施耐德变频器和编码器卡配套使用调试

上传人:y****n 文档编号:142621194 上传时间:2022-08-25 格式:DOC 页数:18 大小:337KB
收藏 版权申诉 举报 下载
施耐德变频器和编码器卡配套使用调试_第1页
第1页 / 共18页
施耐德变频器和编码器卡配套使用调试_第2页
第2页 / 共18页
施耐德变频器和编码器卡配套使用调试_第3页
第3页 / 共18页
资源描述:

《施耐德变频器和编码器卡配套使用调试》由会员分享,可在线阅读,更多相关《施耐德变频器和编码器卡配套使用调试(18页珍藏版)》请在装配图网上搜索。

1、施耐德变频器和编码器卡配套使用调试PLC:MICRO3721 CANOPEN主站卡:PCMIC110卡 变频器3台:ATV71HU75N4两台和ATV71H075N4, EDS文件是1.2版本的 触摸屏:XTBGT2120 这个客户是新开发的客户,需求很紧急,要求尽快供货,尽快调试,他们的机器好用起来,因为当时401卡缺货,就改用有现货的403卡,403卡是接受12V集电极开路输出编码器信号的卡,因电机和编码器是配套的,时间很晚了,供货商没有留下任何资料就走了(深圳回东莞) 我在CAN通讯都做好演示程序的情况下,到现场装机调试71的闭环控制,主要是编码器的问题,以前调试过几次401卡(5V,4

2、22或差分输出的编码器信号),以为接线和以前一样,结果反复查线,调试,总是报故障,SPF-检测不到编码器信号,因时间太晚,在CANOPEN通讯正常之后,计划明天再试编码器卡 第二天,经多方联系,发现403卡的应用不多,经刘老师,张超的提示,可能是编码器是NPN的,而我们的默认接法是按PNP的,经询问,果然是欧姆龙的编码器是NPN的,具体对应关系为: PNP:A-A B-B A-A- B-B- 0V-0V +V-Vs+ 编码器侧编码器卡侧 如果编码器没有A-和B-,就把编码器卡侧的A-和B-和OV短接起来 然后把编码器的脉冲数和脉冲类型设置后,把ENC设置为YES,然后启动变频器,如果电机旋转2

3、0秒左右,没有报警的话,应该是没有问题的,检查ENC的内容,应该是DONE,说明变频器已经认出编码器,并且反馈良好,如果报警,有可能是A和B反了,把A和B对调即可。 如果还不行,就要检查编码器和编码器卡的硬件了,如郁工所说,用示波器测试,看编码器到底有没有脉冲发出来如果检查通过,把编码器用途改为需要的值,把控制模式改为闭环即可-参考71编程手册DRC菜单关于编码器的检查 PNP:A-A- B-B- A-A B-B 0V-0V +V-Vs+ 编码器侧编码器卡侧 如果编码器没有A-和B-,就把编码器卡侧的A和B和Vs+短接起来 然后把编码器的脉冲数和脉冲类型设置后,把ENC设置为YES,然后启动变

4、频器,如果电机旋转20秒左右,没有报警的话,应该是没有问题的,检查ENC的内容,应该是DONE,说明变频器已经认出编码器,并且反馈良好,如果报警,有可能是A和B反了,把A和B对调即可。 如果还不行,就要检查编码器和编码器卡的硬件了,如郁工所说,用示波器测试,看编码器到底有没有脉冲发出来如果检查通过,把编码器用途改为需要的值,把控制模式改为闭环即可-参考71编程手册DRC菜单关于编码器的检查变频器参数设置必须知道的几个要点变频器的功能参数有很多,一般都有几十甚至上百个参数选择。实际使中,没必要对每一个参数都进行设置,大多数只要采用原厂设定值即可。但有些参数由于和实际使用情况有关联,因此要根据实际

