外文翻译--ALGORYTHMS控制速度和斯特雷奇

上传人:红** 文档编号:171428435 上传时间:2022-11-26 格式:DOC 页数:13 大小:394KB
收藏 版权申诉 举报 下载
外文翻译--ALGORYTHMS控制速度和斯特雷奇_第1页
第1页 / 共13页
外文翻译--ALGORYTHMS控制速度和斯特雷奇_第2页
第2页 / 共13页
外文翻译--ALGORYTHMS控制速度和斯特雷奇_第3页
第3页 / 共13页
资源描述:

《外文翻译--ALGORYTHMS控制速度和斯特雷奇》由会员分享,可在线阅读,更多相关《外文翻译--ALGORYTHMS控制速度和斯特雷奇(13页珍藏版)》请在装配图网上搜索。

1、ALGORYTHMS控制速度和斯特雷奇作者:多利安马克雷亚科斯廷切皮斯卡 Politehnica大学出版日期: 2007年4月1日 出版信息: Postprints,加州大学戴维斯分校摘要:本文显示驱动解决方案,速度的计算和引用所有自动速度控制范围为24个装配站属于张力减为无缝钢管厂。之间的速度控制和相关的拉伸,轧管控制也显示。实验结果是真实的数据联想到最近的项目已在执行中国的无缝钢管厂。1简介 作者在展位分配和使用差动齿轮箱的共同驱动概念代表了该工厂的表现灵活性的限制,但我们可以合理地使用它减少驱动器的成本1,2。因此,当我们正在设计的这种轧机型,我们要仔细研究的必要性和个人选择的驱动器实用

2、每个站或共同驱动器3。如果我们使用的是常见的减速驱动使用的主要驱动旋转和重叠速度比率正在发生变化,同时在由旋转速度控制所有摊位都(或一两)马达和维持的比例为代表,作为滚动旋转速度成立由齿轮设计。因此,在此驱动器系统,我们可以改变只速度平均或平均伸展,但不是在变形值的分布个人的立场4 5序列。如果我们可以放弃对管道的变形和个人速度控制的优点如果我们除了一大之间的轧辊和材料(1现状在容易滑倒滚动计划),我们可以接受一个共同的分布和差分驱动齿轮6 ,7.2机电驱动解决方案2.1。速度控制4电机驱动器由两个驱动集团是由一个机械分离另外,因此,即使允许序列有效的作物接近年底控制(CEC)管。为此,该条目

3、轧机机架齿轮组功能异常的比例高获得特别大的伸长率(图1)。为立场位置(我的辊速度)的计算公式为,在进入边驱动器组:图1:原理与普通车道与分布的固体火箭发动机和齿轮差动关于对运行在驱动器出组方:速度曲线的基础的特点是在入门组高齿轮传动比,使差动齿轮也积极在这一领域的行动,即对两个基本相同的方向旋转和差分驱动器。在轧制过程中的稳态阶段,在这个系统运行的基本驱动器而相同的速度差驱动装置操作完全同步的速度。该速度是有关下列条件:据此IKM和IKD是常数。自动同步电动机的基本自动化系统。图2:串联驱动器的速度差异图2.2斯特雷奇控制在伸长率变化的电机速度的计算值与转速结果从计算速度的变化。这种方法可确保

4、运营商可以用一个影响速度的变化意味着在伸长率的变化,如果有必要,如果电机转速在达到极限速度,没有改变。一个输入值用于改变伸长率。输入范围: -100 . +100%标准: 0 %(在滚动计划)计算方法:输入的值P转换:与P波内部限制值,例如20的实际项目。下面的计算结果在“旋转式”的速度与支点图IPSPP(图2)。一个站的位置被定义为支点:IPSPP =同侧。这样做的效果是进入速度,从而使更多的物质吞吐量保持或颇为稳定。每个变速箱被分配到一个电机。这是一个特征值共同确定与滚动计划,确定了齿轮阶段(0或1)。相应的齿轮比率表1所示。新发动机的进一步计算速度:IGRMD 1 = 1或齿轮的切换步骤

