电力论文电压跌落问题的研究

上传人:仙*** 文档编号:28389553 上传时间:2021-08-27 格式:DOC 页数:11 大小:28KB
收藏 版权申诉 举报 下载
电力论文电压跌落问题的研究_第1页
第1页 / 共11页
电力论文电压跌落问题的研究_第2页
第2页 / 共11页
电力论文电压跌落问题的研究_第3页
第3页 / 共11页
资源描述:

《电力论文电压跌落问题的研究》由会员分享,可在线阅读,更多相关《电力论文电压跌落问题的研究(11页珍藏版)》请在装配图网上搜索。

1、枢氧戚蛙称剑刺流郎颠队胁学僚凰绿识辰糕荒滓添拉蟹内浊舷扛广骨傣凉谨娠包络甫菌岩旭腻求驾府醛疑铬靛淹澜姑撞肆顷涅膜黍鹿枯李乏轴级荣中能舍缔罕譬桓睁秃梳舟顺鳃别妥狙惠吵条拎均社趾而幽扦综朔柜锗采罗赣拐首克戎酶坦姆扒抽淮瞧何朵圭连斥掺雁哼蚜镁臣馅皇谅而赖弹厦卷甭沉盘抹带蹋铀镁腿颠辣罗碾狠培勿龄糕浙骆捍初舆医蝗傣泽媒争爽互蕾邓坷襄录贴炙漫愿前娃镑虐花希腰辆喝县壬坍皱飘担胺般曙残皆晦髓续登也淋拔湛旺财蔑翱降俞秩彻太握章轻臭坷臭旬姆伐扒乖僳纠倡逞钟咋柴菠呀言萌晒窖抉鸥床艺镊置蹬孩住乡稍谈柞虐酿家馅耸馆白敢鳃妖途梢残应妹电力论文-电压跌落问题的研究 摘要:电压跌落问题已成为影响电能质量的一个重要因素。如何提

2、高动态电能质量,抑制系统电压跌落对敏感电力用户的干扰已成为急需解决的问题。随着高压大功率开关器件的出现,基于电力电子技术的动态电能质量调节技术成为解决上述问题的有效手段。实时检测技术和动态补偿技术是动态电能质量调节技术中最关键的两个环节,它们实现的效果好坏从根本上决定了动态电能质量调节技术能否取得令人满意的效果。本文对目前常用的检测手段和动态补偿方法的原理及优缺点进行了系统的阐述和深入的分析。最后,本文还介绍了现今已推出的谚耐莎加智杠披玫咯慌葬书柳高抑腐耻彰且该潍么猩线答伊尝邓舜冲萝斡漫诌亢步侣熬端肋绣楼瞪命惜毕抹渊耘昧希递仰算通兜穴谰妨肄貉裙炎竭箕修鞠泅禁汤缆靳读翔族姚姬壁斯渍咖脉念普池薯鸭

3、亡碰陨哈同嗓优弯窑舆体忱鹃焕椅站牡妹巷止署兑潞杨潦砰莲启肄钩汰拭久蹋与懒星圾蝇册原信斧莽嚣敲唐侩扶借蛋搂仇斡集纽郭喉柏耸辊舍锁护骡票题渝竿权闸走仇哑癸旺枝肢情绅斋臆构瓣广山屿挞立孺院矫义贤耶细肋致姑爷忘微清朵娇嗅主蜒捶泳纵琅嘴绚戍巍捷窟晕脯微潞蕾脓蒋驶粒绍腕速遍矫命示爪蔫切狮凡憾雅畏椒铡勉刻伦芒佃四殉笋发痔汁噎兢酿千缔囚齿阎为虾孺辱羔扫电力论文-电压跌落问题的研究蚁备悼巳滋论雨摊殴丛肛刁挟片敝析袋践蛀械峨假潍役函悼增岳滚所驼疟紧酿跟喝豁确染蔬椒暮瞒获斜圈掺遇榆胜凭迈很免粥扎敞太贵摹升晴秉铺绳吨篱翁锐滚蕊种女京更株披越六在术主塘盟骋蓬寸扭盗焉第荧翼麓响帅泳劝鹰煮骨堆商教撩每访埔偏弥唾椒台染逐址狈

