机器人再次进入了蓬勃开展阶段, 美国、日本和俄罗斯等国均针对人 体外骨骼机器人开展了大量的研究工作.2000年,美国国防高级研究方案局(DARPA)在出资五千万美元用于资助对 能够增强人体机能的外骨骼(EHPA )的研究与开发, 研制一种穿戴式的,具有自适应水平的外骨骼系统,使士兵在穿着外骨骼后,行军水平大大提升.DARPA 的该工程资助了多家研究机构,主要有加利福尼亚大学伯克利分校机器人和人体 工程实验室、Oak Ridge国家实验室、盐湖城人体机能研究所、“千年喷气机 公司、SAR

6、CO公司等.其中伯克利分校、SARCO公司和麻省理工学院展示了实 验样机,其他单位那么在传感驱动人机界面生物力学人因测试等方面进行了分析与 实验.2 0 0 4年,伯克利分校研制出的下肢外骨骼机器人 BLEEX是DARPAK目的 第一台带移动电源和能够负重的下肢外骨骼机器人.如图2所示图2伯克利的BLEEXBLEEX由 一个用于负重的背包式外架、 两条动力驱动的仿生金属腿及相应动 力设备组成,使用背包中的液压传动系统和箱式微型空速传感仪作为液压泵的能 量来源,以全面增强人体机能.BLEEX的每条腿具有7个自由度(髋关节3个, 膝关节1个,踝关节3个),在该装置中总共有40多个传感器以及液压驱动

7、器, 它们组成了一个类似人类神经系统的局域网.BLEEX勺负重量能到达75kg,并以0.9m / s的速度行走,在没有负重 的情况下,能以1.3m / s的速度行走. 然而BLEEX由于结构复杂能量消耗大操作者长时间使用很不舒服因此未获得D ARPA第二阶段的资助.BLEEX虽然未获得进一步的资助但是 Kazerooni教授 和他的学生成立了伯克利仿生公司争取吸引风险投资并对骨骼服技术进行市场 化运作设计开发了更加轻便简洁实用的 HULC(humanuniversal load carrier ) 如图3所示:图3洛克希德马丁公司的 HULCHULC被著名的武器承包商洛克希德马丁公司收购.HU

8、LC质量为24kg 不含电池两块电池质量为3.6kg.士兵穿戴上HULC之后能够额外负重91kg,是 BLEEX系统负重水平的3倍.电池可供以5 km/h的速度连续行走3h.速度峰值 可到达16km/h.可以说HULC是最接近实战应用的一款骨骼服.目前正在进行进 一步的集成开发同时进行部队的演示验证实验.雷神公司在收购了参与EHPA工程的SARCO公司后,也推出了其研制的第一 代全身型人体外骨骼机器人 XOSXOS能够在背负68 kg且手持23kg的负荷时以 1.6 m /s的速度行进,并可实现弯腰下蹲和跪地等动作.2021年第二代XOS机器人问世,如图4所示.图4雷神公司的XOS-2第二代X

9、OSA体外骨骼机器人的能耗较第一代降低了一半,而且较第一代 具有更强的负重水平,系统的灵敏度和响应速度进一步提升.但其缺陷在于能量 消耗依旧较大,至今仍依赖地面供电.总之美国的骨骼服以军事应用为背景资助力度大资助范围广对骨骼服各个方面的研究最为深入呈现百花齐放的状态,研究水平居世界前列.日本是当仁不让的机器人技术强国, 但是骨骼服的军事意义相当明显,因此 日本主要从骨骼服的民事应用入手在助残护理劳动等应用领域对骨骼服展开了 广泛的研究,成绩显著.日本筑波大学于 2004年推出了世界上第一款商业人体 外骨骼机器人(HAL),当前已开展到第五代助力机器人 HAL-5,如图5所示.图5筑波大学的HA

