卡尔曼滤波简介及其算法实现代码

上传人:zou****hua 文档编号:217281070 上传时间:2023-06-11 格式:DOCX 页数:14 大小:110.77KB
收藏 版权申诉 举报 下载
卡尔曼滤波简介及其算法实现代码_第1页
第1页 / 共14页
卡尔曼滤波简介及其算法实现代码_第2页
第2页 / 共14页
卡尔曼滤波简介及其算法实现代码_第3页
第3页 / 共14页
资源描述:

《卡尔曼滤波简介及其算法实现代码》由会员分享,可在线阅读,更多相关《卡尔曼滤波简介及其算法实现代码(14页珍藏版)》请在装配图网上搜索。

1、卡尔曼滤波简介及其算法实现代码卡尔曼滤波算法实现代码(C, C+ +分别实现)卡尔曼滤波器简介 近来发现有些问题很多人都很感兴趣。所以在这里希望能尽自己能力跟大家讨论一些力所 能及的算法。现在先讨论一下卡尔曼滤波器,如果时间和能力允许,我还希望能够写写其他的算 法,例如遗传算法,傅立叶变换,数字滤波,神经网络,图像处理等等。 因为这里不能写复杂的数学公式,所以也只能形象的描述。希望如果哪位是这方面的专家,欢迎 讨论更正。卡尔曼滤波器-Kalman Filter1什么是卡尔曼滤波器(What is the Kalman Filter?)在学习卡尔曼滤波器之前,首先看看为什么叫“卡尔曼”。跟其他著

2、名的理论(例如傅立叶变换, 泰勒级数等等)一样,卡尔曼也是一个人的名字,而跟他们不同的是,他是个现代人!卡尔曼全名Rudolf Emil Kalman,匈牙利数学家,1930年出生于匈牙利首都布达佩斯。1953,1954年于麻省理工学院分别获得电机工程学士及硕士学位。1957年于哥伦比亚大学获得博士学 位。我们现在要学习的卡尔曼滤波器,正是源于他的博士论文和1960年发表的论文A New Approach to Linear Filtering and Prediction Problems (线性滤波与预测问题的新方法) 。 如果对这编论文有兴趣,可以到这里的地址下载:http:/www.c

3、s.unc.edu/welch/media/pdf/Kalman1960.pdf。简单来说,卡尔曼滤波器是一个“optimal recursive data processing algorithm (最优化自 回归数据处理算法)”。对于解决很大部分的问题,他是最优,效率最高甚至是最有用的。他的 广泛应用已经超过30年,包括机器人导航,控制,传感器数据融合甚至在军事方面的雷达系统 以及导弹追踪等等。近年来更被应用于计算机图像处理,例如头脸识别,图像分割,图像边缘检 测等等。2卡尔曼滤波器的介绍(Introduction to the Kalman Filter)为了可以更加容易的理解卡尔曼滤波

4、器,这里会应用形象的描述方法来讲解,而不是像大多数参 考书那样罗列一大堆的数学公式和数学符号。但是,他的5条公式是其核心内容。结合现代的计 算机,其实卡尔曼的程序相当的简单,只要你理解了他的那5条公式。在介绍他的5条公式之前,先让我们来根据下面的例子一步一步的探索。假设我们要研究的对象是一个房间的温度。根据你的经验判断,这个房间的温度是恒定的,也就 是下一分钟的温度等于现在这一分钟的温度(假设我们用一分钟来做时间单位)。假设你对你的 经验不是100%的相信,可能会有上下偏差几度。我们把这些偏差看成是高斯白噪声(White Gaussian Noise),也就是这些偏差跟前后时间是没有关系的而且