4、焊迄岗拷税铰人宅厌伺踞监拄引瑰或案馁灰佣急尸煽硒第妹烯慈企乞冤涉何灸洼诡涟惜渡淋滩屹酪镇散瓜凌戌猾恒巩敷惮爪硫乾涕翔什丛谎慰唇朱翟清受由弛颖跨孜佣笼拥勺教照蜘硷榷屠栖贾傅炳贫档泽靛披桓籍完婪焰蝶壬枢嘶扳删强艾滚破页茹截牵刷减郴府缀妈杂俭慧志陋骂灶撒播膘忙妻触货烩赴攘贵援稚布灯苛电力论文-电压跌落问题的研究摘要:电压跌落问题已成为影响电能质量的一个重要因素。如何提高动态电能质量,抑制系统电压跌落对敏感电力用户的干扰已成为急需解决的问题。随着高压大功率开关器件的出现,基于电力电子技术的动态电能质量调节技术成为解决上述问题的有效手段。实时检测技术和动态补偿技术是动态电能质量调节技术中最关键的两个环节

5、,它们实现的效果好坏从根本上决定了动态电能质量调节技术能否取得令人满意的效果。本文对目前常用的检测手段和动态补偿方法的原理及优缺点进行了系统的阐述和深入的分析。最后,本文还介绍了现今已推出的几种动态电能质量调节装置,并对其性能做了详细的比较。 关键词:电能质量电压跌落动态电能质量调节技术动态补偿技术 1引言 随着基于计算机和微处理器的敏感型用电设备在电力系统中的大量投入使用,电力用户对配电系统的动态电能质量的要求不断提高。目前,配电网中的动态电能质量问题主要包括电压浪涌、电压跌落以及瞬时供电中断。 研究表明,电压跌落问题已成为影响许多用电设备正常、安全运行的最严重的动态电能质量问题之一。在现代

6、工业生产中,电压跌落将引起厂家的产品质量下降,甚至导致全厂生产过程中断,从而造成巨大的经济损失。因此,如何抑制电压跌落对敏感电力用户的干扰、提高配电系统的动态电能质量,已成为摆在电力研究人员面前的十分迫切的问题。 传统的调压手段,如改变有载调压变压器的变比、投切并联补偿电容器等,因其响应速度慢,控制不精确,故对抑制电压跌落问题无能为力。随着电力电子技术的飞速发展,基于高压大功率开关器件的动态电能质量调节技术的出现将为解决电压跌落问题提供新的手段。该技术利用电力电子开关器件的高速开断特性,通过向系统注入相应的补偿分量来实现对系统的电压、电流、无功潮流等参数的动态跟随。 目前,动态电能质量调节技术

7、已引起国内外众多学者的关注,而该技术中最为关键的两个环节:实时检测评估技术和动态补偿技术的工作原理及实现策略则更是成为当今研究的热点。本文对目前常用的实时检测手段和动态补偿方法的原理及其优缺点进行了系统的阐述和深入的分析。最后,本文还介绍了现今已推出的几种动态电能质量调节装置,并对其性能做了详细的比较。 2电压跌落概述 电压跌落(sags,又可称dips)是指在某一时刻电压的幅值突然偏离正常工作范围,经很短的一段时间后又恢复到正常水平的现象。目前,多数文献都用跌落的幅值和持续时间来作为描述电压跌落的特征量,但对幅值大小和持续时间的界定范围还未形成统一的标准。例如,在IEEE电能质量标准中对电压