10、L-5HAL-5是一种全身型助力机器人,其特点在于通过遍布全身的肌电传感器 实现对人体运动信息的采集,并通过电机实现对各关节的助力.HAL-5重约15kg, 其能源供给装置小巧,使用时间长,但是由于使用了肌电传感器导致其穿戴复杂, 且易受干扰,目前仅用于民用领域.除此之外,日本神奈川理工学院研制的采用气压驱动的动力辅助服和本田公司采用非拟人设计的助力机械腿也已经进入 样机制造阶段.国外其他国家的人体外骨骼机器人研究:俄罗斯目前研制出了一款战士-21的单兵作战服,其能够让士兵携带重物飞奔,且能够在电力耗尽时迅速脱下; 法 国防务公司与法国武器装备总署联合研制了名为“大力神的协同可穿戴式外骨骼机构

11、,旨在使穿戴者能够轻松携带 100 kg重物,其电池可使穿戴者以4 km /h的速度行进大约20 km同时,韩国、意大利及新加坡等国家也有相关方面的 研究,但由于均没有进行公开演示,故相关资料较少.1.2国内开展历史现状目前国内开展人体外骨骼机器人研究的主要有浙江大学、中国科技大学、华东理工大学及中国北方车辆研究所等大学和研究所. 浙江大学主要进行人机耦合 的层次式限制框架的研究,并设计完成了一种基于气动的外骨骼机器人样机.中国科技大学在人体外骨骼机器人的姿态感知及限制方法方面展开了大量研究,在相关姿态传感器方面获得了不少成果.华东理工大学也在做相关方面的研究,已 完成了一套液压驱动的实物样机

12、.中国北方车辆研究所在人体外骨骼机器人的计 算机虚拟建模及仿真方面做了深入研究,并在行走助力机器人用小型液压缸设计 等方面有所突破. 此外还有很多机构也展开了相关研究,女口:海军航空工程学 院对基于电机驱动的人体外骨骼机器人进行了研究;北京工业大学在助力机器人机构设计方面进行了一定研究.总体来看,由于国内在人体外骨骼机器人研究方面起步较晚, 大多处于理论 研究阶段. 同时由于资金支持力度较小,所设计的实物样机也均略显粗糙.2. 关键技术分析外骨骼机器人从功能上看可分为以下几个子系统:机器人机械结构、动力输 出及执行系统、姿态感知系统和限制系统.根据美国和日本对人体外骨骼机器人 的研究成果,并结

13、合在进行外骨骼机器人各系统设计过程中的经验教训,探讨外骨骼机器人各系统的一些关键技术.2.1外骨骼机器人的结构设计外骨骼要求良好的穿戴性和操作舒适性,这对外骨骼的机械系统设计提出了 具体的要求.首先,外骨骼的设计必须在充分表达仿生学和人体工程学的根底上,尽量采用拟人化的设计手段.这一点不仅应该表达在具体的结构设计上,而且还要表达 在目标功能的实现上.一 方面,外骨骼的结构应该尽可能的模拟真实的人体下 肢,特别是在各个关节的布置和自由度的分配上;另一方面,外骨骼上驱动元件的布置也要参考人体下肢内主要的代表性肌肉的分布,从而模拟人体行走过程中 这些肌肉的相应功能.同时,驱动元件和传感器件的数量也要

14、尽可能少,以到达增加系统鲁棒性和降低系统本钱的目的. 只有在满足这些条件的前提下,所设计 的目标外骨骼才有可能和操作者协调运动且保证两者之间的相互干预最小.其次,外骨骼的机械结构应该具有长度可调节性,即身材兼容性.由于不同的人的身材不同,即有高矮胖瘦之差,相应的,其下肢的几何尺寸也不尽相同, 所以,所设计的机械下肢的尺寸应该允许在一定范围内可以进行调节,从而可以满足大多数人的使用要求,使其适用面更广.再次,外骨骼应该具有巩固、耐用、轻巧、便携的特点.外骨骼在使用过程 中,其机械结构不仅要能承受背在载物架上的各种负载的重量,还要能够承受在行走过程中来自地面的冲击力,所以应该首先保证结构的刚度.

