同价值链管理和汽车之间半导体行业一个差异和分析改进措施【中文6110字】【PDF+中文WORD】
同价值链管理和汽车之间半导体行业一个差异和分析改进措施【中文6110字】【PDF+中文WORD】,中文6110字,PDF+中文WORD,价值链,管理,汽车,之间,半导体,行业,一个,差异,分析,改进,措施,中文,6110,PDF,WORD
【中文6110字】
同价值链管理和汽车之间半导体行业:
一个差异和分析改进措施
摘要
本文中给出的工作是针对不同的汽车供应链和半导体行业的特性。本文将系统地识别和评估在这两个行业之间存在的接口的弱点。基于这一分析,提出了一种参考模型作为一种工具,协同价值链管理的措施分析汽车和半导体行业。参考模型定义了一组特定的优化措施及有关类别的战略、流程、技术和系统,以确保更好的计划和控制流程之间的汽车和半导体行业的一致性。模型和相关的措施旨在更有效协调生产能力和更好的应对市场波动之间的汽车和半导体行业。因此,一个更稳定的更显著的供应链和物流成本会降低整个价值链。
关键词:价值链管理;供应链管理;协作。
1.介绍
创新和增加汽车的价值主要是由于电子和特别半导体组件。从安全气囊导航系统和汽车以太网到微处理器,微芯片和模拟组件形成的基础的各种各样的车。
电子产品的附加值促使汽车的份额已经很高,未来几年将有所上升——特别是电气化的60%进步,从纯电动汽车电气驱动系统(即电动车),包括网络的趋势汽车与环境[1]。所以,汽车工业的成功合作取决于它的直接电子零件及其供应商供应商在半导体行业是至关重要的。
2011年3月,当地震在日本生产线停止,很明显微电子产业是相互关联的。这类影响扩展到材料,组件和系统供应商在价值链和直接影响汽车行业:在芯片制造短缺蔓延到供应商日立和扰乱了四个,五个日本日产工厂生产[2]。
尽管日本蒙受灾难,供应的汽车工业和半导体产品证明其是非常困难的。随着市场变得越来越不稳定,不同的生产交货期,创新和产品的生命周期,以及不协调计划和控制过程的两个行业导致生产过剩和减产,因此,过度放牧和供应短缺近年来,为了保证长期供应,构成了对半导体行业的挑战,他们只提供它有限的时间。即使在高成本、电子组件不能正确地存储为更长一段时间简单的车身部分可以,和维护生产零部件涉及高成本的能力[3]。
2.供应链的汽车和特征半导体行业
2.1.半导体的汽车价值链设备
半导体和其之间的价值链从传统汽车工业发展,垂直集成结构非常复杂。多个合作伙伴网络。随着汽车应用只占全球半导体销售额的8%市场[4],汽车需求并不是唯一的供应链战略的决定因素半导体行业。
处理的半导体制造商生产的硅晶片,通常需要2层供应商在汽车价值链的作用。这意味着,他们的汽车供应商提供他们的产品反过来,电子行业,提供一个或是多个汽车制造商(原始设备制造商,OEM)。
半导体制造的流程步骤分为前端和后端流程。在前端、芯片制造组装、包装和测试发生在后面结束。
2.2.价值链的特点和差异汽车和半导体行业
这部分强调了具体要求由价值链。研究遵循一个烟囱似的程序分析和比较商业环境的条件汽车和半导体行业缩小的内部特征供应链战略和制造业技术。
(1)旋回性和波动性
一种独特的半导体的特征行业是高度周期性和不稳定的性质。展望未来,预计这一趋势将加剧:与快速增长的时期,市场周期短市场衰退和创新周期。
这种周期性的性质可以用这一事实来解释半导体通常集成到产品与销售时间的不到一年的时间,例如移动手机。
这非常不同于相对稳定汽车行业的情况。但即使在这里,与变异的数量和波动性增加日益动荡的亚洲市场的重要性。
两个行业的开发周期经常不一致:开始通常不与开发工作的开始在半导体组件。在未来,它是半导体技术已经预期过时的开始生产(SOP)[5]。
大胆的和简单的:这两个产业在移动不同的步伐。
(2)产品生命周期和创新的压力
半导体行业集中在技术上进步,表达其更小、更快,更便宜。因此,产品生命周期越来越短,类似于产品生命周期的本金从数据处理的客户,即制造商和电信行的业。他们的销售份额半导体市场占了42%和22%分别[6],他们符合法律放置一个新的产品在市场上每隔12到18个月,两到三年的使用寿命。