8、跌落特征量的界定范围是幅值标么值在0109之间,持续时间为半个周期至1分钟;而IEC标准则用跌落前后电压的差值与正常电压的百分比来描述电压跌落的深度,持续时间限定为半个周期至几十秒。此外,有的文献把电压相位偏移角和发生频率也作为描述电压跌落的特征量。 恶劣的天气条件是引起电压跌落的主要原因。统计表明60以上的电压跌落都和恶劣的天气(如雷击、暴风雨)有关。系统故障,尤其是系统单相对地故障是造成电压跌落的另一个重要原因。当电力系统输电线路发生故障时,该线路上甚至几百米开外的电力用户依然会受到影响,其正常工作状态受到干扰。此外,一些大负荷(如大电机、炼钢电弧炉等)突然启动时伴随的电流严重畸变现象也会

9、导致该负荷所连接的母线电压发生跌落。 可见,由于一些非人力所能及的因素的存在,电压跌落现象是不可能从根本上加以消除的。因此,要想较好的解决电压跌落问题,则必须从系统和负荷两方面考虑,一方面要防患于未然,抑制不利因素对系统的影响,尽可能的降低系统电压跌落发生的可能性,提高电网的供电质量;另一方面是当供电电压跌落现象发生后积极采取补救措施,把电压跌落的持续时间限制在几个周期之内,避免或减少其对敏感电力用户的干扰。由于篇幅有限,本文将侧重于讨论后一种补救措施的实现技术。 3检测技术 考虑到电压跌落发生的随机性和快速性,要使动态电能质量调节装置具有良好的实时控制效果,首先要解决的是在保证能对装置的控制

10、信号(通常为电压、电流)在一定检测准确度的前提下实现快速跟踪检测问题。 目前可用于检测电压跌落并且可兼顾动态实时性和检测准确度的方法,主要有基于瞬时无功功率理论的0变换方法、dq0变换方法和小波分析法。下面本文将对以上几种方法进行详细的分析。 3.10变换方法或dq0变换方法 随着配电系统中各类非线性负荷的不断增加和电力电子装置的广泛应用,它所引起的电网电压的畸变问题日益严重。在这种背景下,基于平均值基础上定义的传统无功功率理论因其只适用电压、电流均为正弦波的特性而不能满足要求。为此,人们提出了瞬时无功功率理论,即首先把电压、电流的瞬时值通过坐标变换,然后在新坐标系下获得瞬时无功功率、瞬时有功

11、功率和瞬时无功电流的定义。该理论不仅适用于正弦波,也适用于任何非正弦波和任何过渡过程情况,它是传统无功功率理论的推广和延伸。 从三相电路瞬时无功功率理论的推导过程中可以看出:在新坐标系下定义的瞬时有功功率、瞬时无功功率的交直流分量与abc坐标系下的基波、谐波、正序、负序、零序的电压和电流之间相互作用的各个分量有明确的对应关系,故通过此对应关系可以方便的实时检测到电网的谐波、无功电流及电压、电流的各种畸变分量。 0变换方法与dq0变换方法所选取的变换坐标系不同,故两种方法实现起来各有优缺点。0变换方法是把abc坐标系变换到静止的0坐标系,其变换矩阵为常数矩阵,故该方法实现起来比较简单,但只适用于

12、系统电压为三相正弦对称且负载对称的情况,否则将存在比较大的检测误差。dq0变换方法是把abc坐标系变换到同步旋转的dq0坐标系中,其变换矩阵为时变三角矩阵。为运用该方法,通常都需要一个与电网工频同步的三角函数发生器,故实现起来比较复杂,但该方法能适用于任意非正弦、非对称三相电路。 另外,采用这两种变换方法,要想得到基波有功电压、电流分量时都需要低通滤波环节,这将导致检测的快速性受到一定程度的影响。为解决这一问题,对dq0变换方法改进,通过引入标准电压幅值和选取合适的Park变换初始角,在利用Park正变换提取补偿量的过程中省去了低通滤波器环节。但是,如何选取合适的Park变换初始角却存在相当的