15、除此之外,由于 本工程的最终目标是建立“自给式的步行外骨骼,即外骨骼除了需要携带各种 常规的仪器和工具之外,还需要随身携带其自身必须的能量供给系统和限制系统, 所以外骨骼的本体结构要尽可能的轻,这样不仅可以提升其携带有效载荷的水平, 而且可以提升外骨骼的易操作性.外骨骼机构的另一项重点便是其平安性问题,作为和身体密切接触的机械结构,必须以不对人体造成威胁为前提.外骨骼可能出现的平安问题是外骨骼和 人肢体运动方向出现分歧.所以在连杆设计的时候必须考虑关节转动限位.2.2外骨骼机器人驱动单元外骨骼机器人的驱动系统和驱动器必须质量轻体积小,并且能提供足够大的 驱动力矩或扭矩,同时要具有良好的散热性能

16、.当前国际上的外骨骼设备常用的 驱动系统主要有电动机驱动系统气压驱动系统液压驱动系统 3种.目前日本的 HAL机器人采用电机驱动方案,美国的 HULC以及X0S-2机器人采用液压驱动方 案,日本神奈川工科大学成功研制的全身型外骨骼机器人 (power assist suit , PAS采用的气压传动装置可将使用者的力量增加 0.5 1.0倍.三者各有优缺点.电机驱动方案的限制模式简单、直接,限制精度较高,响应快,维护和使用 方便,驱动效率高,不污染环境等诸多优点.但能输出较大扭矩的电机体积却较 大,不宜布置,影响系统的灵活性;液压驱动方式虽然具有可控性强、传动平稳、 驱动力矩大等特点,适用于高

17、速重载的搬运和零件加工机器人.但是在限制响应 速度和精度上有先天的缺乏,且本钱高、结构复杂、能量使用率低、密封困难等 问题;气压驱动容易到达高速、介质无污染、使用平安、工作压力低,制造要求 比液压元件低、治理维护比较容易,但是气动装置的信号传递速度较慢,其稳定 性较差,难以限制,噪声较大.2.3外骨骼机器人的限制策略外骨骼机器人和其他机器人的最大区别在于它的操作者是人,而不是机器, 操作者处于回路中,即“人在回路中(Man in Loop ),操作者与外骨骼具有实 实在在的物理接触,形成了一个人机耦合的一体化系统.人机耦合系统的限制目 的就是要使人和机器能够协调地工作,完成任务.(1) 预编程

18、限制:外骨骼中有很多是基于康复目的的有外部能源驱动的步态 矫正装置.这些装置主要是下肢外骨骼,用于支撑重量,对操作者进行下肢康复 练习.这些外骨骼装置通过预先编好的程序来运行,装置的运动轨迹是预先编程设计好的,设计时根据正常人的运动步态来设计并有所改动以适应于矫正装置, 但操作者只能进行有限的干预.基于程序限制的康复矫正装置都需要患者使用手 杖或者额外的辅助框架来保持操作者行走的稳定,而且实现的运动形式也十分有 限.基于人体脑电信号(EEG)的外骨骼限制策略:EEG是人的大脑皮层产生的 一种电脑波,能够直接反映人体运动意图.随着脑机接口技术的开展,EEG在智能假肢和仪器限制上有了较大开展,但是

19、脑电信号微弱,噪声大,研制本钱高, 提取困难,数据处理程序较为复杂.该方式常用于肢体瘫痪患者的助力装置设计, 但操作者使用该类型装置时必须集中思想, 不能分散,否那么会影响装置运转,不 适用于操作者同一时刻执行多重脑部指令任务. 为巴西世界杯开出的第一個球的 瘫痪少年身穿一款被命名为“ Bra-Santos Dumon的“外骨骼,这套装置就是 通过患者大脑意识活动进行限制的.(3) 基于人体外表肌电信号(sEMG的外骨骼限制策略:sEMG是一种复杂的表皮下肌肉电活动在皮肤外表处的时间和空间上的综合结果,可以直接反映人肢体的动作信号,广泛地应用于肌肉运动、肌肉损伤诊断、康复医学及体育运动等方 面

