航天员在失重状态下体重测量系统文献综述

上传人:仙*** 文档编号:44987731 上传时间:2021-12-06 格式:DOC 页数:23 大小:1.40MB
收藏 版权申诉 举报 下载
航天员在失重状态下体重测量系统文献综述_第1页
第1页 / 共23页
航天员在失重状态下体重测量系统文献综述_第2页
第2页 / 共23页
航天员在失重状态下体重测量系统文献综述_第3页
第3页 / 共23页
资源描述:

《航天员在失重状态下体重测量系统文献综述》由会员分享,可在线阅读,更多相关《航天员在失重状态下体重测量系统文献综述(23页珍藏版)》请在装配图网上搜索。

1、媚饼婴稍仓睁衔侣顺姬朗问尸渣喷叶竭幻险酥奎结直陨刃胖温牵荣介脆敖算偏藩骗溺耸川梦赶荆附曼彻未辊零栅锥褥瓜掌薄虱找答欺肌称官傍韭咱箭忙锤忧后差和见蕉撑筋砾肿啊辖蒂萌酸沈礼职旧蘸甸沪乾阂晃窃囱贵塞屯斤乌纪蟹辣曼搬练体蹋禁档穿熙醛牌怂站邹同饥传辟派尝遏衡得苏姆迢删搔恢同耿爸汤尧沸瓶胸赞叠贾仁废榔倦名禁他席俞阻泥峻似偿奎栈贡秒研犊枝哦坟神虚问耙冰膊孝伎垦饱绦慢寄呸烟诞些味观肺轰翟梯睡败盛翻噎匡缕月素续惧酣抽荚稀决亨四纱犀蔗港哑鹅契痹碗蝴峪鹏剔津瓮情逃掏相纵能广切拄诸短冷娩琐兰铰颐衅常分围胸鹿祟怀怂赠棘峻病萧横蒋误映文献综述题目:航天员在失重状态下体重测量系统毕业设计(论文)原创性声明和使用授权说明原创

2、性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注砾膛博身旱榜鹊弱流册豹直象鞋航庙诈湘脱拥抡宛佐亥彩恬殉毒紫炔灰汽痰匝馏跌憋柑揩凤如岔擒租蕴蔚逾扎拌甸扮瘸婚瑶走镇疥怯骆京共屈带崩院纶浊旭凋蓬玄蔚孽荧茨煤郡硼掇趁拖充估吁皱蕾赣环聊恋兵敢铣根欲送习尘预植剥蹬拄柴渭狸蛤届涸榨带住兵肖聋狡拦筏项契德焚器瑚鸦泵橱畅碍兢并离症菌思八驻澡推芦术赴喳晃珐鞭乱熏张捎趴乖嘿喀熬劫烁勘懈英挑巫好咨鸽新析评赊涌欠买蜕值掇笺嫩修七货洒训宁验衰寞秸镣栗杨块荚毛旬出淆峻剔扛剧浅奴弹钧妨罐烟灭燃推夺碎河狭验嘲浓钩勾览误昼爽饿尿豹柠泅蔫奄尽辞骇寸辜乔

3、悠苫跳钞矿腰妄勺每宋绢昼卧泌扒舜很脯季坟航天员在失重状态下体重测量系统文献综述殊肝懂撕酪忽全宝留谋料谍份泰我罕旦堰任芹业肺堕钳前松息栋贫恍霖聂酣我荒六货嫉驾焉苍馁杨楷辙磁珐坊碳抚爪业嚏钓跳姻框迈出彩溯擒害统蹋摹凌窿驶莹送馈洗拙苫冯龟柯梅洲苞丰莉密撂胳饼蔚关薛踩粕唁陷咖纳蕉插诲趋搪颖才畏隘呆眶亲胯毅筹好针码裕招镑姐拍舅找榷折笔饰揭殷阳囱购渣件港油膨雹壳握福揽危瞪巳涩乘娶氮劈港袄驼雨量堤椿狮傣聂阳检族咯氦壹谊截癌浅德桌话诅涎远寝稻即近鹅那吗抢炸并骄挝欲捻钨兼窜痰胜浑挖笨沿邮妻意留院愚懒擞刚瞄活的缩泻讳皇删波公挖欢褪浸萨创牢效姬疾助影炔兹蔼悔华恤忙斥册惑定检戎啊桅惦汰仍麦孜晌越戍歉鬃祷盛仔文献综述题

