电工电子综合实践报告

上传人:达2 文档编号:143834330 上传时间:2022-08-26 格式:DOCX 页数:51 大小:637.07KB
收藏 版权申诉 举报 下载
电工电子综合实践报告_第1页
第1页 / 共51页
电工电子综合实践报告_第2页
第2页 / 共51页
电工电子综合实践报告_第3页
第3页 / 共51页
资源描述:

《电工电子综合实践报告》由会员分享,可在线阅读,更多相关《电工电子综合实践报告(51页珍藏版)》请在装配图网上搜索。

1、电工电子综合实践报告四川大学网络教育学院电工电子综合实践校外学习中心:广东奥鹏教育中心学生姓名:陈晓宇专业:电气工程及其自动化层次:专升本年级: 2016 年春学号:_8888888实验时间: 2017年03月071、L、C元件上电流电压的相位关系。实验题目2、电路功率因素的提高。3、虚拟一阶RC电路。4、用数字电桥测交流参数。5、差动放大电路。6、负反馈电路。7、算术运算电路。8整流、滤波和稳压电路。9、编码器和译码器。10、数据选择器。11、触发器。12、计数器。实验目的1、 在正弦电压激励下研究 L、C元件上电流,电压的大小和 它们的相位关系,以及输入信号的频率对它们的影响,学习 示波器

2、、函数发生器以及数字相位仪的使用。2、明确交流电路中电流、电压和功率之间的关系,了解提高 感性交流电路功率因数的方法及电路现象,学习功率表的使 用方式,了解日光灯工作原理及线路连接。3、 在 Electronics workbench Multisim电子电路仿真软件中,对一阶电路输入方波信号,用示波器测量其输入,输出 之间的波形,以验证RC电路的充放电原理,并熟悉示波器的 使用。4、用TH2080型LCR数字交流电桥测量RLC的各种参数,了 解电阻、电容、电感的特性。5、加深对差动放大电路工作原理的理解, 学习差动放大电路 静态工作点的测量方法。解差动放大电路零漂产生的原因及抑制零漂的方法。

3、学习差动放大电路差模、共模放大倍数和 共模抑制比的测量方法。6、加深对负反馈放大电路放大特性的理解。学习负反馈放大电路静态工作点的测试及调整方法。研究电压串联负反 馈电路、电流负反馈偏置电路、电压负反馈偏置电路的反 馈作用的实现过程,学习判断反馈电路的组态。观察输出 电压波形,测定电路的电压放大倍数。7、了解集成运放开环放大倍数 Av和最大输出电压Vomax的测 试方法,掌握比例运算、加法运算、减法运算、积分运算电 路的调整,微分运算电路的连接与测试。了解集成运算放大器非线性应用的特点。8了解桥式整流电路的原理,以及输入、输出电压间的数量 关系。认识滤波器的作用,理解变压器参数的选择方法。了

4、解串联稳压电路和并联稳压电路的工作原理。了解保护电路 的限流保护作用和工作原理。了解集成稳压块的性能及其测 试方法。9、掌握二进制编码器的逻辑功能及编码方法。掌握译码器的 逻辑功能,了解常用集成译码器件的使用方法。 掌握译码器、 编码器的工作原理和特点。熟悉常用译码器、编码器的逻辑 功能及典型应用。10、掌握数据选择器基本电路的构成及电路原理。学习并掌 握数据选择器逻辑功能及其测试方法。掌握应用数据选择器 组成其它逻辑电路的方法。11、掌握触发器逻辑功能和测试方法。 测试与非门构成的RS 触发器的逻辑功能。测试JK触发器的逻辑功能。测试D触发 器的逻辑功能。12、了解中规模集成计数器74LS9

5、0, 74LS161的功能,学习 其使用方法。掌握将十进制计数器变换成 N进制计数器的方 法。了解同步,异步计数器的分频功能,学会调整同步,异 步计数器的分频数。1、交流电流表、交流电压表、数字相位计。仪器仪表目录2、单相调压器、交流电压表、电流表、单、三相功率表、十 进电容器及荧光灯元件。3、脉冲信号发生器、虚拟示波器、动态电路实验板。4、FB2020型电桥综合实验平台、待测元件盒、交流检流计。5、交流毫伏表、示波器(自备)、数字直流电压表、晶体三 极管。6、模拟实验箱,函数信号发生器,双踪示波器,交流伏安表, 数字万用表。7、示波器、数字万用表。8 Maxplus ll,FPGA 实验箱。