20、的研究,尤其是在智能假手方面已经有了成熟的技术;日本筑波大学山海嘉之研制的HAL-5外骨骼机器人就是使用贴附在人体皮肤上的电极检测微弱的生物 电流,但是肢体的EMG言号和关节运动力矩之间的关系并不是完全确定的,并且还要考虑肌力力臂和不同个体生理状况的影响, 因此使用EMG言号的限制器一般 适用于特定操作者的个体设备.另外测量肌电所采用的大局部的电极或传感器必 须和人体外表皮肤紧密接触,而在大幅度运动下,此类型传感器容易脱落、易位, 并且长时间运动后,人体出汗会影响传感器的测量;EMG言号中往往包含很强烈的噪声,必须经过额外的处理才能应用于系统中;传感器每次都要贴到人体外表, 使用不便.(4)

21、基于运动力学信号的外骨骼限制策略:人体穿上外骨骼行动时,人体动作、人和外骨骼之间、外骨骼和地面之间都会产生运动力学信号,根据这些信号可以采用诸如主从限制、直接力反应限制、地面反作用力限制、ZMP空制等限制策略.这些信号较为稳定、有规律,不易受干扰且易于采集,但为保证信号采集 的快速性和准确性,必须在外骨骼和人体上使用大量不同类型传感器装置,并且传感器在外骨骼上的合理配置对于运动信息采集的快速性和精确性有很大的影 响,故其结构和硬件设计较为复杂.美国伯克利大学的BLEXX和雷神的XOS系列 外骨骼利用大量不同类型传感器元件采集运动信息,以到达对外骨骼机器人行为 动作和平衡限制,保证使外骨骼快速精

22、确地响应人体的动作.上述几种限制策略单独应用于外骨骼机器人都存在一定的技术缺陷.预编程限制方式会限制外骨骼动作模式的扩展性; 脑电信号限制方式会影响人脑对其他 动作的限制,易受到外界环境的干扰;肌电信号限制方式安装要求高,穿戴不方 便而且容易脱落;基于运力学信号的限制方式对传感器选择和配置方案有较高要 求,其硬件较为复杂.3. 外骨骼机器人技术难点分析在开发一套外骨骼系统的整个过程中,目标功能最终能否顺利实现取决于很多因素的共同影响和作用,包括设计拟人化的人体下肢外骨骼机构、 选用高效 的限制方式和限制策略等,解决了这些问题才能使外骨骼系统不仅能够跟随操作 者完成必要的肢体运动,而且可以对人体

23、步行适时提供助力, 从而大幅度提升人 的运动及负载水平.具体来说,为实现最终的功能要求,在整个外骨骼系统的研发过程中,主要 存在以下几大技术难点:(1) 拟人化外骨骼机构的合理设计.包括:外骨骼机械结构和关节运动副的 优化设计,驱动器件和传感器件的合理选择与集成设计, 运动自由度的分配和冗 余自由度选择等,以便使人穿戴舒适、操作灵活、最大限度地拓展人的活动范围, 这是外骨骼开发过程中首先需要解决的一大关键问题.(2) 外骨骼步态规划与生成及其运动稳定性问题.步态的规划和生成主要有“离线规划,在线校正.根据人体运动学统计数据进行外骨骼步态的规划, 并且依靠对执行器的精确限制来完成步态的生成; 在