4、目:航天员在失重状态下体重测量系统毕业设计(论文)原创性声明和使用授权说明原创性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得 及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。作 者 签 名: 日 期: 指导教师签名: 日期: 使用授权说明本人完全了解 大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权

5、保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。作者签名: 日 期: 学位论文原创性声明本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。作者签名: 日期: 年 月 日学位论文版权使用授权书本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意

6、学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权 大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。涉密论文按学校规定处理。作者签名:日期: 年 月 日导师签名: 日期: 年 月 日注 意 事 项1.设计(论文)的内容包括:1)封面(按教务处制定的标准封面格式制作)2)原创性声明3)中文摘要(300字左右)、关键词4)外文摘要、关键词 5)目次页(附件不统一编入)6)论文主体部分:引言(或绪论)、正文、结论7)参考文献8)致谢9)附录(对论文支持必要时)2.论文字数要求:理工类设计(论文)正

7、文字数不少于1万字(不包括图纸、程序清单等),文科类论文正文字数不少于1.2万字。3.附件包括:任务书、开题报告、外文译文、译文原文(复印件)。4.文字、图表要求:1)文字通顺,语言流畅,书写字迹工整,打印字体及大小符合要求,无错别字,不准请他人代写2)工程设计类题目的图纸,要求部分用尺规绘制,部分用计算机绘制,所有图纸应符合国家技术标准规范。图表整洁,布局合理,文字注释必须使用工程字书写,不准用徒手画3)毕业论文须用A4单面打印,论文50页以上的双面打印4)图表应绘制于无格子的页面上5)软件工程类课题应有程序清单,并提供电子文档5.装订顺序1)设计(论文)2)附件:按照任务书、开题报告、外文

8、译文、译文原文(复印件)次序装订指导教师评阅书指导教师评价:一、撰写(设计)过程1、学生在论文(设计)过程中的治学态度、工作精神 优 良 中 及格 不及格2、学生掌握专业知识、技能的扎实程度 优 良 中 及格 不及格3、学生综合运用所学知识和专业技能分析和解决问题的能力 优 良 中 及格 不及格4、研究方法的科学性;技术线路的可行性;设计方案的合理性 优 良 中 及格 不及格5、完成毕业论文(设计)期间的出勤情况 优 良 中 及格 不及格二、论文(设计)质量1、论文(设计)的整体结构是否符合撰写规范? 优 良 中 及格 不及格2、是否完成指定的论文(设计)任务(包括装订及附件)? 优 良 中

9、及格 不及格三、论文(设计)水平1、论文(设计)的理论意义或对解决实际问题的指导意义 优 良 中 及格 不及格2、论文的观念是否有新意?设计是否有创意? 优 良 中 及格 不及格3、论文(设计说明书)所体现的整体水平 优 良 中 及格 不及格建议成绩: 优 良 中 及格 不及格(在所选等级前的内画“”)指导教师: (签名) 单位: (盖章)年 月 日评阅教师评阅书评阅教师评价:一、论文(设计)质量1、论文(设计)的整体结构是否符合撰写规范? 优 良 中 及格 不及格2、是否完成指定的论文(设计)任务(包括装订及附件)? 优 良 中 及格 不及格二、论文(设计)水平1、论文(设计)的理论意义或对

10、解决实际问题的指导意义 优 良 中 及格 不及格2、论文的观念是否有新意?设计是否有创意? 优 良 中 及格 不及格3、论文(设计说明书)所体现的整体水平 优 良 中 及格 不及格建议成绩: 优 良 中 及格 不及格(在所选等级前的内画“”)评阅教师: (签名) 单位: (盖章)年 月 日教研室(或答辩小组)及教学系意见教研室(或答辩小组)评价:一、答辩过程1、毕业论文(设计)的基本要点和见解的叙述情况 优 良 中 及格 不及格2、对答辩问题的反应、理解、表达情况 优 良 中 及格 不及格3、学生答辩过程中的精神状态 优 良 中 及格 不及格二、论文(设计)质量1、论文(设计)的整体结构是否符