5、应用进行设定和调试。 一、转矩提升 又叫转矩补偿,是为补偿因电动机定子绕组电阻所引起的低速时转矩降低,而把低频率范围f/V增大的方法。设定为自动时,可使加速时的电压自动提升以补偿起动转矩,使电动机加速顺利进行。如采用手动补偿时,根据负载特性,尤其是负载的起动特性,通过试验可选出较佳曲线。对于变转矩负载,如选择不当会出现低速时的输出电压过高,而浪费电能的现象,甚至还会出现电动机带负载起动时电流大,而转速上不去的现象。 二、加减速时间 加速时间就是输出频率从0上升到最大频率所需时间,减速时间是指从最大频率下降到0所需时间。通常用频率设定信号上升、下降来确定加减速时间。在电动机加速时须限制频率设定的

6、上升率以防止过电流,减速时则限制下降率以防止过电压。 加速时间设定要求:将加速电流限制在变频器过电流容量以下,不使过流失速而引起变频器跳闸;减速时间设定要点是:防止平滑电路电压过大,不使再生过压失速而使变频器跳闸。加减速时间可根据负载计算出来,但在调试中常采取按负载和经验先设定较长加减速时间,通过起、停电动机观察有无过电流、过电压报警;然后将加减速设定时间逐渐缩短,以运转中不发生报警为原则,重复操作几次,便可确定出最佳加减速时间。三、频率限制 即变频器输出频率的上、下限幅值。频率限制是为防止误操作或外接频率设定信号源出故障,而引起输出频率的过高或过低,以防损坏设备的一种保护功能。在应用中按实际

7、情况设定即可。此功能还可作限速使用,如有的皮带输送机,由于输送物料不太多,为减少机械和皮带的磨损,可采用变频器驱动,并将变频器上限频率设定为某一频率值,这样就可使皮带输送机运行在一个固定、较低的工作速度上。 四、电子热过载保护 本功能为保护电动机过热而设置,它是变频器内CPU根据运转电流值和频率计算出电动机的温升,从而进行过热保护。本功能只适用于“一拖一”场合,而在“一拖多”时,则应在各台电动机上加装热继电器。 电子热保护设定值(%)=电动机额定电流(A)/变频器额定输出电流(A)100%。 五、频率设定信号增益 此功能仅在用外部模拟信号设定频率时才有效。它是用来弥补外部设定信号电压与变频器内

8、电压(+10v)的不一致问题;同时方便模拟设定信号电压的选择,设定时,当模拟输入信号为最大时(如10v、5v或20mA),求出可输出f/V图形的频率百分数并以此为参数进行设定即可;如外部设定信号为05v时,若变频器输出频率为050Hz,则将增益信号设定为200%即可。 六、偏置频率 有的又叫偏差频率或频率偏差设定。其用途是当频率由外部模拟信号(电压或电流)进行设定时,可用此功能调整频率设定信号最低时输出频率的高低,如图1。有的变频器当频率设定信号为0%时,偏差值可作用在0fmax范围内,有的变频器(如明电舍、三垦)还可对偏置极性进行设定。如在调试中当频率设定信号为0%时,变频器输出频率不为0H

9、z,而为xHz,则此时将偏置频率设定为负的xHz即可使变频器输出频率为0Hz。 七、加减速模式选择 又叫加减速曲线选择。一般变频器有线性、非线性和S三种曲线,通常大多选择线性曲线;非线性曲线适用于变转矩负载,如风机等;S曲线适用于恒转矩负载,其加减速变化较为缓慢。设定时可根据负载转矩特性,选择相应曲线,但也有例外,笔者在调试一台锅炉引风机的变频器时,先将加减速曲线选择非线性曲线,一起动运转变频器就跳闸,调整改变许多参数无效果,后改为S曲线后就正常了。究其原因是:起动前引风机由于烟道烟气流动而自行转动,且反转而成为负向负载,这样选取了S曲线,使刚起动时的频率上升速度较慢,从而避免了变频器跳闸的发