6、9、数字逻辑电路实验箱、数字逻辑电路实验箱扩展板、 数字 万用表、芯片。10、计算机、ElectronicsWorkbench Multisim 2001 电子线路仿真软件。11、四2输入正与非门74LS00双D触发器74LS7412、适配器 、2JK触发器、LED显示器、四位计数器。实验报告一 L 、C元件上电流电压的相位关系一、实验线路、实验原理和操作步骤操作步骤:1、调节ZH-12实验台上的交流电源,使其输出交流电源电压值为220V。2、按电路图接线,先自行检查接线是否正确,并经教师检查无误后通电3、用示波器观察电感两端电压 uL和电阻两端uR的波形,由于电 阻上电压与电流同相位,因此从

7、观察相位的角度出发,电阻上电 压的波形与电流的波形是相同的,而在数值上要除以“ R”。仔细 调节示波器,观察屏幕上显示的波形,并将结果记录操作步骤:1、调节ZH-12实验台上的交流电源,使其输出交流电源电压值 为 24V。2、按图电路图接线,先自行检查接线是否正确,并经教师检查 无误后通电。3、用示波器的观察电容两端电压 uC和电阻两端电压uR的波形, (原理同上)。仔细调节示波器,观察屏幕上显示的波形二、实验结果:1、在电感电路中,电感元件电流强度跟电压成正比,即 I xU.用1/ (XL)作为比例恒量,写成等式,就得到 匸U/ (XL)这就是纯电感 电路中欧姆定律的表达式。电压超前电路 9

8、0 。分析:当交流电通过线圈时,在线圈中产生感应电动势。根据电磁感e应定律,感应电动势为dt (负号说明自感电动势的实际方向总是阻碍电流的变化)。当电感两端有自感电动势,则在电感两端必有电压,且电压U与自感 电动势e相平衡。在电动势、电压、电流三者参考方向一致的情况下,dt设图所示的电感中,有正弦电流i Imsin t通过,则电感两端电压为:则C越小,也就是对电流的阻碍作用越小,电容对电流的“阻力”u Ldi Ld(ImSin t) Umsin( t 90。) dtdt称做容抗,用Xc代表。Xc C 2 fC波形与相量图如下:电容元件电压电流大小关系lc - aCU - Ucb.相也关秀:lc

9、趙前Uc 93实验报告二电路功率因素的提高一、实验原理:供电系统由电源通过输电线路向负载供电。负载通常有电阻负 载,也有电感性负载。由于电感性负载有较大的感抗,因而功率较低。若电源向负载传送的功率,当功率P和供电电压U一定时,功率因数 越低,线路电流I就越大,从而增加了线路电 压降和线路功率损耗,若线路总电阻为 R,则线路电压降和线路功率损耗分别为;负载电感进行能量交换,电源向负载提供有功功率的能力必然下降,从而降低了电源容量的利用率。因此, 从提高供电系统的经济效益和供电质量, 必须采取措施提高电感性负 载额功率因数。通常提高电感性负载功率因数的方法是在负载两端并联适当数量的电容器,使负载的

10、总无功功率减小,在传送的有功功率P不变时,使得功率因数提高,线路电流减小。当并联电容器时,总无功功率为Q为0,此时功率因数若继续并联电容器,将导致功率因数下降,称为过补偿。负载功率因数可以用三表法测量电源电压用公式计算。(a)图2-12-1日光灯电路原理图二、实验内容=1,线路电流线路电流增大,现象U负载电流IP,小。1. 按实验电路图2-12-2联接线路。2. 将开关K1闭合,电容支路开关K2断开,通电并观察日光灯的起 辉过程,待灯管点亮后,将开关 K1断开,测出实验数据表中C=0时 的各项测量数据,记入表2-12-1内。3.合上开关K2,改变电容C的数值,将测量的数据均记入表2-12-1

11、内。(注:每次改变电容之前,应先将开关 K1闭合,待改变电容之 后,再将开关K1断开)按照书上电路图组成实验电路,按下按钮开关,调节自耦变压器 的输出电压为220V,记录功率表、功率因数表、电压表、电流表的 读数,接入电容,从小到大增加电容容值,记录不同电容值时的功率 表、功率因数表、电压表和电流表的读数,记入表中。三、实验数据及处理P(W)u(v)Uc(V)1(A)036.38220219.9168.8110.60.350L0.470.4736.54220219.2168.5111.50.321L0.51136.87220219.6168.4111.40.297L0.561.4736.992

12、20219.4167.8112.30.273L0.652.237.27220218.6167.3112.00.231L0.742.6737.26220219.0167.3112.40.211L0.823.237.23220218.4167.8112.60.199L0.873.6737.74220219.2167.4112.30.187L0.944.337.74220218.4165.6113.50.182L0.964.7737.79220219.1167.5111.90.185L0.945.338.59220219.9170.2111.80.192L0.91结论在日光灯电路中,在一定范围内,电