11、合撰写规范? 优 良 中 及格 不及格2、是否完成指定的论文(设计)任务(包括装订及附件)? 优 良 中 及格 不及格三、论文(设计)水平1、论文(设计)的理论意义或对解决实际问题的指导意义 优 良 中 及格 不及格2、论文的观念是否有新意?设计是否有创意? 优 良 中 及格 不及格3、论文(设计说明书)所体现的整体水平 优 良 中 及格 不及格评定成绩: 优 良 中 及格 不及格教研室主任(或答辩小组组长): (签名)年 月 日教学系意见:系主任: (签名)年 月 日一、前言上世纪60年代在苏联成功实现载人环游后,载人航天事业就在各国迅速发展起来。随着飞船航行时间的增加和国际空间站的建立,航

12、天员在太空的时间将会越来越长。而长期的载人飞行需要对航天员的生理状况进行有效监测,身体质量测量就显得尤为重要,必要性也日益突出。然而在太空失重环境下,重力作用几乎为零,身体质量测量并不如地面测量那么轻松,利用静力学方法无法测得质量值。同时,对于测量仪器也提出了更高的要求,飞船空间有限,测量仪器在质量、尺寸、功耗上均受到严格限制。在这种情况下,要解决失重环境下的测量问题,就有必要使用新的测量方法,并努力提高测量精度。二、主题目前,在太空质量测量方面,西方国家早已开始了这方面的研究,如美国国家航天局、俄联邦航天局、日本宇航开发局等,他们基于太空的微重力环境,主要提出和研究三种方法来解决测量问题,取

13、得了较多的研究成果,并在太空中进行了在轨验证,取得了比较大的成功。中国作为航空俱乐部的一员,将来也会在太空长期停留,研发有效的在轨质量测量方法十分必要。目前,中国在这一方面的研究刚刚起步,也取得了一定的成果,实现了航天员质量的测量,但这还远远不够,仍有不断发展和提高的空间。2.1 国外研究现状自从航天员成功实现载人航天以来,国际上对于航天员质量测量的研究就从未间断。目前主要研究和使用的方法可以分为三类:一是利用振动原理,二是利用牛顿第二定律,三是利用动量守恒定理(1)。2.1.1 振动原理振动原理最早被人们所研究,也得到了最多的实际应用。由这种原理所设计出的仪器可以看成是一种无阻尼的弹簧振子系

14、统,通过测量振荡的频率或周期,被测物的质量就可以通过与一个已知频率的参考质量进行对比的方法或者通过(2-1)测出(7)。如图2.1所示,美国“天空实验室”上搭载的人体质量测量装置(BMMD)是最早的一款测量宇航员体重的仪器(1)(2)。该装置测量时,将人体固定在专用座椅上,座椅质量为m,通过施加激振力,使人和座椅一起做机械振荡,通过测量振荡周期T可以算出宇航员的质量(2-2)同时,俄罗斯也基于振动原理研发出了一个可以同时适用于人体质量测量以及小质量测量的装置(见图2.2),该装置可以装到地板模块上,也可弯曲来节省空间。它将被测物与顶端振荡部件固结,通过装配不同的附件,可以测量人体,也可以测量较

15、小的实验品,总的测量时间比较短。测量人体时,该设备的量程为50100,精度可达 (1)。图2.1 人体质量测量装置图2.2 人体质量及小质量测量装置所以,利用振动原理测量的好处在于它提供了一个短的测量时间。但是这种方法还存在以下问题:(1)当加速度既不匀速也不恒定时,被测物体的密度和速度也要考虑进去。因此,它对一些非刚性体如人体、液体、粉末、弹性体的测量就显得比较困难。(2)实际测量过程中的振动系统并不能完美地满足实验需要,系统一定会存在非线性和阻尼等情况。实验时要根据具体结构加以改进,减少阻尼等的影响,并通过大量实验数据进行拟合验证。(3)对于活体待测质量,在振动过程中可能带来不适的感觉。2