10、生,当然这是针对没有起动直流制动功能的变频器所采用的方法。 八、转矩限制 可分为驱动转矩限制和制动转矩限制两种。它是根据变频器输出电压和电流值,经CPU进行转矩计算,其可对加减速和恒速运行时的冲击负载恢复特性有显著改善。转矩限制功能可实现自动加速和减速控制。假设加减速时间小于负载惯量时间时,也能保证电动机按照转矩设定值自动加速和减速。 驱动转矩功能提供了强大的起动转矩,在稳态运转时,转矩功能将控制电动机转差,而将电动机转矩限制在最大设定值内,当负载转矩突然增大时,甚至在加速时间设定过短时,也不会引起变频器跳闸。在加速时间设定过短时,电动机转矩也不会超过最大设定值。驱动转矩大对起动有利,以设置为

11、80100%较妥。 制动转矩设定数值越小,其制动力越大,适合急加减速的场合,如制动转矩设定数值设置过大会出现过压报警现象。如制动转矩设定为0%,可使加到主电容器的再生总量接近于0,从而使电动机在减速时,不使用制动电阻也能减速至停转而不会跳闸。但在有的负载上,如制动转矩设定为0%时,减速时会出现短暂空转现象,造成变频器反复起动,电流大幅度波动,严重时会使变频器跳闸,应引起注意。 九、转矩矢量控制 矢量控制是基于理论上认为:异步电动机与直流电动机具有相同的转矩产生机理。矢量控制方式就是将定子电流分解成规定的磁场电流和转矩电流,分别进行控制,同时将两者合成后的定子电流输出给电动机。因此,从原理上可得

12、到与直流电动机相同的控制性能。采用转矩矢量控制功能,电动机在各种运行条件下都能输出最大转矩,尤其是电动机在低速运行区域。 现在的变频器大部分都采用无反馈矢量控制,由于变频器能根据负载电流大小和相位进行转差补偿,使电动机具有很硬的力学特性,对于多数场合已能满足要求,不需在变频器的外部设置速度反馈电路。这一功能的设定,可根据实际情况在有效和无效中选择一项即可。 与之有关的功能是转差补偿控制,其作用是为补偿由负载波动而引起的速度偏差,可加上对应于负载电流的转差频率。这一功能主要用于定位控制。 十、节能控制 风机、水泵都属于减转矩负载,即随着转速的下降,负载转矩与转速的平方成比例减小,而具有节能控制功

13、能的变频器设计有专用V/f模式,这种模式可改善电动机和变频器的效率,其可根据负载电流自动降低变频器输出电压,从而达到节能目的,可根据具体情况设置为有效或无效。 第九跟第十这两个参数是很先进的,但有一些用户在设备改造中,根本无法启用这两个参数,即启用后变频器跳闸频繁,停用后一切正常。究其原因有:1.原用电动机参数与变频器要求配用的电动机参数相差太大。2.对设定参数功能了解不够,如节能控制功能只能用于V/f控制方式中,不能用于矢量控制方式中。3.启用了矢量控制方式,但没进行电动机参数的手动设定和自动读取工作,或者读取方法不当。西门子变频器应用编码器的基础知识时间:2012-02-02 浏览次数:1

14、02 增量旋转编码器选型有哪些注意事项?应注意三方面的参数:1. 机械安装尺寸,包括定位止口,轴径,安装孔位;电缆出线方式;安装空间体积;工作环境防护等级是否满足要求。2.分辨率,即编码器工作时每圈输出的脉冲数,是否满足设计使用精度要求。3.电气接口,编码器输出方式常见有推拉输出(F型HTL格式),电压输出(E),集电极开路(C,常见C为NPN型管输出,C2为PNP型管输出),长线驱动器输出。其输出方式应和其控制系统的接口电路相匹配。请教如何使用增量编码器?1,增量型旋转编码器有分辨率的差异,使用每圈产生的脉冲数来计量,数目从6到5400或更高,脉冲数越多,分辨率越高;这是选型的重要依据之一。