5、符合高斯分配(Gaussian Distribution)。另外,我们在房间里放一个温度计,但是这个温度计也不准确的,测量值会比 实际值偏差。我们也把这些偏差看成是高斯白噪声。好了,现在对于某一分钟我们有两个有关于该房间的温度值:你根据经验的预测值(系统的预测 值)和温度计的值(测量值)。下面我们要用这两个值结合他们各自的噪声来估算出房间的实际 温度值。假如我们要估算k时刻的是实际温度值。首先你要根据k-1时刻的温度值,来预测k时刻的温度。 因为你相信温度是恒定的,所以你会得到k时刻的温度预测值是跟k-1时刻一样的,假设是23 度,同时该值的高斯噪声的偏差是5度(5是这样得到的:如果k-1时刻

6、估算出的最优温度值的 偏差是3,你对自己预测的不确定度是4度,他们平方相加再开方,就是5)。然后,你从温度 计那里得到了 k时刻的温度值,假设是25度,同时该值的偏差是4度。由于我们用于估算k时刻的实际温度有两个温度值,分别是23度和25度。究竟实际温度是多少 呢?相信自己还是相信温度计呢?究竟相信谁多一点,我们可以用他们的covariance来判断。 因为Kg2=52/(52+42),所以Kg=0.78,我们可以估算出k时刻的实际温度值是:23+0.78* (25-23)=24.56度。可以看出,因为温度计的covariance比较小(比较相信温度计),所以估 算出的最优温度值偏向温度计的值

7、。现在我们已经得到k时刻的最优温度值了,下一步就是要进入k+1时刻,进行新的最优估算。到 现在为止,好像还没看到什么自回归的东西出现。对了,在进入k+1时刻之前,我们还要算出k 时刻那个最优值(24.56度)的偏差。算法如下:(1-Kg)*52)0.5=2.35o这里的5就是上面 的k时刻你预测的那个23度温度值的偏差,得出的2.35就是进入k+1时刻以后k时刻估算出的 最优温度值的偏差(对应于上面的3)o就是这样,卡尔曼滤波器就不断的把covariance递归,从而估算出最优的温度值。他运行的很 快,而且它只保留了上一时刻的covariance。上面的Kg,就是卡尔曼增益(Kalman Ga

8、in)。他 可以随不同的时刻而改变他自己的值,是不是很神奇!下面就要言归正传,讨论真正工程系统上的卡尔曼。3卡尔曼滤波器算法(The Kalman Filter Algorithm)在这一部分,我们就来描述源于Dr Kalman的卡尔曼滤波器。下面的描述,会涉及一些基本的 概念知识,包括概率(Probability),随即变量(Random Variable),高斯或正态分配(Gaussian Distribution )还有State-space Model等等。但对于卡尔曼滤波器的详细证明,这里不能一一 描述。首先,我们先要引入一个离散控制过程的系统。该系统可用一个线性随机微分方程(Lin

9、ear St ochas tic Difference equa tion) 来描述:X(k)=A X(k-1)+B U(k)+W(k)再加上系统的测量值:Z(k)=H X(k)+V(k)上两式子中,x(k)是k时刻的系统状态,U(k)是k时刻对系统的控制量。A和B是系统参数,对 于多模型系统,他们为矩阵。Z(k)是k时刻的测量值,H是测量系统的参数,对于多测量系统, H为矩阵。W(k)和V(k)分别表示过程和测量的噪声。他们被假设成高斯白噪声(White Gaussian Noise),他们的covariance分别是Q, R (这里我们假设他们不随系统状态变化而变化)。对于满足上面的条件(

10、线性随机微分系统,过程和测量都是高斯白噪声),卡尔曼滤波器是最优的 信息处理器。下面我们来用他们结合他们的covariances来估算系统的最优化输出(类似上一 节那个温度的例子)。首先我们要利用系统的过程模型,来预测下一状态的系统。假设现在的系统状态是k,根据系统 的模型,可以基于系统的上一状态而预测出现在状态:x(k|k-1)=A x(k-1|k-1)+B U(k) . (1)式(1)中,X(k|k-1)是利用上一状态预测的结果,X(k-1|k-1)是上一状态最优的结果,U(k)为现 在状态的控制量,如果没有控制量,它可以为0。到现在为止,我们的系统结果已经更新了,可是,对应于X(k|k-