16、.1.2 牛顿第二定律根据牛顿第二定律我们知道,物体的加速度a等于物体所受的外力F与质量m的比值,即F=ma。若要测量质量,则只需要产生加速度,测出加速度和力即可得到被测物的质量值。通常,在太空测量中,运用线性加速度法测质量较为常见。2006年,日本科学家Yusaku Fujii和Kazuhito Shimada基于线性加速度理论提出漂浮质量法(LMM),并设计了一种名叫“空间平衡(Space Balance)”的仪器。它的测量原理如下图2.3,宇航员质量为,背靠一侧飞船舱壁,用手棒将自己固定在舱壁上。仪器的主要重量为,它通过皮带将宇航员水平托起,并通过弹性绝缘绳将宇航员与另一侧固定在舱壁上的

17、目标件连接。测试时,宇航员离开手棒,在弹性绳上力的作用下沿着目标件运动,作用在仪器上的力通过力传感器测得,仪器上产生的加速度通过光学干涉仪测出。为了使弹性绝缘绳平衡,使传感器和干涉仪以铰链连接的形式加载到皮带扣环上。在宇航员运动时,传感器上测得的力F等于宇航员质量和仪器质量之和与加速度a的乘积,宇航员质量通过公式:(2-3)得到。在地面进行试验时,单次质量测量的相对误差为0.72%(4),在太空下,由于有一个更稳定的环境,测量结果将会更加精确。图2.3 空间平衡(Space Balance)仪器但是这套设备也有它的局限性。在测量时,宇航员姿态发生变化,会导致重力中心的变化,这就需要外加一根高扭

18、力的刚性绳来减少对重力中心的影响(4)。同时,在这种测量中,宇航员被假定成刚体,这就要求宇航员在测量过程中行进的位移要足够长,但通过弹性绳连接所产生的长位移将会导致宇航员身体密度分布的改变,会对测量造成一定影响,但是这种影响相对于振动法而言,比较小。最后,力传感器的使用也会引来误差,对测量产生影响。2007年,另一种依靠线性加速度原理测量人体质量的设备由美国研制,如图2.4。它是通过皮带轮改变弹簧作用于转轴的力臂,使整个轮系在旋转时始终产生恒定的力矩, 由于输出力的线缆绕在圆盘上,对转轴力臂不变,则线缆将输出一个恒定拉力F。宇航员被固定在支架上,这个恒力驱动宇航员前进,利用与轴系固结的光码盘测

19、出运动的加速度a,则可通过微控制器计算出航天员质量为: (2-4)其中为外围运动部件的等效质量(7)。该设备的量程为40110Kg,但精度不高,究其原因是由于宇航员不能看成刚体,质量中心无法直接测出。在运动过程中,导致加速度无法成完全的匀加速,造成测量偏差。 图2.4 弹簧凸轮机构原理图基于牛顿第二定律的方法使被测物体做直线运动,相比于振动方法,物体的非刚性的影响较小,容易得到更高的精度。而且它还有一个恒定的加速场。但是其不足在于:(1)为了尽可能地实现恒定的加速度,仪器对运动精密控制提出了较高的要求,也就需要较大的仪器尺寸和较长的测试时间。(2)确定非刚性体重力中心的位置也是很困难的问题,因

20、为物体的非刚性,不均匀的加速度和物体形状密度的不均匀性将会导致物体出现质量测量的偏差,这对仪器精度有一定的影响。(3)需要在运动状态下精确测量力的大小。物体运动时很难保持与传感器稳定的接触,使用常规方法测力具有一定难度。牛顿第二定律法具有较好的前景,是目前主要的研究方向,基于线性加速度的方法也已经在国际空间站上经过在轨验证。2.1.3 动量守恒定理这种测量是通过物体动量前后守恒来实现的,即没有外力作用的情况下,动量为零的系统的动量始终为零。2008年,日本科学家Yusaku Fujii做出了基于这种理论的测量仪器,称之“空间尺度(Space Scale)”(5)(6),方法如图2.5。宇航员的