15、2,增量型编码器通常有三路信号输出(差分有六路信号):A,B和Z,一般采用TTL电平,A脉冲在前,B脉冲在后,A,B脉冲相差90度,每圈发出一个Z脉冲,可作为参考机械零位。一般利用A超前B或B超前A进行判向。3,使用PLC采集数据,可选用高速计数模块;使用工控机采集数据,可选用高速计数板卡;使用单片机采集数据,建议选用带光电耦合器的输入端口。4,建议B脉冲做顺向(前向)脉冲,A脉冲做逆向(后向)脉冲,Z原点零位脉冲。5,在电子装置中设立计数栈。关于电源供应及编码器和PLC连接:一般编码器的工作电源有三种:5Vdc、5-13 Vdc或11-26Vdc。如果你买的编码器用的是11-26Vdc的,就

16、可以用PLC的24V电源,需注意的是:1 编码器的耗电流,在PLC的电源功率范围内。2 编码器如是并行输出,连接PLC的I/O点,需了解编码器的信号电平是推拉式(或称推挽式)输出还是集电极开路输出,如是集电极开路输出的,有N型和P型两种,需与PLC的I/O极性相同。如是推拉式输出则连接没有什么问题。3 编码器如是驱动器输出,一般信号电平是5V的,连接的时候要小心,不要让24V的电源电平串入5V的信号接线中去而损坏编码器的信号端。干扰的问题选择什么样的输出对抗干扰也很重要,一般输出带反向信号的抗干扰要好一些,即A+A-,B+B-,Z+Z-,其特征是加上电源8根线,而不是5根线(共零)。带反向信号

17、的在电缆中的传输是对称的,受干扰小,在接受设备中也可以再增加判断(例如接受设备的信号利用A、B信号90相位差,读到电平10、11、01、00四种状态时,计为一有效脉冲,此方案可有效提高系统抗干扰性能(计数准确)。何为长线驱动?普通型编码器能否远距离传送?长线驱动也称差分长线驱动,5V,TTL的正负波形对称形式,由于其正负电流方向相反,对外电磁场抵消,故抗干扰能力较强。普通型编码器一般传输距离是100米,如果是24V HTL型且有对称负信号的,传输距离300-400米。增量光栅Z信号可否作零点?圆光栅编码器如何选用?无论直线光栅还是轴编码器其Z信号的均可达到同AB信号相同的精确度,只不过轴编码器

18、是一圈一个,而直线光栅是每隔一定距离一个,用这个信号可达到很高的重复精度。可先用普通的接近开关初定位,然后找最为接近的Z信号(每次同方向找),装的时候不要望忘了将其相位调的和光栅相位一致,否则不准。增量型编码器和绝对型编码器有何区别?做一个伺服系统时怎么选择呢?常用的为增量型编码器,如果对位置、零位有严格要求用绝对型编码器。伺服系统要具体分析,看应用场合。测速度用常用增量型编码器,可无限累加测量;测位置用绝对型编码器,位置唯一性(单圈或多圈),最终看应用场合,看要实现的目的和要求。绝对型旋转编码器选型注意事项,旋转编码器和接近开关、光电开关优势比较:绝对编码器单圈从经济型8位到高精度17位;绝

19、对编码器多圈大部分用25位,输出有SSI,总线Profibus-DP,Can L2,Interbus,DeviceNet。从增量式编码器到绝对式编码器旋转增量式编码器以转动时输出脉冲,通过计数设备来知道其位置,当编码器不动或停电时,依靠计数设备的内部记忆来记住位置。这样,当停电后,编码器不能有任何的移动,当来电工作时,编码器输出脉冲过程中,也不能有干扰而丢失脉冲,不然,计数设备记忆的零点就会偏移,而且这种偏移的量是无从知道的,只有错误的生产结果出现后才能知道。解决的方法是增加参考点,编码器每经过参考点,将参考位置修正进计数设备的记忆位置。在参考点以前,是不能保证位置的准确性的。为此,在工控中就