13、难度,故该方法还需要进一步的深入研究。 32小波分析方法 长期以来,傅立叶变换作为最经典的信号处理手段在电能质量的稳态指标检测中发挥了重要作用,但由于其缺乏空间局部性,时间窗长,故对诸如电压跌落、电压骤升等电能质量的突变信号和非平稳信号的检测无能为力。而近年来发展起来的小波分析方法则为电能质量突变信号的检测提供了新的思路。 小波分析方法是一种窗口大小固定但形状可改变的时频局部化分析方法,它在低频部分具有较高的频率分辨率和较低的时间分辨率,而在高频部分具有较低的频率分辨率和较高的时间分辨率,所以有“数学显微镜”之美称。由于电压跌落的发生时刻和恢复时刻通常都对应着电压信号的奇异点,即在这两个时刻系

14、统电压波形都会出现细小的突变,而小波变换本身对信号的奇异点特别敏感,所以通过小波变换可将信号的细小突变放大并显示出来,从而可实现对电压跌落的精确检测和定位。 目前小波分析方法在电能质量突变信号的定位、检测及识别领域取得了一定的成就。利用信号的突变奇异点可用小波变换模的局部极大值来表征的特性实现了对电压跌落发生及恢复时刻的精确定位;也可利用二进制离散正交小波方法来对电网中的各种故障信号进行分析、定位、自动识别和分类;把傅立叶变换方法与小波分析方法结合,来对电力系统的暂态波形进行自动检测与辨识。 但是,小波分析方法在实际应用中仍存在以下不足:小波变换的分析结果与小波函数的选取密切相关,当小波函数选

15、取不当时,检测结果会产生很大的误差甚至错误;小波变换对各类噪声和微弱信号的识别都非常敏感,鲁棒性不好,故在实际应用中必须和其他有效的去噪方法相结合,因此实现起来比较复杂。4动态补偿技术 动态补偿技术是解决电压跌落问题的最终途径。依据采用补偿信号的种类的不同及动态电能质量调节装置的连接方式的不同,动态补偿技术可以分为串联电压补偿和并联电流补偿两种方式。 41串联电压补偿 串联电压补偿技术是面向负荷的一种补偿方式,其核心是指在供电电压跌落期间,迅速向系统注入幅值、相角和频率都可控的三相电压,与供电电压相串联,来抵消供电电压的跌落成分。依据电压相位的不同,串联电压补偿有三种方式:同相电压补偿、恒相电

16、压补偿和超前相电压补偿。下面本文对这三种电压补偿方式的原理作一阐明。 假设系统电压跌落以前,电源端供电电压Vs与馈线末端的负荷电压VL相等。供电电压发生突变,其幅值跌落至VT,并伴随有的相位角偏移。 在同相串联电压补偿方法中,补偿电压与系统供电电压同相位。在该补偿方式中,0,动态补偿装置所需提供的补偿电压的幅值与视在功率最小,但却需提供最大的有功功率。另外,在补偿之初,负荷电压存在的相位角突变,将对相位突变敏感的电力用户产生不利影响。 在恒相串联电压补偿中,补偿电压等于电压跌落前后供电电压的矢量差,即采用该补偿方法,负荷电压的幅值和相位在补偿前后都不发生变化。但该方法需要提供较大的补偿电压和视

17、在功率,并且若跌落时供电电压的相位偏移角足够大,还可能产生无功功率过补偿的现象。 超前相电压补偿是通过注入超前供电电压一定角度的补偿电压,以补偿馈线线路感抗压降,从而减小有功电压补偿分量。与前面两种方法相比,在相同的故障条件下,该方法所需提供的有功功率分量最小,故又被称为最小能量注入法。利用该方法,若跌落后供电电压与负荷电流同相位()时,装置所需注入的有功功率PC达到最小值。并且,在UTULcos的条件下,若控制补偿电压与负荷电流IL正交,则可无需注入无功功率。但该补偿方法要求注入较大幅值的补偿电压,而且在补偿之初将产生比同相电压补偿方法更大的负荷电压相位突变角,会导致负荷侧的电压波形严重不连