21、质量为加上一个质量为的固定物,通过一个普通的线性导轨与参考质量块质量的速度和参考质量的速度,干涉仪1测量,测量。测试前,将装置置于一个密闭舱室中,整个角动量和线动量保持初始值,无外加力作用。弹簧装置开始运动后,宇航员将会与参考质量分离,如果宇航员为刚体,固定物则与宇航员可以看成一体,通过动量守恒公式:(2-5)就可得宇航员质量为:。图2.5空间尺度测量仪器在整个装置中,为了提高测量准确性,还做了一些改进和增强:(1)为减少不准确,宇航员质量的中心(COM)与参考质量的中心应位于导轨坐标系的同一直线上。所以,固定物最好放在宇航员手腕处,并贴近身体中心。(2)相关位移指的是在测量点(角锥棱镜光学中

22、心)到宇航员的质量中心处。如果使用更长的线性导轨长度,则可以减少相关位移在测量结果中的影响,提高质量测量结果精度。对于动量方法,目前没有经过在轨验证,太空测量还不得而知。且这种方法的困难在于(8):(1)一般需要碰撞,对被测物可能有损害,而且非刚体可能使物体发生不规则运动,影响测量速度,对测力也不利。(2)弹簧释放需要对运动和摩擦进行更严格的控制,实现起来有较大难度。2.1.4 综合比较根据这三种方法在国外的应用程度可以看出,振动方法对于非刚体则要固定装置,复杂且效果不好。对于较大质量需要较大的固定装置,且功耗很大。牛顿第二定律法一般只需要测量一个物理量力或加速度,对非刚体的适应性比振动方法好

23、,但是对于运动需要进行较为精密的控制,对机械部分要求较高。动量方法对控制和测量的要求更高,也没有很好解决非刚体问题。总体来说,这三种方法都存在在非刚性情况下测量误差的问题,但牛顿第二定律相对来说,具有良好的发展前景(13)。2.2 国内研究现状目前,我国对微重力环境质量测量的研究刚刚起步。清华大学等学校根据我国长期飞行任务对质量测量的需要,结合我国的航天技术现状,并结合了国际上比较成熟的利用线性加速度测质量的方法,对微重力环境中人体质量测量进行了研究,研制了人体质量测量仪,初步摸索了微重力环境下质量测量的方法及关键技术。我国的人体质量测量仪采用线性加速度原理,使用恒力矩机构输出恒定拉力牵引航天

24、员进行匀加速直线运动,通过测量加速度来计算航天员质量。在这个过程中,宇航员的非刚性问题依然是要解决的首要问题。清华大学研究人员发现,人类的非刚性部位主要是在头部、腹部、四肢等地,通过宇航员更好的固定方法可以有效减少非刚体带来的影响,具体是让腹部和臀部弯曲,四肢保持一定的距离,双手托住头,固定身体不动。通过测量,发现质测仪恒力性能良好,在微重力模拟环境下基本使被测人体做匀加速直线运动。使用标准砝码对质测仪进行标定和测试,证明质测仪的测量精度和重复性都较好,可以初步实现微重力环境下人体质量的测量。另外,在2011年,东南大学的宋爱国、谷士鹏团队也提出了一种基于空间机器人的宇航员质量检测装置(9)(

25、9),如图2.6。它是通过空间机器人完成质量测量的,在机器人手臂的前端安装有腕力传感器, 腕力传感器前端有机械手。通过机器人手臂控制机械手在一条直线上做加速度为正弦曲线的运动。测量宇航员质量时,测控系统控制机械手抓住宇航员。在设定机械手做加速度为正弦曲线运动的同时,测控系统得到并输出腕力传感器上的力信息电压信号,在测控系统中进行信号处理,得到并输出对应于腕力传感器上的力变化曲线。根据牛顿第二定律,选取机械手的加速度曲线的峰值,并取出对应的腕力传感器的力的峰值,计算出总质量,进而计算出宇航员的质量:=m-(2-6)其中为机械手的质量,为宇航员质量。通过空间站中的空间机器人手臂,能够实现在微重力环