11、1)的covariance还没更新。我 们用P表示covariance:P(k|k-1)=A P(k-1|k-1) A+Q (2)式(2)中,P(k|k-1)是 X(k|k-1)对应的 covariance, P(kT|k-1)是 X(kT|k-1)对应的 covariance,A表示A的转置矩阵,Q是系统过程的covariance。式子1, 2就是卡尔曼滤波器 5个公式当中的前两个,也就是对系统的预测。现在我们有了现在状态的预测结果,然后我们再收集现在状态的测量值。结合预测值和测量值, 我们可以得到现在状态(k)的最优化估算值X(k|k):X(k|k)= X(k|k-1)+Kg(k) (Z(

12、k)-H X(k|k-1) (3) 其中Kg为卡尔曼增益(Kalman Gain):Kg(k)= P(k|k-1) H / (H P(k|k-1) H + R) (4) 到现在为止,我们已经得到了 k状态下最优的估算值X(k|k)。但是为了要另卡尔曼滤波器不断 的运行下去直到系统过程结束,我们还要更新k状态下X(k|k)的covariance: P(k|k)=(I-Kg(k) H)P(k|k-1) (5)其中I为1的矩阵,对于单模型单测量,1=1。当系统进入k+1状态时,P(k|k)就是式子(2)的 P(kT|k-1)。这样,算法就可以自回归的运算下去。卡尔曼滤波器的原理基本描述了,式子1,2

13、,3,4和5就是他的5 个基本公式。根据这5个公 式,可以很容易的实现计算机的程序。下面,我会用程序举一个实际运行的例子。4简单例子(A Simple Example)这里我们结合第二第三节,举一个非常简单的例子来说明卡尔曼滤波器的工作过程。所举的例子 是进一步描述第二节的例子,而且还会配以程序模拟结果。根据第二节的描述,把房间看成一个系统,然后对这个系统建模。当然,我们见的模型不需要非 常地精确。我们所知道的这个房间的温度是跟前一时刻的温度相同的,所以A=1。没有控制量, 所以U(k)=0。因此得出:X(k|k-1)=X(k-1|k-1) . (6)式子(2)可以改成:P(k|k-1)=P(

14、k-1|k-1) +Q (7)因为测量的值是温度计的,跟温度直接对应,所以H=1。式子3, 4, 5可以改成以下:X(k|k)= X(k|k-1)+Kg(k) (Z(k)-X(k|k-1) (8)Kg(k)= P(k|k-1) / (P(k|k-1) + R) (9)P(k|k)=(1-Kg(k)P(k|k-1) (10)现在我们模拟一组测量值作为输入。假设房间的真实温度为25度,我模拟了200个测量值,这 些测量值的平均值为25度,但是加入了标准偏差为几度的高斯白噪声(在图中为蓝线)。为了令卡尔曼滤波器开始工作,我们需要告诉卡尔曼两个零时刻的初始值,是X(0|0)和P(0|0)。 他们的值不

15、用太在意,随便给一个就可以了,因为随着卡尔曼的工作,X会逐渐的收敛。但是对 于P, 般不要取0,因为这样可能会令卡尔曼完全相信你给定的X(0|0)是系统最优的,从而使 算法不能收敛。我选了 X(0|0)=1度,P(0|0)=10。该系统的真实温度为25度,图中用黑线表示。图中红线是卡尔曼滤波器输出的最优化结果(该 结果在算法中设置了 Q=le-6, R=le-1)。最佳线性滤波理论起源于40年代美国科学家Wiener和前苏联科学家K oMorOp的研 究工作,后人统称为维纳滤波理论。从理论上说,维纳滤波的最大缺点是必须用到无限过去的数 据,不适用于实时处理。为了克服这一缺点, 60 年代 Ka