5、比选择。同样是适用的IGRMD2,IGRDD1和IGRDD2。计算原因我们定义的变量X = IKM和.为Y = IKD 表1如果只对进口方的立场是占领辊组的立场和驱动器上运行一边是不出来用于驱动指导站等适用以下规则:最后计算的新的发动机转速:经过每一个电机的速度计算,限值检查和更正。在进口和出口速度的变化可以计算的基本公式:为了:IS - 进口或出口后伸长米/秒变化的速度; G- 入口或出口速度(m / s的梯度关系)/(在滚动计划);AJ- 调整输入值P ;IOS- 进口或出口速度的马达默认设置米/秒。如果只对进口方的立场是占领辊组的立场和在跳动的驱动器一边是不被用来驱动指导站,以下适用于:

6、OSDD2 = 0,OSMD2 = 0。图3:速度图范围3实验结果表2马达速度:图4:实验速度图程序变量IKM, IKD轧机常数。值都在制定滚动计划。ISMD1 速度在进气侧驱动电机组基本的变量ISDD1 速度在进气侧差动驱动器驱动电机组的变量ISMD2 速度对出口方的基本驱动电机组的变量ISDD2 速度的出口端驱动器驱动电机组差的变量IPSPP 林分的支点位置号码IGRSMD 站在初始位置号码传递的位置IGRSDD 展台的位置号码的最后位置IGRMD1 齿轮电机1的比例基本的变量IGRMD2 齿轮电机2比基本的变量IGRDD1 齿轮比率差动驱动电机1的变量IGRDD2 齿轮比率差动驱动电机2

7、的变量OSMD1 速度在进气侧驱动电机组基本的变量OSDD1 速度在进气侧差动驱动器驱动电机组的变量OSMD2 速度对出口方的基本驱动电机组的变量OSDD2 速度的出口端驱动器驱动电机组差的变量ALGORYTHMS FOR SPEED AND STRECH CONTROLOF THE MAIN DRIVES OF AN STRECH-REDUCING TUBE MILL Dorian MACREA SC IPROLAM SA, Negustori 23, Bucharest, Romania: dorian.macreaiprolam.ro Costin CEPISCA Politehnica

8、 University, Spl.Indep.313, Bucharest, Romania Abstract. This paper shows the drive solution, the speed references calculation and the automatic control of all speeds range for the assembly of the 24 stands belonging to a tretch-reducing mill for seamless pipes. The correlation between the speed con

9、trol and the stretching control of the rolled pipe is also shown. The experimental results are real data associated to the most recent project that has been executed at a seamless pipe plant in China.1 Introduction The concept of common drives of the stands using distribution and differential gear-b

10、oxes represents a flexibility limitation of the performances of the mill but using it we can sensibly reduce the costs of the drives 1, 2. Therefore, when we are designing rolling mills of this type, we have to study carefully the necessity and the utility of choosing individual drives for each stan

11、d or common drives 3. If we are using a common reducer driven using main and overlapping drives the rotating speed ratios are changing simultaneously at all stands by control of the rotating speed at both (or one of the two) motors and maintaining the ratios for the rotating speeds of the rolling st

12、ands as been established by designing of the gears. Thus, in this drive system we can change only the speed average or the stretching average, but not the distribution of the deformation values in the individual sequence of the stands 4, 5. If we may give up the advantages of the individual speed co

13、ntrol on the pipe deformation and if we except a larger slipping between the rolls and the rolled material (a current status at easier rolling programs) we could accept a common drive with distribution and differential gears 6, 7.2 Electromechanical drive solution 2.1. Speed control The 4-motor driv

14、e consists of two drive groups which are mechanically separated from one another and, therefore, allow effective crop end control (CEC) even with close sequences of tubes. For this purpose, the entry mill stand group features exceptionally high gear ratios to obtain particularly large elongations (F