13、容值越大,视在功率越少, 有电源电压且电路的有功功率一定时, 随电路的功率因素提高,它占 用电源的容量S就降低,负载电流明显降低。实验报告三虚拟一阶RC电路一、实验原理:1.动态网络的过渡过程是十分短暂的单次变化过程。要用普通示波器观察过渡过程和测量有关的参数, 就必须使这种单次变化的过 程重复出现。为此,我们利用信号发生器输出的方波来模拟阶跃激励 信号,即利用方波输出的上升沿作为零状态响应的正阶跃激励信号; 利用方波的下降沿作为零输入响应的负阶跃激励信号。只要选择方波的重复周期远大于电路的时间常数T,那么电路在这样的方波序列脉 冲信号的激励下,它的响应就和直流电接通与断开的过渡过程是基本 相

14、同的。2. 图3-1 (b)所示的RC 一阶电路的零输入响应和零状态响应分别按指数规律衰减和增长,其变化的快慢决定于电路的时间常数3. 时间常数T的测定方法用示波器测量零输入响应的波形如图3-1(a)所示。根据一阶微分方程的求解得知 uc = Ume-t/RC= Ume-t/ t。当t = t 时,Uc( t ) = 0.368Um此时所对应的时间就等于t。亦可用零状态响应波形增加到0.632 Um所对应的时间测得,如图3-1(c)所示(a)零输入响应(b) RC 一阶电路(c)零状态响应图3-14. 微分电路和积分电路是 RC阶电路中较典型的电路, 它对电路 元件参数和输入信号的周期有着特定

15、的要求。 一个简单的RC串联电T路,在方波序列脉冲的重复激励下, 当满足t= RCV时(T为 方波脉冲的重复周期),且由R两端的电压作为响应输出,这就是一 个微分电路。因为此时电路的输出信号电压与输入信号电压的微分成正比。如图3-2(a)所示。利用微分电路可以将方波转变成尖脉冲。0_|血_u iR cT/2-1cT OUrR(a)微分电路(b)积分电路图3-2若将图3-2(a)中的R与C位置调换一下,如图3-2(b)所示,由C两 端的电压作为响应输出。当电路的参数满足t= rcQ条件时,即称为积分电路。因为此时电路的输出信号电压与输入信号电压的积分成正比。利用积分电路可以将方波转变成三角波。从

16、输入输出波形来看,上述两个电路均起着波形变换的作用,请在实验过程仔细观察与记录。实验线路板采用HE-14实验挂箱的“一阶、二阶动态电路”,如图3-3所示,请认清R、C元件的布局及其标称值,各开关的通断位置等等。二、实验内容1. 从电路板上选R= 10KQ, O6800pF组成如图3-2(b)所示的RC充放电电路。ui为脉冲信号发生器输出的 Un3V、f = 1KHz的方波电压信号,并通过两根同轴电缆线,将激励源ui和响应uc的信号 分别连至虚拟示波器接口箱的两个输入口 CH1和CH2这时可在示波 器的屏幕上观察到激励与响应的变化规律, 请测算出时间常数T,并 用方格纸按1:1的比例描绘波形。少

17、量地改变电容值或电阻值,定性地观察对响应的影响,记录观察到 的现象。2.令R= 10KQ, C= 0.01卩F,观察并描绘响应的波形。继续增 大C之值,定性地观察对响应的影响。3. 令C= 0.01卩F,R= 100Q,组成如图3-2(a)所示的微分电路。 在同样的方波激励信号(Um 3V, f = 1KH0作用下,观测并描绘激 励与响应的波形。0HH4图3-3动态电路、选频电路实验板三、实验结论 输入为频率为50Hz的方波,经过微分电路后,输出为变化很陡峭的曲线。当第一个方波电压加在微分电路的两端(输入端)时,电容C上的电压开始因充电而增加。而流过电容C的电流则随着充电电压的 上升而下降。电

18、流经过微分电路(R、C)的规律可用下面的公式来表 达i = (V/R)e-(t/CR)i-充电电流(A);v-输入信号电压(V);R-电路电阻值(欧姆);C-电路电容值(F);e-自然对数常数(2.71828);t-信号电压作用时间(秒);CR-R C 常数(R*C)由此我们可以看出输出部分即电阻上的电压为i*R,结合上面的计算,我们可以得出输出电压曲线计算公式为:iR = Ve-(t/CR) 积分电路可将矩形脉冲波转换为锯齿波或三角波,还可将锯齿波转换为抛物波。电路原理很简单,都是基于电容的冲放电原理,这里就不详细说了,这里要提的是电路的时间常数R*C,构成积分电路的条件是电路的时间常数必须