16、lman 把状态空间模型引入滤波理论, 并导出了一套递推估计算法,后人称之为卡尔曼滤波理论。卡尔曼滤波是以最小均方误差为估计 的最佳准则,来寻求一套递推估计的算法,其基本思想是:采用信号与噪声的状态空间模型,利 用前一时刻地估计值和现时刻的观测值来更新对状态变量的估计,求出现时刻的估计值。它适合 于实时处理和计算机运算。现设线性时变系统的离散状态防城和观测方程为:X(k) = F(k,k-1 ) X(k-1)+T(k,k- 1)U (k1)Y(k) = H(k) X(k)+N(k)其中X(k)和Y(k)分别是k时刻的状态矢量和观测矢量F(k,k-1)为状态转移矩阵U(k)为k时刻动态噪声T(k

17、,k-1)为系统控制矩阵H(k)为k时刻观测矩阵N(k)为k时刻观测噪声则卡尔曼滤波的算法流程为:预估计 X(k)l F(k,k1) X(k-1)1. 计算预估计协方差矩阵C(k厂二F(k,kl)XC(k)XF(k,kl)+T(k,kl)XQ(k)XT(k,kl)Q(k) = U(k)XU(k)2. 计算卡尔曼增益矩阵K(k) = C(k厂XH(k)XH(k)XC(k厂XH(k)+R(k)厂(一1)R(k) = N(k)XN(k)3. 更新估计X(k)=X(k厂+K(k)XY(k) H(k)XX(k厂4. 计算更新后估计协防差矩阵C(k) =IK(k)XH(k)XC(k厂XIK(k)XH(k)

18、+K(k)XR(k)XK(k)5. X(k+1) = X(k)C(k+1) = C(k)重复以上步骤Kalman Filter科技 2010-05-29 21:13:49 阅读 90 评论 0 字号:大中小订阅Kalman Filter是一个高效的递归滤波器,它可以实现从一系列的噪声测量中,估计动态系 统的状态。广泛应用于包含Radar、计算机视觉在内的等工程应用领域,在控制理论和控制 系统工程中也是一个非常重要的课题。连同线性均方规划,卡尔曼滤波器可以用于解决 LQG(Linear-quadratic-Gaussian control)问题。卡尔曼滤波器,线性均方归化及线性均方高斯 控制器,

19、是大部分控制领域基础难题的主要解决途径。目录 1应用实例 2命名和发展历史 3基本动态系统模型 4卡尔曼滤波器4.1 预测4.2 更新4.3 不变量 5实例 6推导6.1 后验估计协方差矩阵推导6.2 Kalman 增益推导6.3 后验误差协方差矩阵简化 7 信息滤波 8 非线性滤波器8.1 扩展 Kalman 滤波8.2 Unscented Kalman filter 9 Kalman-Bucy 滤波 10 应用 11 参见 12 参考文献 13 外部链接 1 应用实例 一个简单的应用是估计物体的位置和速度;简要描述如下:假设我们可以获取一个物体的包 含噪声的一系列位置观测数据,我们可以获得

20、此物体的精确速度和位置连续更新信息。 例如,对于雷达来说,我们关心的是跟踪目标,而目标的位置,速度,加速度的测量值是时 刻含有误差的,卡尔曼滤波器利用目标的动态信息,去掉噪声影响,获取目标此刻好的位置 估计(滤波),将来位置估计(预测),也可以是过去位置估计的(插值或平滑) 2 命名和发展历史这个滤波器以它的发明者Rudolf.E.Kalman而命名,但是在Kanlman之前,Thorvald Nicolai Thiele 和 Peter Swerling 已经提出了类似的算法。 Stanley Schmidt 首次实现了 Kalman 滤波 器。在一次对NASA Ames Research

21、Center访问中,卡尔曼发现他的方法对于解决阿波罗计 划的轨迹预测很有用,后来阿波罗飞船导航 电脑就使用了这种滤波器。这个滤波器可以追 溯到 Swerling(1958),Kalman(1960),Kalman 和 Bucy(1961)发表的论文。这个滤波器有时叫做Stratonovich-Kalman-Bucy滤波器。因为更为一般的非线性滤波器最初 由Ruslan L.Stratonovich发明,而Stratonovich-Kalman-Bucy滤波器只是非线性滤波器的一个 特例。事实上,1960年夏季,Kalman和Stratonovich在一个Moscow召开的会议中相遇,而作为非线