相比之下,平均车辆制造的连续生产5年,紧随其后的是服务生活十五年[5]。
(3)备件供应
不同的产品生命周期带来另一个挑战两个行业的协作:半导体行业并不准备提供备用零件在长期的基础上。创新周期短,如果一个或电信产品变得有缺陷,消费者倾向于购买后续产品包括新技术。
然而,在汽车行业,备件必须的可以在整个产品生命周期的汽车。因此,汽车行业通常需要保证半导体供应商OEM电子产品供应商硅供应商晶片生产商发展连续生产备件供应2 5年,2 - 7年部分可以提供修改的技术形式25年[7]。
这保证长期供应构成了挑战半导体行业,他们只提供它有限的时间。即使在高成本、电子组件不能正确地存储为更长一段时间简单的车身部分可以,和维护生产零部件涉及高成本的能力。
(4)质量
半导体行业拥有高度发达的质量水平。检查集成到制造过程,收益率通常在95%的谎言。这个行业,即芯片离开生产过程没有缺陷(7 - 8)。此外,对于一些客户,例如电信部门,其质量是次要的。有缺陷的组件为移动电话可以忽略或经常加分路的。
这是不同的,当车辆的质量关注,特别强调需要放置相应的安全方面。人的生命取决于车辆的正常运行,所以那辆车制造商给机械稳定性最高优先级组装的部件。
越来越多的电子控制单元汽车使组件的交互更复杂的和OEM最近实施更多严格的质量标准。
这带来了涉及资格活动时间、成本和资源,使汽车行业犹豫地改变技术。与备用零件供应,这意味着半导体制造商需要年长的制造业汽车工业技术,这导致高成本。
(5)交货期
交货时间在半导体行业10之间16周,因为芯片的制造(前端)是非常复杂的,涉及到800流程步骤[9]。
相比之下,所有的制造商在汽车天汽车行业目标完成,通过完成订单执行过程,从订单到客户交货,在十天[10]。目前,最小交货时间是两个周[11]:这只占八分之一的领先时间半导体组件。
不同的交货期和缺乏协调两个行业之间的提示制造商建立战略库存数量的内部在供应链结构。然而,由于快速创新周期,他们很快就会过时。
(6)计划展望期
反映在不同生产交货期不同计划的视野。由于较长时间,半导体行业经营长期规划视野不超过6个月[12]。
在较短的交货时间和面向消费者的需求灵活性,汽车行业在短期计划基础:大会开始前几天,根据主生产计划准备原则。因此,汽车行业取得了更高层次的适应性,即他们在短可以增加容量通知。
这是惯例,半导体供应商可靠的规划数据从他们的汽车客户只在接下来的两到三个月。所以,唯一的方法为了弥补缺乏规划可靠性建立大型股票。
零部件与维修服务的提供除了完成原材料、在制品库存、产成品的位移,物流必须完成货物的维修服务活动。仅将产成品运至客户并不意味着物流活动的完结,企业营销活动的一个部分就是向客户提供售后服务,这主要包括当产品损坏或出故障时向客户提供部件,例如,汽车经销商必须设有高级维修服务部门以向客户提供全套服务与汽车修理。向客户提供充足零部件或更换部件对维修服务活动来说是极为重要的,而且物流部门应确保哪里及何时顾客需要零部件,客户就可容易方便地买到。在工业品市场,产品可能是用于某企业的制造设备,当设备因故停止运转时对用户企业来说将是极其糟糕的,它会引起生产线暂停或彻底关闭。供应商必须对之做出迅速、及时反应并提供所需零部件
(7)制造柔性
半导体行业寻求达到最大利用生产资源的24/7生产计划[8]。高年资的标准,一个增加跨几个组织分工水平,较长时间限制上的灵活性车间。
在这方面,汽车工业是更多灵活,可以采取许多措施,如额外的变化,以应对需求的突然增加。
不同特征之间的相关性显示半导体和汽车工业在表格1中。
2.3.价值链的汽车和评估半导体行业
供应链管理的主要目标避免了牛鞭效应,作为指标供应链的低效率[13]。发生牛鞭效应的凸显了当前的潜力改善汽车工业之间的价值链:越来越多的不稳定市场和预测质量差导致日常生产过剩和减产以及过时了股票和不可能突然做出回应增加的需求。