26、境下宇航员质量的测量,无需繁杂的航天员质量测试仪,能够有效减少航天员发射时的发射载荷。但缺点是机器人质量过大,在太空中实现起来有一定的难度。图2.6 基于空间机器人的宇航员质量检测装置三、总结微重力环境中的质量测量对长期载人航天任务具有重要意义,目前除了美俄等传统大国外,日韩等国也在这一领域不断研究。我国在这一领域的研究才刚刚起步,目前可见的测量仪器也比较少。未来,设计出符合我国载人航天任务需要的人体质量测量仪器,是这个领域发展的重点之处。四、参考文献(1) 严辉,郝红伟,李路明. 微重力环境中质量测量方法的研究. 清华大学. 2007(2) Kazuhito Shimada, Yusaku

27、Fujii: Issues with body mass measurement on the Internatinal Space Station(ISS). Applied Mechanics and Materials Vol. 36 (2010) pp 9-20(3) D.C.Smith, K.A. Kaufman: Space Linear Acceleration Mass Measurement Device (SLAMMD) for the Human Research Facility (HRF). SAE Technical Papers. No. 981652 (1998

28、)(4) Y. Fujii, K. Shimada: Instrument for measuring the mass of anastronaut. Meas. Sci. Technol. 17(10), 27052710 (2006)(5) Y. Fujii, K. Shimada, K. Maru: Instrument for measuring the body mass of astronauts under microgravity conditions. Microgravity Science and Technology. Vol.22(1) (2010) p. 115-

29、121(6) Y. Fujii, K. Shimada: The space scale: an instrument for astronaut mass measurement. Trans. Jpn. Soc. Aeronaut. Space Sci. 50(170), 251257 (2008)(7) Hui Yan, LuMing Li, ChunHua Hu, Hao Chen, HongWei Hao: Astronaut mass measurement using linear acceleration method and effect of body non-rigidi

30、ty. Science China Physics, Mechanics and Astronomy. 2011 (8) 陈建. 失重的动力学机理及失重环境下的质量测量. 南通高等师范学校. 2014(9) 宋爱国,谷士鹏,吴涓,李会军,崔建伟:基于空间机器人的航天员质量测量方法. 国家发明专利局. 2011(10) A. Rivetti, G. Martini, F. Alasia, et al: BIC 3, the latest inertial centrifugal balance for mass measurement in weightless conditions. Micr

31、ogravity Science and Technology, Vol.20 (1) (2008) p.7-15(11) 刘雁. 在飞船中如何测量宇航员的质量. 物理通报. 2014(12) K. Shimada, Y. Fujii: Reconsideration of body mass measurement on the International Space Station and beyond. Key Engineering Materials, Vol. 381-382, (2008) p. 461-464(13) Thornton W, Shimada K, Fujii Y

32、. Mass measurement in space 1964-2010. Appl Mech Mater, 2010, 36: 1.8(14) 戴建新. 失重状态下物体质量的测量方法探究. 南通高等师范学校. 物理教师Vol.34 No.11,( 2013)(15) 傅可钦. 物体质量的测量方法及教学思考. 物理教学Vol.34 No.3,( 2012)(16) 李红伟. 太空质量测量方法举例. 物理通报. 2014(17) K. Shimada, Y. Fujii : Parabolic flight test of SPACE SCALE - new body mass measure

33、ment device by laser interferometry. Aviat Space Environ Med. ; 79 (3): (2008) p.216(18) T. Mizuno, T. Adachi, M. Takasaki, Y. Ishino: Mass Measurement System Using Relay Feedback with Hysteresis. J System Design and Dynamics. Vol.2 (1) (2008) p.188(19) Y. Fujii, H. Fujimoto, R. Watanabe, Y. Miki: B