20、有每次操作先找参考点,开机找零等方法。比如,打印机扫描仪的定位就是用的增量式编码器原理,每次开机,我们都能听到噼哩啪啦的一阵响,它在找参考零点,然后才工作。这样的方法对有些工控项目比较麻烦,甚至不允许开机找零(开机后就要知道准确位置),于是就有了绝对编码器的出现。绝对编码器光码盘上有许多道刻线,每道刻线依次以2线、4线、8线、16线。编排,这样,在编码器的每一个位置,通过读取每道刻线的通、暗,获得一组从2的零次方到2的n-1次方的唯一的2进制编码(格雷码),这就称为n位绝对编码器。这样的编码器是由码盘的机械位置决定的,它不受停电、干扰的影响。绝对编码器由机械位置决定的每个位置的唯一性,它无需记

21、忆,无需找参考点,而且不用一直计数,什么时候需要知道位置,什么时候就去读取它的位置。这样,编码器的抗干扰特性、数据的可靠性大大提高了。由于绝对编码器在位置定位方面明显地优于增量式编码器,已经越来越多地应用于工控定位中。测速度需要可以无限累加测量,目前增量型编码器在测速应用方面仍处于无可取代的主流位置。从单圈绝对式编码器到多圈绝对式编码器旋转单圈绝对式编码器,以转动中测量光码盘各道刻线,以获取唯一的编码,当转动超过360度时,编码又回到原点,这样就不符合绝对编码唯一的原则,这样的编码器只能用于旋转范围360度以内的测量,称为单圈绝对式编码器。如果要测量旋转超过360度范围,就要用到多圈绝对式编码

22、器。编码器生产厂家运用钟表齿轮机械的原理,当中心码盘旋转时,通过齿轮传动另一组码盘(或多组齿轮,多组码盘),在单圈编码的基础上再增加圈数的编码,以扩大编码器的测量范围,这样的绝对编码器就称为多圈式绝对编码器,它同样是由机械位置确定编码,每个位置编码唯一不重复,而无需记忆。多圈编码器另一个优点是由于测量范围大,实际使用往往富裕较多,这样在安装时不必要费劲找零点,将某一中间位置作为起始点就可以了,而大大简化了安装调试难度。绝对型编码器的串行和并行输出的介绍并行输出:绝对型编码器输出的是多位数码(格雷码或纯二进制码),并行输出就是在接口上有多点高低电平输出,以代表数码的1或0,对于位数不高的绝对编码

23、器,一般就直接以此形式输出数码,可直接进入PLC或上位机的I/O接口,输出即时,连接简单。但是并行输出有如下问题:1。必须是格雷码,因为如是纯二进制码,在数据刷新时可能有多位变化,读数会在短时间里造成错码。2。所有接口必须确保连接好,因为如有个别连接不良点,该点电位始终是0,造成错码而无法判断。3。传输距离不能远,一般在一两米,对于复杂环境,最好有隔离。4。对于位数较多,要许多芯电缆,并要确保连接优良,由此带来工程难度,同样,对于编码器,要同时有许多节点输出,增加编码器的故障损坏率。并行:时间上,数据同时发出;空间上,每个位数的数据各占用一根线缆。增量型编码器输出的通常是并行输出。串行输出:串

24、行输出就是通过约定,在时间上有先后的数据输出,这种约定称为通讯规约,其连接的物理形式有RS232、RS422(TTL)、RS485等。串行输出连接线少,传输距离远,对于编码器的保护和可靠性就大大提高了,一般高位数的绝对编码器都是用串行输出的。由于绝对型编码器的部分知名厂家在德国,所以串行输出大部分是与德国的西门子配套的,如SSI同步串行输出,总线型是PROFIBUS-DP的输出等。串行输出编码器连接德国西门子的设备是比较容易的,但是连接非德国系的设备,接口就是问题了,我公司提供各种接口输出的仪表,可以解决这样的问题。串行:时间上,数据按照约定,有先后;空间上,所有位数的数据都在一组线缆上(先后