22、性特例的线性滤波方程,早已经由Stratonovich在此以前发表了。在控制领域,Kalman滤波被称为线性二次型估计,目前,卡尔曼滤波已经有很多不同的实现, 有施密特扩展滤波器、信息滤波器以及一系列的Bierman和Thornton发明的平方根滤波器 等,而卡尔曼最初提出的形式现在称为简单卡尔曼滤波器。也许最常见的卡尔曼滤波器应用 是锁相环,它在收音机、计算机和几乎全部视频或通讯设备中广泛存在。 3 基本动态系统模型Kalman滤波基于时域描述的线性动态系统,它的模型是Markov Chain,而Markov Chain建 立在一个被高斯噪声干扰的线性算子之上。系统的状态可以用一个元素为实数

23、的向量表示。 随着离散时间的增加,这个线性算子就会作用到当前状态之上,产生一个新的状态,并且会 带入一定的噪声,同时一些已知的控制信息也会加入。同时另外一个受噪声干扰的线性算子 将产生这些隐含状态的可见输出。Kalman滤波可以被看作为类似隐马尔科夫模型,它们的 显著不同点在于:隐状态变量的取值空间是一个连续的空间,而离散状态空间则不是;另为, 隐马尔科夫模型可以描述下一个状态的一个任意分布,这也与应用于Kalman滤波器中的高 斯噪声模型相反。Kalman滤波器方程和隐马尔科夫方程之间有很大的二重性,关于Kalman 滤波方程和隐马尔科夫方程之间二重性参看Roweis and Ghahram

24、ani(1999)4。为了从一系列的噪声观测中,应用Kalman滤波估计观测过程的内部状态。我们必须把这个 过程在Kalman滤波器的框架下建立模型,这就意味着,对于 每一步k我们要定义矩阵理、 Q& 、只丘、吕农如下:Kalman Filter假设k时刻的真实状态是从k-1时刻演化而来,符合下式 兀:=-尸吗_1 + $肌+叫 这里理是作用在前一状态的状态转移模型(状态转移矩阵)耳是作用在控制向量上的控制输入模型(输入输出矩阵) 是过程噪声,假设是均值为o的白噪声,协方差为贝y:班皿W) 在k时刻,假设真实状态琨 的观测,?农满足如下公式:比=尽心+吃其中 丹丘是观测模型(观测矩阵),它把真

25、实状态映射到观测空间,叫是观测噪声,假设它 是均值是0,方差是尺尺的高斯白噪声:叫时兔)Kalman Filter基本动态系统模型如图(1)所示,圆圈代表向量,方块代表矩阵,星号代表高斯 噪声,其协方差在右下方标出。初始状态以及每一时刻的噪声向量x0, w1, ., wk, v1 . vk都为认为是互相独立的。实际 中,真实世界中动态系统并不是严格的符合此模型。但是Kalman模型是设计在噪声过程工 作的,一个近似的符合已经可以使这个滤波器非常有用了,更多复杂模型关于Kalman Filter 模型的变种,将在下述中讨论:rnfltbijff.blog JGSjsflinfli图4 卡尔曼滤波

26、器Kalman Filter是一个递归的估计,即只要获知上一时刻的状态估计和当前状态的观测就可 以计算出当前状态的估计,不同于其他的估计技术,Kalman滤波器不需要观测或/和估计的 历史记录,Kalman Filter是一个纯粹的时域滤波器,而不像低通滤波器等频域滤波器那样, 需要在频域中设计,然后转换到时域中应用。下面,耳祀代表已知从m到n-1包括m时刻的观测在n时刻的估计值卡尔曼滤波器的状态由以下两个变量表示:咖&已知k时刻以前时刻观测值,k时刻的状态估计值弓E误差协方差矩阵,度量状态估计的精度程度Kalman滤波包括两个阶段:预测和更新;在估计阶段,滤波器应用上一状态的估计做出对 当前