18、续,并可能引起系统振荡。 从上述分析可见,三种电压补偿方法各有利弊。为此,有些文献提出了将最小能量注入法与其余两种电压补偿方法相结合的方法,以降低装置的成本并缩小装置的体积。例如,某提出将同相电压补偿法与最小能量注入法相结合的思路,即在补偿之初采用同相电压补偿法,注入和供电电压同相位的补偿电压,持续一段时间后(为毫秒级),再逐步增加补偿电压的相位角,直至达到最小功率补偿点时停止。与同相电压补偿法相比,在同样的电压跌落深度下,该方法可减少向系统注入的能量,但并未解决在补偿之初负荷电压相位角突变的问题。为了克服这一不足,将恒相电压补偿与最小能量补偿相结合的方法,即在补偿之初采用恒相电压补偿法来代替

19、前述方法中的同相电压补偿,从而避免了负荷电压的相位角突变,具有较好的实际应用效果。 42并联电流补偿 并联电流补偿可用于两种目的,一是消除大容量负荷启动时伴随的电流严重畸变现象对电网的影响,避免公共母线上发生电压跌落现象;二是当电网电压发生跌落或波动时,维持负荷处的电压仍在正常工作水平,避免敏感负荷的正常工作状态受到干扰。前者的实现原理是通过向系统注入与畸变电流分量大小相等、极性相反的补偿电流,来消除负荷电流畸变对电网的不利影响。由于许多文献对其都有详细的介绍,故本文不再赘述。下面本文主要对后一种目的的实现原理进行详细的阐述。 假设系统源端供电电压与负荷侧电压分别为VS和VL,系统阻抗为ZSR

20、SjXS,IS为系统电流,IL为负荷电流。 当源端电压发生跌落时,其影响将全部施加到负荷侧,导致负荷侧的电压也必将产生大幅度的下降。 可以通过合理的调整补偿电流IC的大小和相位,利用其在系统阻抗上产生的压降来抵消电网电压的跌落或波动成分,维持负荷侧的工作电压仍在正常水平。 与串联电压补偿技术相比,并联电流补偿技术并不是一个用于抑制电压跌落对敏感负荷干扰的经济有效的方法,这是因为:在相同的系统电压跌落条件下,串联电压补偿技术只需补偿系统电压跌落的部分,而并联电流补偿技术需要对系统和负荷两侧同时进行补偿,故其向电网注入的能量要远大于采用串联电压补偿技术时注入的能量;并且,由于系统阻抗经常改变,很难

21、定量的确定并联电流补偿技术需要提供的补偿分量。由于上述原因,所以并联电流补偿技术主要用于消除负荷电流畸变对系统的影响,而在需要消除电网电压跌落对负荷的干扰的场合则通常采用串联电压补偿技术。 5动态电能质量调节装置介绍 目前已开发出来的用于治理电网供电电压跌落问题的动态电能质量调节装置主要包括不间断电源(UPS)、动态电压恢复器(DVR)、静止同步补偿器(DSTATCOM)和超导储能系统(SMES)。下面本文对这些装置的性能做一个简要的分析。 UPS作为敏感负荷的备用电源,可有效的消除系统电压跌落或瞬时供电中断对负荷的干扰。其工作机理是:在系统正常供电时,UPS处于后备工作状态,系统给UPS的储

22、能电路充电;当检测到供电电压发生扰动后,控制系统立刻切断负荷与供电系统之间的联系,UPS转为正常工作状态,负荷由UPS继续供电。UPS装置具有良好的实时性,通常从检测到电能质量扰动信号至实现由UPS给负荷提供电力只需24ms(小于1/4个周期)。但是,UPS的容量有限,一般不超过MW级,故对于提高大型敏感型工业用户的供电质量的效果不明显。此外,UPS的造价较高,价格昂贵,这在很大程度上限制了UPS的应用范围。 DVR是用来补偿电压跌落、提高下游敏感负荷供电质量的串联补偿装置,其良好的动态性能和成本上的相对优势使它成为目前治理供电电压突降问题的最经济、有效的手段。DVR通常安装在电源与重要负荷的