牛鞭效应的价值链主要造成的事实半导体供应商没有长期和可见性中期需求。原因是缺乏系统集成和低容量规划相协调在价值链流程。问题是恶化的双重操作要求:一方面,信息流被延迟;另一方面只手,是传下来的一部分因此,半导体制造商的信息倾向于咨询第三方为其长期和来源中期规划。厂房及仓库地址的选择不论存储设施是自己拥有还是租借,厂房和(或)仓库地址的选择是极为重要的。将厂房或仓库设在市场附近,就可提高公司的顾客服务水平。适当位置也能够获得货物自厂房到仓库、厂房至厂房、或仓库到消费地位移过程中较低的大批量货物运费率。
通常,所提供的厂商的销售计划未来2 - 4个月不稳定。甚至发布订单修改;例如,如果客户突然吗请求更改。
2.4.汽车的价值链的弱点和半导体行业
下面的弱点之间的接口汽车和半导体产业的结果两个行业的不同特点:
●缺乏应对周期性和波动的能力
●长期供应的零部件仍不清楚
●不同的质量要求
●不同的产品和创新周期
●不同的交货期和规划视野依然存在不同
●不同级别的灵活性在商店的地板上
在分析行业和在此基础上缺点,改进的三个关键领域确认为手段来改善供应的汽车工业和半导体产品:
●加强协作
●确保直接和无畸变的信息流
●制造半导体生产更加灵活
3.模型、方法和策略协同价值链管理
本章的主要策略供应链管理领域,解决识别的弱点并提供巨大的潜力三个方面的改进。
(1)供应商管理库存(VMI)
供应商管理库存是一个连续的工具的补给计划,针对这个连续的供应货物的整个物流链零售商。VMI基本上意味着供应商接管货物或管理的一部分全面管理股票。供应商告知消费数据和销售和生产计划的客户,所以处理库存独立管理[14]。
(2)协同规划、预测和补给(CPFR)
协同规划、预测和补充方法旨在建立合作在制造商和零售商之间提高销售预测。合作伙伴致力于CPFR在联合协议,这也提出了金融和组织框架[15]。结合知识的增值网络,使规划和满足客户需求,合作伙伴定义同步点交换他们的知识。因此,此销售计划的变化从一个单独的联合活动:预测共享和偏差进行一个定义的过程。
(3)大规模定制
大规模定制的方法加入的经济体个人规模的批量生产质量满足客户的需求取决于干预在商店的地板上是必要的,区别是由硬吗和软定制[14]。一个很艰难的定制。例如,方法是模块化的工具包,它从标准化配置定制化产品,兼容的元素[15]。大众使用这个策略其模块化的横向组件系统。另一个策略是延期的产品仍然存在通用尽可能长时间,仅仅是定制的后阶段的价值链[16]。这个软信息定制的原则和支持客户的个性化产品。这个可以做,例如,半导体芯片通过软件配置。
提出的解决方法和策略不同的价值链中确定的弱点在半导体和汽车行业。
包装包装执行两项基本功能,即营销和物流。从营销意义上说,包装可作为一种促销形式和起到广告的作用。包装的尺寸、重量和包装上印制的说明吸引着顾客并传递产品信息。从物流的角度来看,包装承担着双重任务。第一在储藏和运输中包装保护产品免于受损;在选址过程中,首要考虑因素应是公司产品市场位置。顾客需要及原材料、部件、装配件位置也是值得考虑的因素,因为企业不仅关心运出运输,也必须考虑运人运输。其他较重要的、应考虑的因素包括:劳动力工资;运输的方便性;市、县、州等的税率;社会治安问题;法律要求问题;当地因素,如社会对新兴行业的态度如何;土地成本问题;其他便利设施。
第二通过减少装卸进而降低物料的装卸成本。包装可使产品储存和流动更容易。一般来说,当公司涉及到国际销售时,包装变得更为重要。销往外国的产品要走更远距离并经受更多装卸活动,以国内货物的包装形式,就不够坚固,不足以承受货物出口的严峻考验,尤其许多国家尚未实现足够的机械化装卸,装卸靠的是几乎未经培训的人力。
4.参考工具包为合作的措施价值链管理和汽车之间半导体行业
弗劳恩霍夫举行专家研讨会制造工程研究所和自动化音标是用来进行分析评估相关策略的确定弱点和必要的行动。分析导致参考工具包的措施,而不是一个多面手解决方案。
参考工具的各种措施结合创建一个特定的工具包。