27、状态的估计。在更新阶段,滤波器利用在当前状态的观测值优化预测阶段的预测值,以 获的一个更精确的当前状态的估计。4.1 预测 状态预测:_ 柿l1 = 毘/卜联一 1十爲,1&A-1估计协方差预测:场卜】=理坨一1|卜用 +必一14.2 更新新息或测量余量_九二丹禹加1新息协方差风=仏Pgx; +坨Kalman增益心二汕验瓦状态估计更新状态协方差更新41使用上述公式计算几k仅在最优卡尔曼增益的时候有效。使用其他增益公式要复杂一些,看见推导4.3 不变量如果模型准确,毛0和对口值将准确反映最初状态的分布,那么下面所有不变量保持不变,所有估计的误差均值为0:丑仇-%)二思氐-殆加二0 这里瑞表示*的

28、期望,而协方差矩阵则反映的估计的协方差 场&二匚。巩忑為场卜 1 - cov( -渝直二泅仇) 5实例考虑在一个无摩擦、无限长的直轨道上的一辆小车,它的初始位置在0点,但是它会随机的 受到冲击作用,我们每隔右匸测量一次小车的位置,但是这些测量数据不是很精确。我们想 建立一个关于小车位置和速度的模型,这里我们描述如何建立这个模型,以及从这个模型出 发如何推导出Kalman滤波器。因为小车没有控制输入,我们可以忽略塊和。由于F,H,R和Q全是恒值,我们可以 忽略时间下标。小车的位置和速度用线性空间可以描述如下:这里匸表示速度,也就是位置对时间的微分。我们假设在时间间隔k-1和k之间,小车受到一个恒

29、定的冲击乐,乐服从均值为0,方差 为厘的正态分布,根据Newton动力学方程,可得到:二+ 岛Jt其中1Af=01我们发现:2=3旧心 呃两妙f r 冏内田=址鈕在每一时刻,我们获取真实位置的我们假设噪声服噪声干扰测量,假设测量噪声服从均值为0,标准差为正态分布。尊二陆+羽其中H= 1 0,H囑卜必警f麴严.我们可以得到足够精度的初始状态数据,所以我们可以初始化如果初始位置和速度不是精确的知道,那么协方差矩阵应该初始化为一个对角线元素B为 适当大小的矩阵如下:这样与模型中已有信息相比,滤波器更趋向于使用首次的测量数据信息。 6推导整理误差向量可得6.1后验估计协方差矩阵推导首先开始不变量后验估

30、计协方差矩阵昂丘的推导::认=沁I-_卜带入珈定义,可得 弘=c帧兀一(瀛-1 +瓦),代入可得场/二氓卩:曙1十瓦丹贏丽1上)代入比可得抵 二-為41才沙一轉十 H活附1;场严由于误差向量叫与其他不相关,所以:使用不变量Pklk-1以及弘.二如心-耳)(忑-斑十如乞叫)由协方差矩阵性质则 珈=疥-瓦砒cov(X - 兄-瓦叮+ gg尿Rk的定义这一项可以写作碌代以山/ 呵4)+朋凤,此公式Josephform)对任意增益Kk的都成立,如果Kk最优卡尔曼增益,则可以进一步简化,见下文。6.2 Kalman增益推导,这等价于最小化后验估计协方差矩阵马用的Kalman滤波器是一个最小均方误差估计器

31、,先验状态误差估计可表示为张际 我们最小 化这个矢量幅度平方的期望值应|技一切迹, 通 过 展 开 合并碌公 式, 可 得龜二门hi 瓦丹占 W岭炉1逬恩十縫屈+兔)层 =张一耳F冒-环肿:境+憨g蜀畀二-空也p隔次岛二o当矩阵导数为0时,矩阵的迹取最小值, 从这个式子解出Kalman增益心观二牌爲二绻丿7K厂屜讯瓦这个增益就是最优Kalman增益,应用它可以得到最小均方误差。6.3后验误差协方差矩阵简化当应用上述最优Kalman增益时,后验误差协方差可以得到简化,在最优Kalman增益两边 同时乘以&煜,可得蔓凤心二F%厲庄& ,参见后验误差协方差公式展开 蘇二弘-1 一瓦耳场二瓦怂)场I这