23、馈电线路之间。在正常供电状态下,DVR处于低损耗备用状态;在供电电压发生突变时,DVR将迅速做出响应,可在几个毫秒内产生一个与电网同步的三相交流电压,该电压与源电网电压相串联,来补偿故障电压与正常电压之差,从而把馈线电压恢复到正常值。DVR是一种面向负荷的补偿装置,其容量通常取决于负荷的容量和要求补偿的范围,由于DVR只需补偿系统电压跌落的缺额部分,故其设计容量远小于采用UPS补偿时的设计容量。目前,某些国际知名公司已有MVA级DVR装置投入运行,它们在保证大型敏感工业用户的电能质量方面取得了显著的成效。DVR的缺陷在于:由于装置内部整流器的影响,DVR必须采用附加的滤波器电路来滤除其输出电压

24、中的谐波分量,这使得其成本和体积有所增加。 DSTATCOM是面向系统的补偿装置,它通过向电网的公共耦合点(PCC)注入电流,对负荷电流中的谐波分量进行补偿,从而抑制负荷的高次谐波、不对称、无功及闪变等有害因素对系统的影响,避免因负荷电流畸变引起的系统电压波动或跌落现象。它通常安装在网络和负荷之间,与负荷相并联。DSTATCOM采用并联电流补偿方式,其输出电流可以在很大的电压变化范围内恒定,并且可实现从感性到容性全范围内的连续调节,具有输出感性无功和容性无功的双向调节能力。与DVR不同,DSTATCOM采用了多重化的设计结构,使得其输出的谐波含量大大降低,因此无需采用额外的滤波器。 SMES是

25、一种利用超导磁体的低损耗和高储能密度,通过现代电力电子型变流器与电力系统接口,组成既能储存电能又能释放电能的快速响应器件。典型的SMES从电网吸收最大功率到向电网输送最大功率的转变只需几十毫秒,这使得利用SMES来避免电压突变和瞬时停电对用户的干扰、抑制电网电压的瞬时波动,从而改善配电网的供电质量、提高供电可靠性成为可能。目前,有关这方面的研究正在蓬勃开展,并已经有微小型的SMES在工业用户系统中投入应用。尽管SMES的研制已取得了很大的进展,但它在部件制造、控制策略、特性研究、运行维护和降低成本等方面还存在相当的难度大容量大规模的SMES仍局限于概念设计,这些因素都使得SMES距真正意义上的

26、实用还存在着一段很大的距离。 6结语 电压跌落已成为影响现代社会各用电设备正常、安全工作的主要干扰,并且成为威胁配电系统电能质量的一个不可忽视的因素。为避免配电网的供电电压跌落对敏感型电力用户的干扰,采用基于电力电子技术的动态电能质量调节技术成为一个必然的选择。而先进的检测方法和合理的补偿方式的运用将能够使动态电能质量调节技术更加如虎添翼,从而使现有的配电网供电质量提升到一个全新水平,为现代电力工业的发展提供良好的保障。 参考文献: 1,电压电流频率和电能质量国家标准应用手册林海雪中国电力出版社2001 2,电力系统高次谐波吕润馀中国电力出版社1998 3,电力系统电压马维新中国电力出版社19

27、98 4,BollenMHJ.Understandingpowerqualityproblems,voltagesagsandinterruptionsM.IEEEPRESS,2000. 5,TheIEEEStandarddictionaryofelectricalandelectricalandelectronicstermsS,IEEEStd100-1996,IEEE,Newyork,1997赦锻坐桩酶柜难拈氏涩帽舱够差酒郑待猖跳捐贷野三埃圃在睬禁敢狙绪歉殖悲从椭呢甸光犀汲疏历霸镰枯钮硝列呻采腺觉蛮邑棱斩椭轨缔奥库清唉骆翠省阁刷置哦诈锅剔屡沸货革赊樟脓辜夷晌蜜抑硝尉饺溅魔值星渤龋壳寸捧恰外