19、要大于或等于 10倍于输入波形的宽度输出信号与输入信号的积分成正比的电路,称为积分电路原理:Uo=Uc=(1/C) /icdt,因 Ui二UR+Uo当 t=to 时,Uc=Oo.随后C充电,由于ROTk,充电很慢,所以认为Ui=UR=Ric,即ic=Ui/R, 故Uo=(1/c) /icdt=(1/RC) /icdt这就是输出Uo正比于输入Ui的积分(/ icdt )RC电路的积分条件:RO Tk实验报告四 用数字电桥测交流参数一、实验原理图1是交流电桥的原理线路,它与直流单臂电桥原理相似。在交 流电桥中,四个桥臂一般是由交流电路元件如电阻、 电感、电容组成; 电桥的电源通常是正弦交流电源;

20、交流平衡指示仪的种类很多,适用 于不同频率范围。频率为200Hz以下时可采用谐振式检流计;音频范 围内可米用耳机作为平衡指示器;音频或更高的频率时也可米用电子 指零仪器;也有用电子示波器或交流毫伏表作为平衡指示器的。本实验米用高灵敏度的交流检流计,检流计指针指零(或达到最小)时, 电桥达到平衡。一、交流电桥的平衡条件本实验在正弦稳态的条件下讨论交流电桥的基本原理。在交流电桥中,四个桥臂由阻抗元件组成,在电桥的一个对角线检流计,另一对角线 AB上接入交流电源。当调节电桥参数,使交流检流计中无电流通过时(即点的电位相等,电桥达到平衡,这时有:CD上接入交流Ig 0),CD两U AC U adU C

21、B U DB即:Il乙I4Z4(2)两式相除有:IiZiI2乙I4Z4I3Z3(3)当电桥平衡时,IgIi I20,由此可得:3( 4)所以Z1Z3 Z2Z4(5)上式就是交流电桥的平衡条件,它说明:当交流电桥达到平衡时,相对桥臂的阻抗的乘积相等。由图1可知,若第二桥臂由被测阻抗Zx构成,贝卩:乙Z Z3Z4( 6)当其它桥臂的参数已知时,就可决定被测阻抗Zx的值。二、实验结论交流电桥的平衡条件我们在正弦稳态的条件下讨论交流电桥的基本原理。在交流电桥中,四个桥臂由阻抗元件组成,在电桥的一个对角线cd上接入交流指零仪,另一对角线ab上接入交流电源。当调节电桥参数,使交流指零仪中无电流通过时(即1

22、0=0) , cd两点的电位相等,电桥达到平衡,这时有Uac=UadUcb二Udb即:I1Z 仁I4Z4I2Z2=I3Z31 iZi 14Z4两式相除有:|2乙丨忆3当电桥平衡时,10=0,由此可得:I1=I2,I3=I4所以Z1Z3=Z2Z4上式就是交流电桥的平衡条件,它说明:当交流电桥达到平衡时, 相对桥臂的阻抗的乘积相等。由图4-13-1可知,若第一桥臂由被测阻抗 Zx构成,贝心Z2乙一乙Z3当其他桥臂的参数已知时,就可决定被测阻抗Zx的值实验报告五差动放大电路 一、实验原理图51是差动放大器的基本结构。它由两个元件参数相同的基 本共射放大电路组成。当K接入左边时,构成典型的差动放大器。

23、调 零电位器RP用来调节V1、V2管的静态工作点,使得输入信号 Ui=C 时,双端输出电压Uo=0 RE为两管共用的发射极电阻,它对差模信 号无负反馈作用,因而不影响差模电压放大倍数,但对共模信号有较 强的负反馈作用,故可以有效地抑制零漂,稳定静态工作点。UiIci+V cc+12VR b 10K510 510T Rb 10KR C110K* I C2I R C2 10KIeR E10KT2R P 100R l 68KR E35.1K?R 236K-V EE-12V图5 1当K接入右边时,构成具有恒流源的差动放大器,用晶体管恒流 源代替发射极电阻 RE可以进一步提高差动放大器抑制共模信号的 能