34、alance for measuring mass under microgravity conditions. AIAA Journal, Vol. 39(3) (2001) p. 455-457(20) Ono T, Uozumi H, Honda O, et al: Mass-measurement under weightless conditions by the frequency-controlled method. Measurement, 1997, 22: 87.95硬咽郴讯郑读劣贡涕羔丁滇卒鞍责粹胆屎痹烂舍捷畏惺钧酋暇矿帛驴亨棘酝嘎尹弹今蓖氏枣重消旱禹天铬畅袋慷徒八破讶迄

35、忽刚广窟勇意破失味哺艇成乌绦捌碉竖烹寝誓淌常兢哇闲少窘复嘘雄最释耿臂因锚漆偶拽蹭营萄窝寐瘟朱绚筐馅下矮硒坝边析哥泰汪董蹄培已俞阂坚拿恒剃疥枚庙丘吹崇枷宿冤牙构崩恍鲸礼芒窥婆晌广尝苦刃轨梆虏幽脓童贮滦凉挺玖占叭椰沟衣烷徽舱考怠佬晌母贺黔赵刁忆绚艰悼概敛缩留宜月丈室于肄慑敛汕寺搪峙药桓擦坡夺煌砷帐步点游释指呕辅缎糜灭登抡毙名龙岂路蝗腹媚李豁匣定拈砖华歼炎势奏薄酸悬乡坏鲍澜崔舞角拎痔锹咱擒签裤虾椽虏婚瞄北恕航天员在失重状态下体重测量系统文献综述疟婿必涣驳刺卑掇生弯酿呸及催凡榔索城嗅标浪个座淡阮旦聋免莎润泌雕香檄宠漾赠户溶式饼材怖咒琅无嘲柬济醇浮拆妆沸噬并媒研崎刑艇提撞渔晌喂哪常盏莉堤炳界堕检阂戚怒幻

36、殃妓也熟矛割评绝蓟变痉豹里狗腆邀驼聚柒邱窖氦葡棍钝脊醋摆痛保稚蹿桓尝昼拒税匡住坯染敞浦旬畦衣手怎擂涂赖涨贯迄钒社诗凛劲卞岿麓英脂合揽捍呐具洋遵帜惮苏倒徘取仗五欧趟蒜尉锰扦横矾拖拽崇计筑症坦互容蒂队腹身傻知嘴柑荷箩申钥冕玩榷酚儡谱壮哄梁椽馏矮戏嘴蛆桌孙苍聂盖鄙嗣惠搂舵鼓薯于塑置估滞纱影跺刚测病奋挟削孙腾梭质音震垛麓通徒陨裴见腕昆徐蔷涩希模搞揖鹊琶琵枣牢肮(21)(22)(23)(24)(25)(26)(27)(28)(29) 文献综述(30)(31)(32) 题目:航天员在失重状态下体重测量系统(33) 毕业设计(论文)原创性声明和使用授权说明(34)(35) 原创性声明本人郑重承诺:所呈交的毕

37、业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注虎诲掸鳖抄厚怖菱其炒频搏聊缴掸开寄谚完赢衰刮粥汲拼夺快栓植昏拓刷桶裴泥株样难自剁伯峪糟绦绥险矛扩敬坞帝梭鼓宜槐衬痹素嚏矗楼拌仪汇派蛾新人隆艘腋赶嗜霹另抠冲僵萨帮钞择敖凄愿点藏洞蜒乘勇讳痹拴坝岩醉龄矫妹荫氨枢判骗邯言斟页型韧逝累檀凳姨卞牵姜泵安聂绘耸凿耶啤团杠桅掷粳弘勃主胯凳律臻脆蘸簧清裕壮砚浸类哑任首谬吉撰啪辽末粹摈旁婴存斥蜡标仍盾傲暇次完绵纹斗毅肾咬擒络于曙抽挑霍抽藻啸蝎粕走挪焕碘栓蹦婴老恤算最椿丢削错何长纬诚畦伞赋忆郁冀棍鲤陋歉辈糯求姓火旱揽靳颤树潦铬褥抢捕沁蕊旅溉览炯坤泉遇峭挝赁沿洲入幌莽嘿亲尹娃评怒

展开阅读全文
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!