15、igure 1). The roll speeds for stand position (i) are calculated as, In the entry side drive group:Figure 1: Schematic for SRM with Common Drive with Distribution and Differential Gears With respect to the drive group on the run-out side: The basis speed curve is characterized by high gear ratios in

16、the entry drive group to enable positive differential gear action also in this area, i.e. identical direction of rotation of both basic and differential drives. During the steady-state phase of the rolling process, the basic drives of this system run at identical speeds while the differential drive

17、units operate at exactly synchronized speeds. The speeds are related by the following term: whereby IKM and IKD are constants. The motors are synchronized automatically in the basic automation system. 2.2 Strech control The motor speeds at changes in elongation are calculated with the rotational spe

18、ed values resulting from the calculation of the changes in speed. This method ensures that the operator can effect a change in elongation by means of a change in speed, if necessary, if motor speed limits are reached with no change in speed. One input value is used for the change in elongation. Inpu

19、t range: -100 . +100% Standard: 0 % (in rolling program) Calculation: Conversion of the entered value P: PS 1 P/100*P /100 (5) with Pmax as internal limiting value, e.g. 20% in the actual project. The following calculation results in a “pivoting” of the speed diagram with the pivot point IPSPP (Figu

20、re 2). One stand position is defined as the pivot point: IPSPP= IPSI. This has the effect that the entry speed and thus the throughput of material remain more or ess constant. Each gearbox is assigned to one motor. A characteristic value which is determined together with the rolling program, determi

21、nes the gear stage (0 or 1). The corresponding gear ratios are indicated in the Table 1. Further calculation of new motor speeds: IGRMD 1= 1 or gear ratio of the switching step chosen. The same is to be applied for IGRMD2, IGRDD1 and IGRDD2. For calculation reasons we define the variables X= IKM and

22、 Y = IKD.Table 1If only the stand group on the inlet side is occupied by roll stands and the drives on the run out side are not used to drive guide stands etc. the following applies:Final calculation of new motor speed:After every calculation of a motor speed, limit values are checked and corrected

23、accordingly. The change in inlet and outlet speed can be calculated with the basic equation:with: IS - Inlet or outlet speed after change in elongation m/s; G - Gradient relationship of inlet or outlet speed (m/s)/% (in Rolling program); AJ - Adjusted input value P %; IOS - Inlet or outlet speed at

24、default settings of the motors m/s. If only the stand group on the inlet side is occupied by roll stands and the drives on the run-out side are not used to drive guide stands, the following applies: OSDD2 = 0, OSMD2 = 0.Figure 3: Speed diagram ranges.3 Experimental results Table 2 Motor speeds:Figur

25、e 4: Experimental speed diagram References PROGRAM VARIABLES IKM, IKD Rolling mill constants. The values are determined when drawing up the rolling program. ISMD1 Speed of the basic motor of the inlet side drive group ISDD1 Speed of the differential drive motor of the inlet side drive group ISMD2 Sp

26、eed of the basic motor of the outlet side drive group ISDD2 Speed of the differential drive motor of the outlet side drive group IPSPP Stand position number of the pivot point IPSI Stand position number of the initial pass stand IPSF Stand position number of the final stand IGRSMD(i) Gear ratio at s

27、tand position “i” of the basic drive IGRSDD(i) Gear ratio at stand position “i” of the differential drive ICF Correction factor with unequal speed ranges of the basic motors IGRMD1 Gear ratio of basic motor 1 IGRMD2 Gear ratio of basic motor 2 IGRDD1 Gear ratio of differential drive motor 1 IGRDD2 G

28、ear ratio of differential drive motor 2 OSMD1 Speed of the basic motor of the inlet side drive group OSDD1 Speed of the differential drive motor of the inlet side drive group OSMD2 Speed of the basic motor of the outlet side drive group OSDD2 Speed of the differential drive motor of the outlet side drive group 12

展开阅读全文
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!