32、个公式的计算比较简单,所以实际中总是使 用这个公式,但是需注意这公式仅在最优卡尔曼增益时它才成立。如果算术精度总是很低而 导致数值稳定性出现问题,或者特意使用非最优卡尔曼增益,那么就不能使用这个简化;必 须使用上面导出的后验误差协方差公式。冠 =JA-1 -昙占几 W 乌丽1: +止护r匚犬, 带入上式,可得: 7 信息滤波在信息滤波器(逆方差滤波器)中,协方差估计和状态估计将会被信息矩阵和信息向量所取 代,它们的定义如下:% =鬆1类似的预测协方差和预测状态也有等价的信息形式,定义如下:加-1 =顷-1同样测量协方差和测量向量定义为:信息更新现在变成一个加和形式:信息滤波器的主要优点在于N和

33、测量数据都可以用于滤波,简单的通过信息矩阵和信息向 量的加和。为了预测信息滤波器,信息矩阵和信息向量必须变换到它们的等价状态空间,或者应用下述 信息空间更新:厲二臥域+妄】广这里F和Q必须可逆。8非线性滤波器8.1扩展Kalman滤波估计过程如以上所述,卡尔曼滤波器估计一个线性随机差分方程描述的离散时间过程的状态变量 葢占,但是如果被估计的过程和(或)观测变量与过程的关系不时线性关系。那该如何处理 呢? 一些很有趣和成功的Kalman滤波器应用就是处理这些情况的。将期望和方差线性化的 卡尔曼滤波器称作扩展卡尔曼滤波器(Extended Kalman Filter),简称EKF。同泰勒级数类似,

34、面对非线性关系时,我们可以通过求过程和量测方程的偏导来线性化并计 算当前估计,为了实现这个目的,我们必须修改上面的一些描述,我们假设过程仍具有状态 向量汪代,但其状态方程已变为非线性随机差分方程的形式。观测变量Ze为:N=曲(竝心)这里随机变量乂和分别为过程噪声和观测噪声。差分方程式(i.i)中的非线性函数f将过去k-1时刻状态与现在k时刻状态联系起来。在测量方程(2.2)中,输入函数uk和零均值 过程噪声wk是它的参数。非线性函数h反映了状态变量xk和观测变量zk的关系。 实际中我们并不知道每一时刻噪声wk和vk各自真实值,但是我们可以在假设他们不存在 的前提下,近似估计状态向量和测量向量:

35、企二了优si Q玄皿祗0)这里“是相对于前一时刻k的后验状态估计。有一点非常重要,那就是扩展卡尔曼滤波器的一个基本缺陷:离散随机变量的分布(或 连续随机变量的密度)在经过非线性系统转化后不再是正态的了。扩展卡尔曼滤波器其实就 是一个通过线性化而达到渐进最优贝叶斯决策的特殊状态估计器Julier96中描述了一项有 趣的研究,Julier设计了扩展卡尔曼滤波器的一种变体,使得通过非线性转换后的随机变量 仍具有正态分布特性。滤波器的计算原型为了估计一个具有非线性差分和量测关系的过程,我们先给出式1.3和式1.4的一个新的 线性化表示:心 F一 3 + 阿其中:xk和zk是状态向量和观测向量的真值;无 和来自1.3式和1.4式,是状态向量和观测向量的近似值;无是k时刻状态向量的后验估计;随机变量wk和vk表示过程激励噪声和观测噪声。 A是f对x的偏导的雅可比矩阵:W是f对w的偏导的雅可比矩阵:H是h对x的偏导的雅可比矩阵:V是h对v的偏导的雅可比矩阵:缶=%亦

展开阅读全文
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!