VMI和CPFR专注于协作和价值链的可见性来提高响应能力旋回性和波动性。直接和照顾不失真信息流动抵消升级沿着价值链,从而避免了需求牛鞭效应。在VMI促进交流从日常运营数据,CPFR增加它协调长期预测来提高能力和投资计划。
此外,这些措施包括在参考工具箱应定制适合的需要实际的应用程序。
例如,CPFR会议半导体行业不仅应讨论市场趋势,但也为选定预测产品组和半导体技术的基础在明确定义的关键性能指标[12]。
大规模定制方法推迟,模块化和更多灵活的产品设计和战略管理客户订单解耦点可以有效地减轻不同产品寿命的影响周期和创新周期。由于后期的产品差异化的增值过程,越来越少进程内的零件,库存水平较低和计划和控制是降低。作为一个结果,制造灵活性下稳定生产条件增加,生产的复杂性计划减少。
特别是模块化策略解决备件供应的问题。标准化的架构和接口可以取代。因此,模块可以集成到现有的车辆结构而原始功能是维护。
5.评估这些措施的参考工具
在一个专家研讨会,确定的措施参考工具箱进行了评估标准的基础上利益,努力和实用性。
利益是指该策略的有效性和答案的问题:策略有助于满足实用性评估是否可用于不同的策略,产品在这两个行业都和协作模型或者如果他们实现只能在某些限制条件。第三个标准量化投入到实现测量和答案一个问题:有多少工作之前半导体公司和汽车供应商实现一个测量。
定义中的维度模型汽车之间协作的容量规划和半导体行业,研发的弗劳恩霍夫音标是用来评估的措施提到标准的参考工具不同的角度[12]。的参考模型定义过程的维度、IT系统的策略长期技术和区分容量规划和操作订单处理。每个确定的措施进行了评价参考模型和相关的维度研究结果进行了综述。
例如,CPFR或VMI主要导致容量规划流程的变化,反过来,影响企业IT系统。模块化,然而,需要重新调整企业生产策略和基本上改变半导体技术。通货处理退货处理,通常称为反向分销,是物流过程的一个重要方面。买方可能因为货物有缺陷、过时、收到未订购或未购买的货物;或由于其他原因将货物退给卖方。反向分销可比作在单一方向的路上走错了方向,因为大多数货物是朝着一个方向流动的,多数物流系统处理反向货物流动时比较吃力。在许多行业,顾客退货是为了在保修期内要求保修货物、要求更换或重新加工。
评估参考工具包措施分手分成两组:左边的措施气泡式图表提供,一个高水平的,但受益难以实现,而右边的措施图的提供一个高水平的同时受益容易实现。CPFR,举例来说,是一种有效的方法来改善价值链,可以迅速使用合理的努力,实现两个合作伙伴价值链。相比之下,模块化如图所示以上为最小化提供了巨大的潜力库存,减少交货期和解决部分问题,但它需要很高的合作许多公司参与的价值链引入一个行业标准达到最大效率。
6.总结
不同的常常矛盾的行业特点以及缺乏同步把价值链之间的管理半导体和汽车工业复杂的任务。这个任务由一个策略,但无法解决需要结合的若干措施。提出了参考工具包创建的措施在现有的弱点和透明度个人改进措施的有效性。单独的措施和策略评估为了利益,工作努力和实用性。
参考工具包为合作的措施价值链管理和汽车之间半导体行业旨在更有效生产能力和更好的协调应对市场波动的价值链。
参考文献
[1] Proff, H., 2010. Die Automobilindustrie zum Frühjahr[J], 2010.
[2] Riemenschneider, F, 2010. Chip-Knappheit führt zu.Produktionsstop bei .
http://www.elektroniknet.de/bauelemente/news/article/28381/0/C.
[3] Zapp, M, Forster, C. 2011. Reduzierung,ATZelektronik 6[J], p. 40.
[4] Statista, 2012. Anteil von Automotive Anwendungent[J] ,2008.
[5] TechnischewirtschaftlicheLösungskonzepteAutomobilindustrie[P], 2009.