25、)发出。串行编码器应该都是绝对式的?串行是指按时间约定,串行输出数字编码信号,基本是绝对的,但也有一些增量编码器,通过内置电池记忆原点,其也可以通过串行输出位置值,如电池线不联,还是增量编码器,此也称为伪绝对值编码器,在一些日本伺服系统中较多见。其本质其实还是增量编码器。为什么叫“绝对型编码器”?“绝对型编码器”相对于“增量型编码器”而言。“绝对型编码器”使用某种方式表示并记忆物体的绝对位置,角度和圈数。即一旦位置,角度和圈数固定,什么时候编码器的示值都唯一固定,包括停电后投电。“增量型编码器”做不到这一点。一般“增量型编码器”输出两个A、B脉冲信号,和一个Z(L)零位信号,A、B脉冲互差90

26、度相位角。通过脉冲计数可以知道位置,角度和圈数增量,通过A,B脉冲信号超前或滞后可以知道方向,停电后,必须从约定的基准重新开始计数。“增量型编码器”表示位置,角度和圈数需要做后处理,重新投电要做“复零”操作,所以,“增量型编码器”比“绝对型编码器”在价格上便宜许多。绝对值编码器SSI输出,同时提供了增量值信号A、B两相1Vpp,是派什么用处的?在我们提供的绝对值编码器,德国的HEIDENHAIN的SSI输出和德国HENGSTLER的SSI输出,都同时提供了增量值信号A、B两相1Vpp正弦波输出,构成了绝对与增量的双输出,很多用户不明白这个增量信号是干什么用的,而剪掉联线废弃不用,真是蛮可惜的。

27、一。此增量信号可以作为绝对信号的冗余。二。可以让绝对信号作为位置闭环,而增量信号作为速度闭环,构成位置控制与速度控制的双闭环系统,以达到位置的准确(无位置冲过头而振荡)和速度的高效,这是一个较先进的课题,目前国内似乎还没有看到有很好的应用介绍。三。增量信号是正弦波信号,其可以用模拟电路细分,这样,在绝对值编码器两个最小相邻码之间,还可以因为相位的变化不同,获得更精细的分辨率,从而可以大大提高绝对值编码器的分辨率。电子凸轮开关现在还有一种绝对值、增量值、定位电子凸轮开关三输出的编码器,除了上面介绍的RS485绝对值信号、A/B增量值信号以外,还同时提供了多点定位电子凸轮开关,可预设定位开关,到预

28、设位置可直接输出开关信号,控制减速、停车。这样,这一个绝对值编码器可同时输出连续绝对值信号显示位置、输出增量值信号作速度闭环、输出定位电子凸轮开关控制减速、定位!SSI与Biss、Endat、Hipeface:SSI为同步串联界面(synchronous-serial interface)的英文缩写,其实际为两个RS422通道,利用中断的时钟同步读数,最高时钟速度1.1 MHz.ssi的数据形式最简单,一般不包含CRC校验、产品内部信息及地址,在运动控制中,有提出更快、信息更多的要求时,各家编码器厂家推出了各自的方案,以海德汉为首的联合西门子公司,推出的是Endat;以宝马集团及亨斯乐推出的是

29、Biss(有个Biss协会);以STEGMANN为首的推出hipeface.实际上都是在SSI的基础上的改良的,基本物理格式都差不多,RS422(或RS485),由时钟脉冲触发,只是速度更快,可达2-10MHZ,并可增加编码器的内部信息、CRC校验、故障报警的功能,有的可以增加地址,有的可以增加正余弦增量信号作冗余。由于目前的协议不同一,这些输出都要连接专用的接口,故具体使用,还是建议直接找各自的编码器厂家咨询为好。就我们使用的经验,除非你对速度及编码器安全有特别的要求,一般还是用SSI通用的好,方便。绝对型编码器(多圈)与PLC的连接有多种方法,简单介绍几种:1。SSI或各种总线连接,缺点是

30、要用专用SSI接口或总线模块,有的PLC还没有,成本较高。2。并行连接,进PLC的开关输入模块,但多圈的位数高,要十几、二十几根线缆,可靠性降低,成本上去了。3。4-20mA(选择有模拟量输出功能的绝对值多圈编码器)进模拟量电流模块,缺点,精度有所牺牲。4。MODBUS RTU进485通讯接口(要有双向功能的),缺点:要专门编程,速度可能降低,有时设备地址会丢。一般的单圈位数低的用第二种方法。而多圈的要看应用了,简单点的用4-20mA的方法。矢量变频器与编码器PG之间如何接线 矢量变频器与编码器PG之间的连接方式,必须与编码器pg的型号相对应。一般而言,编码器PG型号分差动输出、集电极开路输出