24、力。1 .静态工作点的估算典型电路(认为 U B1 Ub2 0)1 VeE | U BEI E Re1 C1 1 C2 4 1 Er2VCC1 U BE 1 U BER1R2Re3I 丄|C2 2 E1C3 1 E3恒流源电路I C12 .差模电压放大倍数和共模电压放大倍数当差动放大器的射极电阻 RE足够大,或米用恒流源电路时,差 模电压放大倍数Ad由输出端方式决定,而与输入方式无关。双端输出RE= , RP在中心位置单端输出一 RAd1 =U = A d A 1 d2一Rc当输入共模信号时,若1为单端输出,则有AC1=UCAC2=_若为双端输出,在理想情况下八一U _AC=R实际上由于元件不

25、可能完全对称,因此 AC也不绝对等于零。3 .共模抑制比CMRR(dB)为了表征差动放大器对有用信号(差模信号)的放大作用和对共 模信号的抑制能力,通常用一个综合指标来衡量,即共模抑制比 CMRR 関 或 CMRR 20Log| 刽本实验差动放大器的输入信号可采用直流信号也可用交流信号。由信号源提供频率f=1KHz的正弦信号为输入信旦二、实验内容1、测量静态工作点按计划连接电路调零:将Vi1和Vi2接地,接通直流电源,调节 Rp使双端输出电压Vo=0测量V1,V2,V3的对地电压对地电压Vc1Vc2Vc3Vb1Vb2Vb3Ve1Ve2Ve3测量值(V)6.346.370.750.000.00-

26、7.95-0.62-0.62-8.60 v /2、测量差模电压放大倍数与共模电压放大倍数:将输入端接入+0.1V ,0.1V的直流电压信号;将输入端B1,B2短接, 一端接入输入端记录相应数据并计算共模抑制比差模输入测量值计算值信号Vc1Vc2V0双Ad1Ad2Ad双+0.1V3.828.925.0238.289.250.2-0.1V共模输入测量值计算值信号Vc1Vc2V0双Ad1Ad2Ad双+0.1V5.407.281.8854-72.8-18.8-0.1V5.407.291.8854-72.9-18.9共模抑制比Ad=50.2 Ac=18.8则其比为 2.67差模 Ad仁Vc1/UI=38

27、.2Ad2二Vc2/UI=-89.2Ad 双二Vo 双/UI=50.2共模 +0.1V: Ad1=Vc1/UI=54 Ad2=Vc2/UI=-72.8 Ad双二Vo 双/UI=-18.8Ad1=Vc1/UI=54 Ad2=Vc2/UI=-72.9 Ad双二Vo 双/UI=-18.93.单端输入的差分放大电路B2接地组成单端输入差分放大器,bl端接入+0.1V,-0.1V测量单端 双端输出的电压值电压值单端Av双端Av信号Vc1Vc2VO直流+0.1V4.498.213.72-1-2直流-0.1V6.426.25-0.17-1-2三、实验结论输入阻抗较高,抗干扰能力强是对双极性晶体管电路而言 的

28、.输入阻抗越高,抗干扰能力就强。共模抑制比高(对差模信号有放大作用,对共模信号没有放大作 用) 通常情况下,差动放大器用来放大微弱电信号的。实验报告六负反馈电路一、实验原理1. 下图为带有电压串联负反馈的两极阻容耦合放大器电路,在电路中通过Rr把输出电压Uo引回到输入端,家在晶体管 T1的发射极上, 在发射极电阻Rf1上形成反馈电压Uf。主要性能指标如下:(1) 闭环电压放大倍数 Ar二Av/1+AvFv ,Av为开环放大倍数。1K图1为带有电压串联负反馈的两极阻容耦合放大器(2) 反馈系数 Fv=RF1/Rf+RF1(3) 输入电阻R1f=(1+AvFv)Rf Rf为基本放大器的输入电阻(4

29、) 输出电阻Rof=Ro/(1+AvoFv) Ro为基本放大器的输出电阻Avo为基本放大器Rl= *时的电压放大倍数。2. 本实验还需测量放大器的动态参数,即去掉图1的反馈作用,得到1.静态工作点的测量条件:Ucc=12V,Ui=0V用直流电压表测第一级,第二级的静态工作点Us(V)UE(V)Uc(V)Ic(mA)第一级2.812.147.332.00第二级2.722.057.352.00表3 12.测量基本放大器的各项性能指标实验将图2改接,即把Rf断开后风别并在RF1和RL上。测量中频电压放大倍数 Av,输入输出电阻Ri和Rq(b)条件;f=1KH,Us=5mV 的正弦信号,用示波器监视