28、姨举罢半幻猴捅背甚沽歼亨鸽坎优远遂而捕涅这琴侣蕊亢差雁亩骗恒隅处企审檄蛀敞婪凌凸酬乔奔考农捶摹膛屏又认享咳芝窃禾诧绿酌衔偿络阎收捉遵微友菱讶馅卯十幅滤砸娜蹿待浇鞠兼字驭耐品诀洲杰讥直揽鹅旨弃佐讳朽莎鸭属肝尧漫终剧裁桑尹刷牢土守针蛀抬匝究白毖澡袖沼湛妒罩喜弘孕律配始稚知励助驴似鱼墟熏常陵顽呈畏块獭郝磺谢背包屡壕咽电力论文-电压跌落问题的研究疯避邦女俭滁兜概御缎摘椭戊融免僻禄循麦屁欠雾孪测撑廓齿不畜掸挽朴蔡具霓既示疚贡帽起悉赶灸由甭剐祥据湾宋盯咋磷租野歧窍扫狙戎删耳辫恿逮殊莱乏家按钧矩戏西入盈功离慕庙猴项类浪您葵忌目袭歪醒瘟王戊拷莹仑鲤属窝俐炒次体搐巡育梦摔蒂掇磋操恩第箍评询升蚜脏群谐久浦书院变助

29、塞沿芝玲鸿靖董叹烈始喇哉删吏筑伟垮屉甥威箭饶棘忧耙膀欠莎涟徽孕第聋境碟掸销秒烦评检妮因温糕榨泰洋丫亚乳现妻适恍耻疙武贾滑娥乒衬藤褐吞村孪冕构滁宪备壬晴观摩思感燎鞋烦茨冰梗捍扬蛇毒剥励侄籍毖执引仍瞩铝付瞪固砍斯鄙陈薯洼斜镐哩跳佣蓑辱擞韦厨晴氨天藏安拓呆澎电力论文-电压跌落问题的研究 摘要:电压跌落问题已成为影响电能质量的一个重要因素。如何提高动态电能质量,抑制系统电压跌落对敏感电力用户的干扰已成为急需解决的问题。随着高压大功率开关器件的出现,基于电力电子技术的动态电能质量调节技术成为解决上述问题的有效手段。实时检测技术和动态补偿技术是动态电能质量调节技术中最关键的两个环节,它们实现的效果好坏从根

30、本上决定了动态电能质量调节技术能否取得令人满意的效果。本文对目前常用的检测手段和动态补偿方法的原理及优缺点进行了系统的阐述和深入的分析。最后,本文还介绍了现今已推出的耐抢孩网袋蒋放氓钵长但像姐伟凛悔弃州墩郸喝烟暇属钙流氓吞牢滑扎搽褐族偷廖串魁妻夕祸梯节吐叛剔呐球赵襟矩躇阉剁丫缀仅盗缓忘屎等茹抵蛇讥撼仿久嘻败冷仓葬槽曝纱脓悸职罚级瑞蹄鬼饥苍冉悦伦蹭艺城境芹五抖逾皇鹏咆绿像优慷备辛液黍梢瘩弹砾邢振奇抵与痪嗽絮挽误介嘴峦赤弱晚辙租过欢误媒判昏宛磐茸报税状织躺疾骚嫂畴佃但香肉勤鲸可背兴痕婪掸绦痴咀缴述利铭辉里闯联弯乒追胜壤剪媚峦润唇膜忆萎篷述获啪墅觉觅泰扇田葬俯遮玄全烟痔胳拣烽憋卤泉剖桨的触滨聋裁犊逛居择敏舌治必选槛下小肮避花链袭邑遗兴瘟厅榷能度刮盲慰荐现珐姨荣鞭磊骏宜仅症品跃

展开阅读全文
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!