31、和推挽输出三种,其信号的传递方式必须考虑到变频器PG卡的接口,因此选择合适的PG卡型号或者设置合理的跳线至关重要。前者的典型代表是安川vsg7变频器,后者的典型代表为艾默生td3000变频器。 以安川vsg7变频器为例,其用于带速度传感器矢量控制方式安装的pg卡类型主要有两种:(1)PGb2卡,含a/b相脉冲输入,对应补码输出,如图1所示。图1PGb2卡与编码器接线图(2)PGx2卡,含a/b/z相脉冲输入,对应线驱动,如图2所示。图2PGx2卡与编码器接线图艾默生td3000变频器的PG卡是统一配置的,最高输入频率为120khz,它与不同的编码器PG接线时,只需注意接线方式和跳线cn4。当跳

32、线cn4位于di侧时,可以选择编码器信号由a+、a、b、b差动输出(如图3所示)或者a、b推挽输出(如图5所示);当跳线cn4位于oci侧时,可以选择编码器信号由a、b开路集电极输出(如图4所示)。图3差动输出编码器接线图 图4集电极开路输出编码器(加上虚线为电压型输出编码器)接线图在变频器的参数组中对于编码器PG都有比较严格的定义,这些定义包括:(1)编码器PG每转脉冲数。此参数可以查看编码器本身的技术指标,单位为p/r。(2)编码器PG方向选择。如果变频器pg卡与编码器PG接线次序代表的方向,和变频器与电动机连接次序代表的方向匹配,设定值应为正向,否则为反向。必须注意当方向选择错误时,变频

33、器将无法加速到你所需要的频率,并报过流故障或编码器反向故障。更改此参数可方便地调整接线方向的对应关系,而无须重新接线。图5推挽输出编码器接线图 图6编码器PG的方向选择图6中所示为安川vsg7变频器的编码器PG方向选择示意。编码器PG从输入轴看时顺时针方向cw旋转时,为a相超前,另外,正转指令输出时,电动机从输出侧看时逆时针ccw旋转。然而,一般的编码器pg在电动机正转时,安装在负载侧时为a相超前,安装在与负载侧相反时b相超前。(3)编码器PG断线动作。如果编码器PG断线(即PGo),变频器将无法得到速度反馈值,将立即报警并输出电压被关闭,电动机自由滑行停车,在停车过程中,故障将无法复位,直到

34、停机为止。(4)编码器PG断线检测时间。一般为10s以下,以确认在此时间内编码器PG的断线故障是否持续存在。(5)零速检测值。本参数是为了检测编码器PG断线而定义的功能,当设定频率大于零速检测值,而反馈速度小于零速检测值,并且持续时间在编码器PG断线检测时间参数以上,则变频器确认为编码器PG断线故障(PGo)成立。(6)编码器PG与电动机之间的齿轮齿数。本参数是为了适应编码器安装在齿轮电动机上的情况,可设定齿轮齿数。由电动机转速公式可以得出:电动机速度(r/min)=(从编码器pg输入的脉冲数60)(负载侧齿轮齿数/电动机侧齿轮齿数)/编码器pg的每转脉冲数(7)检出电动机的过速度。电动机超过规定以上的转速时,检出故障。通常设定100120的最大频率为检出过速度的基准值,如果在预定的时间内频率持续超出该值,则定义为电动机过速度故障(os)。如发生该故障,变频器自由停车。(8)检出电动机和速度指令的速度差。我们定义电动机的实际速度和设定速度的差值为速度偏差,如果在一定的时间内其速度偏差值持续超出某一范围值(如10时),则检出速度偏差过大(dev)。如发生该故障,变频器可以按照预先设定的故障停机方式停机。

展开阅读全文
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!