24、操作者穿着行走时,外骨骼 可以通过和操作者的交互来实时校正和调整步态.b外骨骼步态学习与复现.除了使用已有的人体运动学统计数据实现步态的 生成外,还可以采用先让外骨骼自己跟踪和学习操作者的步态,继而将原步态完整复现的限制策略,增加操作者穿着步行时的舒适感. 同时,必须保证外骨骼步 态的稳定性调节范围不能超过人体可以调整的范围,以保证行走的平稳和穿戴者 的平安.(3) 夕卜骨骼和操作者的协调运动问题.外骨骼的限制算法要能保证它可以和 操作者始终保持协调一致的运动节奏, 以使二者之间的互相干预作用最小, 并可 以根据人的运动意图来适时提供助力. 保证人穿戴后,运动负担减小,即穿戴外 骨骼后行走同样

25、距离的路程人体所消耗的能量比没有穿戴外骨骼时所消耗的能 量少.要采用更加符合外骨骼结构实际情况的模型进行运动学及动力学分析,提高运动学和动力学模型的实用性.改良现有的跟随限制策略,使跟随系统效率更 高.总之,在人体外骨骼机器人限制系统设计时,需把握4个原那么:降低行走 干预,降低系统复杂度和本钱,具备自适应学习水平,简化限制策略.(4) 驱动器和驱动系统的选择.既要有较轻的重量,较小的体积,又必须具有较大的驱动力或驱动扭矩,同时还要有良好的散热性能.这也是可穿戴式的外 骨骼系统能否实现“结构紧凑、“轻巧便携和“携带动力等几大要素的关键 问题.(5) 样机材料的选择.由于下肢步行外骨骼是穿戴在人

26、身上,与人一起运动的,因此必须要求外骨骼非常轻便,同时又要具有很好的刚度,以承受人体和重 物的重量以及与地面的碰撞,因此可能需要选用一些新型的复合材料作为样机的 制作材料.外骨骼系统的实现与微能源技术,微驱动技术,材料技术和限制技术的开展 密切相关,外骨骼机构的研制是一项高度集成的技术,它与各支撑技术的开展是 密切相关的,外骨骼技术开展的同时也推动了其他相关技术的开展.4. 前景展望4.1外骨骼机器人的研究方向虽然外骨骼机器人技术具有很广的应用前景,但由于该项技术尚不成熟,目前尚未形成大规模产业.从研究领域看,各个国家对该技术的研究方向侧重有所 不同.美国的研究方向主要是军事领域,日本那么更倾

27、向于医疗康复领域.目前国 内外对外骨骼机器人的研究又衍生出许多新的研究方向.4.2外骨骼机器人技术的应用外骨骼机器人技术的应用主要分布在以下三大方面:军事、民用、医疗.军事领域:外骨骼机器人由于能够有效提升单兵作战水平因而具有很强的 吸引力.美国政府已投资数百万美元用于研制新一代基于外骨骼机器人技术的单 兵作战装置.这套作战外骨骼系统不仅自身具有能源供给装置、能够对人体提供保护功能,而且还集成了大量的作战武器系统和现代化的通讯系统、传感系统及生命维持系统等,从而把一个普通的士兵变成了“机械超人.神经康复领域:康复机器人能够保证高效的康复练习, 这使得康复机器人技 术成为医工结合的崭新研究领域.

28、特别是康复机器人在人机接口、智能化和限制 水平等方面的深入研究使得康复机器人能够更加适合残疾人和老年人的使用.对于时刻需要保持运动锻练的患者而言这将是一个好消息.民用领域:外骨骼机器人可以使残疾或行动不便的老年人自行护理自己.在我国,由于人口老龄化的逐步到来,外骨骼机器人技术的应用能够显著减轻人口 老龄化所带来的社会压力.随着社会现代化进程的到来,外骨骼机器人技术的应用将会涉及到人类生产 生活的各个方面,可以预见,外骨骼机器人技术的开展前景是十分广阔的.但这项技术还面临着一些难题要解决,比方外骨骼机器人的机械系统、限制系统、人 体舒适度、运行平安性等的优化设计.但随着能源技术、材料科学技术和限制工 程技术的不断开展,这些难题一定会被逐步解决.

展开阅读全文
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!