[6] German Electrical and Electronic Manufacturers' Association[P],2011.
[7] Stoppok[C], 2002. AutomobilindustrieFrankfurt am Main, 2002.
[8] Forster, Zapp [M].2011. Cross-Company .September 2011.
[9] Huethorst, K,Sultans of Swing: The Persistance of theBullwhip, 2011.
[10] Rinza, T, Boppert [J], 2007. Logistik im Zeichen zunehmender
[11] Schumacher,[U], 2002. Universität Klagenfurt - Reihe BWL aktuell 8.
[12] Zapp, M, Forster[C], Verl, A, Bauernhansl, T., 2012.
[13]Unternehmens und unternehmensübergreifend 6. bearb. u. erw, 2011.
[14] Werner, H., 2008. Supply Chain Management, Gundlagen[C], Verl, A,
Strategien,Wiesbaden:Betriebswirtschaftlicher Verlag Dr. Th. Gabler.
[15] Danese, P., 2007. Designing CPFR collaborations: insights from the
seven case studies, International Journal of Operations &Production
[16] Cheng, TCE, Li[J], Wan, CLJ, Wang, S. New York.2010.
[17] Forster, C., Zapp[M]., 2012. Im Spannungsfeld der Absatzmärkte,
Halbleiterbauteile in der Automobilproduktion, Journal of IT &
Production 2, p. 28.
Available online at 2212-8271 2013 The Authors.Published by Elsevier B.V.Selection and peer review under responsibility of Professor Roberto Tetidoi:10.1016/j.procir.2013.09.054 Procedia CIRP 12 (2013)312 317 ScienceDirect8th CIRP Conference on Intelligent Computation in Manufacturing Engineering Collaborative value chain management between automotive and semiconductor industry:an analysis of differences and improvement measures C.Forstera*,M.Zappa,J.Aelkerb,E.Westkmpera,T.Bauernhansla aFraunhofer Institute for Manufacturing Engineering and Automation IPA,Stuttgart,Germany bUniversity of Stuttgart,Institute of Industrial Manufacturing and Management IFF,Stuttgart,Germany*Corresponding author.Tel.:+49-711-970-1912;fax:+49-711-970-97-1927.E-mail address:christoph.forsteripa.fraunhofer.de.Abstract The work presented in this paper is motivated by the differing supply chain characteristics of the automotive and the semiconductor industry.This paper will systematically identify and assess the weak points at the interfaces between these two industries.Based on this analysis,a reference model is presented intended as a toolkit of measures for collaborative value chain management in the automotive and semiconductor industry.The reference model defines a set of specific optimization measures relating to the categories of strategy,processes,technology and IT systems,designed to ensure a better alignment of planning and control processes between automotive and semiconductor industry.The model and the associated measures aim at a more efficient coordination of production capacity and a better response to market fluctuations between automotive and semiconductor industry.Thus,a more stable supply and a significant reduction of logistics costs in the entire value chain can be achieved.2012 The Authors.Published by Elsevier B.V.Selection and/or peer-review under responsibility of Professor Roberto Teti.Keywords:Value Chain Management;Supply Chain Management;Collaboration.1.Introduction Innovation and an increase in the value of cars are mainly due to electronics and,in particular,to semiconductor components.From airbags to navigation systems and automotive Ethernet:Microprocessors,microchips and analog components form the basis for a wide variety of vehicle parts.The share of electronics in the value-added in cars is already high and will rise over the next years to more than 60%especially since electrification is on the progress,from electric drive systems to pure electric cars(e-mobility),including the trend to networking automobiles with their environment 1.So,the successful collaboration of the automotive industry with its immediate suppliers for electronic parts and their suppliers in the semiconductor industry is of crucial importance.In March 2011,when the earthquake in Japan brought the production lines to a halt,it became evident how interconnected the microelectronics industry is.The impact extended to the material,component and system suppliers in the value chain and directly affected the automotive sector:A shortage in chip manufacturing spilled over to the supplier Hitachi and disrupted the production at four of five Japanese Nissan plants 2.Irrespective of the disaster in Japan,the supply of the automotive industry with semiconductor products proves difficult.As market becoming more and more volatile,differing manufacturing lead times,innovation and product life cycles,as well as the uncoordinated planning and control processes of both industries have led to overproduction and underproduction and thus to overstocking and supply shortages in recent years 3.2013 The Authors.Published by Elsevier B.V.Selection and peer review under responsibility of Professor Roberto Teti313 C.Forster et al./Procedia CIRP 12 (2013)312 317 2.Supply chain characteristics of the automotive andthe semiconductor industry2.1.The automotive value chain for semiconductor devicesThe value chain between semiconductorandautomotive industry has developed from a traditional,vertically integrated structure to a highly complex network of multiple partners.As automotive applicationsonly account for 8%of sales in the global semiconductor market 4,the automotive requirements are not the