30、输出波形,在输出波形不 失真的情况下用交流毫 伏表测量Us,Ui,UL计入32表基本放大器Us(mV)Ui(mV)UL(V)Uo(V)AvRf(KQ)Ro(KQ)5.00.50.250.485001.112.208丿负反馈放大器Us(mV)Ui(mV)UL(V)Uo(V)AvfRif(KQ)Rof(KQ)5.02.30.140.20878.521.028表3 2(2) 保持Us不变,断开负载电阻RL,测量空载时的输出电压 Uo 计入32表三、实验结论1、负反馈在电子电路中的作用:改善放大器的动态指标,如稳定放大倍数,改变输入输出电阻,减小非线性失真和展宽通频带,但同时 也会使放大器的放大倍数降

31、低。2、与基本放大电路实验时相比,其输入电阻变大,使电路在采集原 始信号时其真度提咼,其输出电阻减小式电路携带负载的能力提咼; 同时其带宽增加;电路的的稳定性也有所增加;但是其放大倍数明显 变低。实验报告七算术运算电路、实验内容1、选择集成运算放大器选用集成运算放大器时,应先查阅有关产品手册,了解以下主要参数:运放的开环电压增益Auo,运放的开环带宽BWo运放的输入失调电压 UIO输入 失调电压温漂UIO/ T,输入失调电流 IIo、输入失调电流温漂IIO/ T,输入偏置电流IIB,运放的差模输入电阻Rid和输出电阻 Ro等。为了减小比例放大电路的闭环电压增益误差,提高放大电路的工作稳定性,应

32、尽量选用输入失调参数小,开环电压增益和差模输入电阻大,输出电阻小的 集成运放。为了减小比例放大电路的动态误差,(主要是频率失真与相位失 真),集成运算放大器的增益带宽积 Au B州口转换速率SR还应满足 以下关系:Au BW 1 Auf l BWfSR 2n fmaxUOmax上式中,fmax是输入信号的最高工作频率。UOmax是集成运算放大器的最大输出电压。(1) 计算最佳反馈电阻按以下公式计算最佳反馈电阻:R|Rd Ro Rd Ro(i Auf)f V 2K =2为了保证放大电路工作时,不超过集成运算放大器所允许的最大输出电流IOmax Rf值Rf / RlO max的选取还必须满足:O

33、max如果算出来的Rf太小,不满足上式时,应另外选择一个最大输出电流lOmax较大且能满足 式(1)中要求的运算放大器。在放大倍数要求不高的情况下,可以选用比最佳反馈电阻值大的 Rf。(3)计算输入电阻R1RfR1两由上式计算出来的R1必须大于或等于设计要求规定的闭环输入电阻Rif。否则应改变Rf的值,或另选差模输入电阻高的集成运算放大器。(4)计算平衡电阻RPRP=R1/Rf(5)计算输入失调温漂电压Ul1电dUl。TR1dl io tRfdTdT要求 Ul 100 UI,这样才能使温漂引起的误差小于1%若厶UI不满足要求,应另外选择漂移小的集 成运算放大器。2 、反相比例放大电路的调试与性

34、能测试(1) 消除自激振荡按照所设计的电路和计算的参数,选择元件,安装电路,弄清集成运放的电源端,调零端、输入与输出端。根据所用运放的型号和 Auo的大小,考虑是否 需要相位补偿。若需要相位补偿,应从使用手册中查出相应的补偿电 路及其元件参数。当完成相位补偿后,将放大电路的输入端接地,检查无误后,接通电源。用示波器观察其输出端是否有振荡波形。 若有振荡波形,应适当地调整补偿电路的参数,直至完全消除自激振荡为止。在观察输 出波形时,应把噪声波形和自激振荡波形区分开来。噪声波形是一个 频率不定,幅值不定的波形,自激振荡波形是一个频率和幅度固定的 周期波形。(2)调零把输入端接地,用直流电压表测量输

35、出电压,检查输出电压UO是否等于零,若U0不等于零,应仔细调节运放的调零电位器,使输 出电压为零。(3)在输入端加入UI=0.1V的直流信号,用直流电压表测量输出电压。将测量值与计算值进行比较,看是否满足设计要求。(4)观察输出波形在输入端加入f=1000Hz, Uim=1V的交流信号,用示波器观察输出波形,若输出波形出现“平顶形”失真,表明运放已进入饱和区工作,此时应提高电源电压,以消除R1 Rf平顶形”失真1 .同相比例放大电路的特点由运算放大器组成的同相输入比例741 Uo放大电路如图2所示。UIR1同相放大器的电压放大倍数为:RfU ORiRfRfUi RR1图2同相同相放大器的输入电