onlyfactors determining the supply chain strategy of thesemiconductor industry.The semiconductor manufacturers,which process theraw silicon wafers,usually take the role of 2ndtiersuppliers in the automotive value chain.That means,they deliver their products to automotive suppliers in theelectronics sector,which,in turn,supply one or severalautomotive manufacturers(Original Equipment Manufacturer,n nOEM),see Fig 1.Fig.1.Automotive semiconductor value chainThe process steps in semiconductor manufacturing are divided inton nfront-end and back-end processes.Atthe front end,the chips are manufactured,whileassembly,packaging and testing takes place at the backend.2.2.Value chain characteristics and differences of the automotive and the semiconductor industryThis section highlights the specific requirements to bemet by the value chain.The study follows a funnel-likeprocedure of firstanalyzingand comparingtheconditions of thebusiness environmentin theautomotive and semiconductor industry andthennarrowing down theinternal characteristicsof an supply chain strategy and manufacturingtechnology.Cyclicity and volatilityA distinctive characteristic of thesemiconductor industry is its highly cyclical and volatile nature.Looking to the future,this trend is expected to intensify:ever shorter market cycles with rapid growth periods,market slumps and innovation cycles.This cyclical nature can be explained by the fact thatsemiconductors are most often integrated into productswith sales periods of less than a year,for instance mobile phones.This differs very much from the relatively stablesituation in the automotive industry.But even here,volatility increases with the number of variants and the growing significance of the volatile Asian markets.The development cycles of the two industries are often out of line:The start usually not aligned with the start of development work on a semiconductor component.In the future,it isexpected that the semiconductor technology is already outdated at start of production(SOP)5.To put it bold and simple:The two industries move at different paces.Product life cycles and pressure to innovateThe semiconductor industry focuses on technological progress,as expressed in itssmaller,faster,cheaper.So,the product life cycles are short andanalogous to the product life cycles of their principali icustomers,i.e.manufacturers from the data processingand telecommunications sector.Their share of sales inthe semiconductor market accounts for 42%and 22%respectively 6 and in line withlaw they place a new product on the market every twelve to 18months,with a service life of two to three years.By contrast,an average vehicle is manufactured inseries production for five years,followed by a servicelife of up to fifteen years 5,see Fig 2.Fig.2.Differing Product Life CyclesSpare parts supplyThe differing product life cycles pose another challengefor the collaboration of the two industries:Thesemiconductor industry is not prepared to provide spareparts on a long-term basis.The innovation cycles areshortand if an IT or telecommunication product becomes defective,the end consumers tend to buy afollow-on product including new technology.In the automotive sector,however,spare parts mustbe available throughout the product life cycle of a car.So,the automotive industry often requires a guarantee Semi-conductorSupplierOEMElec-tronicsSupplierSiliconSupplierWaferProducerDevelop-mentSerial ProductionSpare Part Supply2-5 Years2-7 Years15 Years22 YearsAutomobileIndustryDevelop-mentPro-duction9-12 Months 6-18 MonthsSemiconductor ChipforComputer Industry314 C.Forster et al./Procedia CIRP 12 (2013)312 317 that parts can be supplied in unmodified technical form for up to 25 years 7.This guarantee for long-term supply poses a challenge for the semiconductor industry and they only offer it for a limited time.Even at high costs,electronic components cannot be properly stored for a longer period of time as simple car body parts can be;and maintaining production capacity for spare parts involves high costs.Quality The semiconductor industry boasts a highly advanced level of quality.As inspections are integrated into the manufacturing process,the yield usually lies at 95%in the industry,i.e.the share of chips that leaves the manufacturing process without defects 7-8.Moreover,for some customers,e.g.from the telecommunications sector,quality is of secondary importance.A few defective components for mobile phones can be ignored or routinely by-passed.This is different when the quality of vehicles is concerned,where special emphasis needs to be placed on the corresponding aspect of safety.Human lives depend on the proper functioning of vehicles,so that car makers give highest priority to the mechanical stability of the assembled parts.The increasing number of electronic control units in a vehicle makes the interaction of the components ever more complex and OEMs have recently imposed more stringent quality standards.This brings about that qualification activities involve much time,costs and resources,making the automotive industry hesitate to change technology.As with spare parts supply,this means that the semiconductor manufacturers need to keep older manufacturing technologies for the automotive