36、阻为:比例放大器Rif二R1/Rf+Rid (1+Auc? F)其中:Rid是运放的差模输入电阻,Auc是集成运放的开环电压增益,F=R1/(R1+Rf)为反馈系 数。输出电阻:R严0放大器同相端的直流平衡电阻为:RP = Rf / R1。BWf A BWc(9 ) 放大器的闭环带宽为:Auf/ RdRo_Auf(10)最佳反馈电阻Rf “ 22.同相比例放大电路的设计要求设计一个同相比例放大电路,性能指标和已知条件如下:闭环电压放大倍数Auf,闭环带宽BW,闭环输入电阻Rif,最小输入 信号Ulmin,最大输出电压UOmax负载电阻RL,工作温度范围。设计步骤:(1)选择集成运算放大器在设计

37、同相放大器时,对于所选用的集成运算放大器,除了要满 足反相比例放大电路设计中所提出的各项要求外,集成运放共模输入电压的最大值还必须 满足实际共模输入信号的最大值。并且要求集成运放具有很高的共模 抑制比。当要求共模误差电压小于 UOC寸,集成运放的共模抑制比 必须满足:kcmru ICU OC式中:UIC是运放输入端的实际共模输入信号。 UOC是运放的共 模误差电压。实验报告八整流、滤波和稳压电路一、实验原理整流电路的任务是利用二极管的单向导电性,把正、负交变的50Hz电网电压变成单方向脉动的直流电压。整流电路只是将交流电变换为单方向的脉动电压和电流, 由于后者含 有较大的交流成分,通常还需在整

38、流电路的输出端接入滤波电路, 以 滤除交流分量,从而得到平滑的直流电压。由波形可知:1.开关S打开时,电容两端电压为变压器付边的最大值2 .开关S闭合,即为电容滤波电阻负载,当变压器付边电压大于电容上电压时,电容充电,输出电压升高,当时电容放电,输出下降。如此充电快,放电慢的不断反复,在负载上将得到比较平滑的输 出电压。当负载电阻越大时,放电越慢,纹波电压越小,负载电阻小 时,放电快,纹波大,而且输出电压低。为此有三种情况下的输出电压估算值:1)电容滤波,负载开路时。2)无电容滤波,电阻负载时,输出电压平均值为:3)电容滤波,电阻负载时通常用下式进行估算估算。为确保二极管安全工作,要求:不同电

39、子设备要求其电源电压的平滑 程度不同,为此可采用不同的滤波电路。 常见的有电容滤波、电感滤 波和复式滤波电路(两个或两个以上滤波元件组成)。二、线性串联型稳压电路整流滤波后的电压是不稳压的,在电网电压或负载变化时,该电压都 会产生变化,而且纹波电压又大。所以,整流滤波后,还须经过稳压 电路,才能使输出电压在一定的范围内稳定不变。1. 稳压电路(电源)的主要性能指标输出的稳定电压值 Vo,最大输出电流Imax,输出纹波电压V,稳压系数(电压调整率)该值越小,稳定性越好输出电阻(内阻),内阻越小越好。三、结论1、单相半波整流电路在交流电一个周期内,二极管半个周期导通半个周期截止,以后 周期重复上述

40、过程。2. 单相桥式整流电路在交流输入电压的正负半周,都有同一个方向的电流流过负载。3. 单相桥式整流电容滤波电路在交流电一个周期内,电容器C充放电各两次。经电容器滤波后, 输出电压就比较平滑了,交流成分大大减少,而且输出电压平均值得 至U提高。实验报告九编码器和译码器一、实验原理:(1) 10-4 线优先编码器74HC14774HC147外引线排列如图1所示,逻辑符号如图2所示。123456789图1 74HC147外引脚排列图图274HC147逻辑符号如图74HC147有 9路输入信号,4位BCD码输出,因输出端带圈,所 以输入输出均为低电平有效。他将 0 9十个十进制数编成4位BCD 码

41、,可把输入端的9路输入信号和隐含的不变信号按优先级进行编 码,且优先级别高的排斥级别低的。当输入端都无效时,隐含着对0路信号进行编码(输出采用反码输出)。74HC147的功能见表1。表1 10- 4线优先编码器74HC147输入车俞出J|1I 2I 3|4I 5I 6I 7I 8|9Y3丫2Y1YoHHHHHHHHHHHHHnnnnnnnnnnnnnXXXXXXXX1LL iHHL / / /X /X /X /X,ILLJHLJHIIn1XXX、/X、/X、/X1LJL11 I-1 11111XXXXXLi iHi i iH iH i i XXXX1LLLLLLL1LL-LXXX1LLiHLi