industry,which result in high costs.Lead times Lead time in the semiconductor industry is between ten and sixteen weeks,because the manufacture of chips(front end)is very complex and involves up to 800 process steps 9.By contrast,all manufacturers in the automotive industry aim at accomplishing the-day car,which passes through the complete order fulfillment process,from order placement to customer delivery,within ten days 10.Currently,the minimum lead time is two weeks 11:this accounts for only one eighth of the lead time for semiconductor components.The different lead times and the lack of coordination between the two industries prompt the manufacturers to build up strategic inventories at a number of internal points in the supply chain structure.However,due to the fast innovation cycle,they quickly become obsolete.Planning horizons The different production lead times are reflected in the differing planning horizons.Due to the long lead times,the semiconductor industry operates on longer planning horizons of up to six months 12.With shorter lead times and customer-driven demand for flexibility,the automotive industry plans on a short-term basis:A few days before assembly starts,the master production schedule is prepared according to the just-in-sequence principle.As a consequence,the automotive sector has achieved a higher level of adaptability,i.e.they can increase capacity at short notice.It is usual practice that semiconductor suppliers get reliable planning data from their automotive customers only for the next two to three months.So,the only way to compensate for the lack of planning reliability is to build up large stocks.Manufacturing flexibility The semiconductor industry seeks to achieve maximum utilization of its production resources with a 24/7 production schedule 8.High qualification standards,an increase in labor division across several organizational levels,and long lead times restrict the flexibility on the shop floor.In this regard,the automotive industry is more flexible and can resort to a number of measures,such as extra shifts,to respond to a sudden increase in demand.The correlation between the different characteristics of semiconductor and automotive industry is displayed in Table 1.Table 1.Comparison of different industry characteristics 2.3.Assessment of the value chain of the automotive and semiconductor industry A primary goal of supply chain management is to avoid the bullwhip effect,which serves as an indicator of inefficiencies in the supply chain 13.The occurrence of the bullwhip effect highlights the current potential for improvement in the value chain between semiconductor Characteristics Semiconductor industry Automotive industry Cyclicity and volatility Very high Moderate Product life cycles and innovation cycles 12-18 months 22 years Supply of spare parts Short 25 years Quality standard Moderate Very high Lead times 10-16 weeks 2 weeks Manufacturing flexibility Very low High 315 C.Forster et al./Procedia CIRP 12 (2013)312 317 and automotive industry:more and more volatile markets and poor forecasting quality result in daily overproduction and underproduction as well as obsolete stocks and make it impossible to respond to a sudden increase in demand.The bullwhip effect in the automotive-semiconductor value chain is mainly caused by the fact that semiconductor suppliers have no visibility into long-and medium-term demand.The reasons are a lack of system integration and poorly coordinated capacity planning processes within the value chain.The problem is worsened by a double manipulation of demands:On the one hand,the information flow is delayed;on the other hand,OEMs pass down only part of the given information so that the semiconductor manufacturers tend to consult third-party sources for their long-and medium-term planning.Often,the provided sales plans from the OEMs for the next 2-4 months are not stable.Even released orders are modified;for instance,if the customer suddenly requests changes.2.4.Weak points of the value chain of the automotive and semiconductor industry The following weak points at the interface between automotive and semiconductor industry result from the different characteristics of the two industries:Lack of ability to respond to cyclicity and volatility Long-term supply of spare parts remains unclear Differing quality requirements Differing product and innovation cycles Differing lead times and planning horizons remain unsynchronized Different levels of flexibility on the shop floor After analyzing both industries and based on the above weak points,three key areas for improvement can be identified as levers to improve the supply of the automotive industry with semiconductor products:Strengthening of collaboration Ensuring direct and undistorted information flow Making semiconductor production more flexible 3.Models,approaches and strategies for collaborative value chain management This chapter presents the main strategies from the field of supply chain management that address the identified weak points and offer great potential for the three areas of improvement.Vendor Managed Inventory(VMI)Vendor Managed Inventory is a tool for Continuous Replenishment Planning,aiming at the continuous supply of goods throughout the logistic chain from manufacturer to retailer.VMI basically means that suppliers take over part of the management of goods or fully manage stocks.The supplier gets informed about the consumption figures and the sales and production planning of the customer and so handles inventory management independently 14.Collaborative Planning,Forecasting and Replenishment(CPFR)The Collaborative Planning,Forecasting and Replenishment approach aims to build collaboration between manufacturers and retailers to improve the sales forecasts.The partners commit themselves to CPFR in a joint agreement,which also sets out the financial and organizational framework 15.To combine the knowledge in the value-added network and enable planning and fulfillment of customer demand,the partners define synchronization points to exchange their knowledge.So,sales planning changes from a separate to a joint activity:Forecasts are shared and deviations are discussed in a defined process.Mass Customization The Mass Customization approach joins the economies of scale of mass production Masswith the individual satisfaction of customer needs Depending on whether interventions on the shop floor are necessary or not,a distinction is made between hard and soft customization 14.One hard customization method is,for instance,the modular toolkit,which configures customized products from standardized,compatible elements.Volkswagen uses this strategy in its modular transverse component system.Another strategy is postponement where the product remains generic as long as possible and is only customized at the later stages of the value chain 16.Self-customization is a principle of soft customization and enables the customer to personalize the product.This can be done,for instance,with semiconductor chips by means of software configuration.The presented approaches and strategies address different weak points identified in the value chain between semiconductor and automotive industry.4.Reference toolkit of measures for collaborative value chain management between automotive and semiconductor industry At an expert workshop held at the Fraunhofer Institute for Manufacturing Engineering and Automation IPA,a fit/gap analysis was used to evaluate the relevance of the strategies for the identified weak points and the necessary actions.The analysis resulted in a Reference Toolkit of Measures instead of a generalist solution,see Table 2.316 C.Forster et al./Procedia CIRP 12 (2013)312 317 The various measures of the reference toolkit can becombined to create a case-specific toolkit.Table 2.Reference toolkit of measuresMeasuresConflictingfieldsVMICPFRPostpone-mentModular-izationSelf-f fcustomi-zationCyclicity and volatilityDiffering product life and innovationcyclesDiffering demandson spare partssupplyDiffering quality requirementsDiffering lead times and planninghorizonsuStrong impactuMedium impactuNo impacutBoth VMI and CPFR focus on collaboration andvisibility into then nvalue chain to increase responsiveness to cyclicity and volatility.Taking care of direct andundistorted information flows counteracts escalations in demand along the value chain and thus avoids thebullwhip effect.While VMI promotes the exchange of data from daily operations,CPFR adds to it the coordination of long-term forecasts to improve capacityand investment planning.Furthermore,the measures included in the presentedreference toolkit shall be customized to suit the needs of practical application.For example,a CPFR meeting inthe semiconductor industry should therefore not only discuss market trends,but also forecasts for selectedproduct groups and semiconductor technologies basedon well-defined key performance indicators 12.The Mass Customization approachespostponement,modularization and self-f f customizationwith their moreflexible product design and strategic management of thecustomer order decoupling point make it possible to efficiently mitigate the effect of the differing product life cycles and innovation cycles.Due to late product differentiation in the value-added process,there are lessin-process parts,the stock levels are lower and theplanning and control effort is reduced.As a result,manufacturing flexibility under stable manufacturing conditions is increased and the complexity of production planning reduced.Especiallymodularization strategiesaddresstheproblem of spare parts supply.Standardized architecture and interfaces make it possible to replace discontinuedmodules.Thus,modules can be integrated into theexisting vehicle architecture while original functionalityis maintained.5.Evaluating the measures of the reference toolkitAt an expert workshop,the identified measures of thereference toolkit were evaluated based on the criteria of benefit,effortandpracticability.The results arepresented in the bubble chart of Fig.3.The benefit refers to the effectiveness of the strategy and answers the question:thestrategy help to meet thePracticabilityassesses whether a strategy can be used for the differentproducts and the collaboration models in both industries or if their implementation is only possible under certain,restricted conditions.The third criterion quantifies theeffort invested in implementing a measure and answers the question
收藏