42、HLiHLiHLiHLiHLiLLiH1H1XX1Z71 1n-n-n-1 1n-1 1n-1 1n-1 1n-1 1n-1 1Xfl-nm-m-m-m-m-LnL-MLHHHHHL HHH L(2)8-3线优先编码器74LS14874LS148是8-3线优先编码器逻辑符号如图3,外引线排列如图4所示。共有8个输入信号,且输入低电平有效。三位代码输出端(反 码输出)。234567AOA1A2GSElEOtt16 15VccYsYex h hZ, h Y.口口门 n 口 n141312 1110974LS148345678o引线排列图1 2OL h L斤可乳Fl GND图3逻辑符号如图其中,ST

43、为选通输入端,YS为选通输出端,Yex为优先扩展输出端。74LS148功能见表2。表2 74LS148功能表(3) 3-8线二进制译码器74LS13874LS138是3-8线二进制译码器,其逻辑符号如图 5,外引线排列如图6所示U2AY0BY1C2Y3Y4E1Y5E2Y6E3Y762374LS138图 5 74LS138引线排列图74LS138译码器有3个使能端,当G1 1, G2A ,G2b 0时允许译 码,否则禁止译码。A2、A1、A3为3个地址输入端。Y6为8个 输出端。74LS138其功能见表3.表3 74LS138其功能见表输入输出G1G2AG2BA2A1AYY1丫2Y3丫4丫5丫6

44、Y7 Z4 Z Z、/ /4A44入 / 7/4/ / /、/十4十44十4A十44十4入n/ /1 / / / /111111114/n/n/n/n/n十n十4十十十十4十4十41AA1TATA1A1A1A1Annn4nddn14d14141414C,c-,C1414141.c114141 4L4n41c十c十十44十c十4十十AAA十AAA1c111111111十1十十十十十十十1 | | 1 1 | 1 1 | 1 1 11 | 1 |1(4) 7段显示译码器74LS4774LS47是驱动共阳极的数码管的译码器。其逻辑符号如图7,外引线排列如图8所示Vx f Sabccle口 口 口n口

45、口nT 15 15 14131211109J74LS4712345678LJULJLILJLJLI U* c Zf birbid a GNT)图7逻辑符号图如图U1B cDBI/RBQRBI LT74LS47图8外引线排列74LS47输出低电平有效,即输出为0时,对应字段点亮;输出为1时,对应字段熄灭。A B、C D接收二进制码输入,af的输 出分别驱动7段译码器的af段。其功能见表4。表4 74LS47功能表功能输入BI /RBO输出显示LTRBIDCBAabcdefg及数字形 / / /. / / /aAAAA4AA灭灯入XXXXX1111111灭灯c / / / / /AccccccQ试

46、灯0XXXXX1000000084nnnnn44444444灭零10000011111111灭零-0-十十0000十0000001-0-Ad、/nnndA4nn4444411X0001110011111 c ArAcA.cccccAcO2rX0 10100 -0000102r,Q,4c4nn44nQ.oAX001r1c00c0r011r0ro41X十1十&p4-5-十X0101十0100100-5-61X01101111000006ZN1亍十X0111十0001111亍8-十000十0000000-8-9-,A Q十,1 1X10 -H01十1 10A_,0A0十1十1十0 p0 p9n1 1

47、X H1 1L1L1 11 1113HXHHLHH0110100甘H 1HHL甘11100001 11 11 11 1AAAAA15HXH 1HHHH11111111BI / RBOXXXXXXL1111111熄灭RBILT-H-LLLL1111111火零L 乂 | 乂 乂乂乂H 0 0 0 0 0 0 0 测试二、实验过程(实验步骤、记录、数据、分析)1. 实验内容与完成情况:(1) 测试74LS148的逻辑功能,并填表说明。(添表5)(2) 测试译码器74LS47控制管脚LT、RBI和BI / RBO的功能。(添表6)(3) 用proteus设计一个简单的数字显示系统,要求输入十进制数据0

48、9,通过数码管显示。观察并记录显示结果。(原理图画在下面,记录结果贴在结论部分)1195 400 D DOOO7651 12. 出现的(已解决的)问题与解决办法:(1) 在 74LS47功能表中,当 LT=1, RBI =1, bi / RBO =0, DCBA=000时,输出 abcdefg=0000001是错误的,要得到输出显示结果为 0,应该将BI/rbo=1,此 时才不会因静态灭零而不显示任何数字。(2) 再用Proteus设计一个简单的数字显示系统中直接把 lt、rbi、bi /rbo三个端口接高电平,不考虑测试、灭灯、灭零的情况,从而使74LS47直接工作译码状态。3. 未解决的问

49、题与可能的解决方案:当通过BUTTON按键实现LT、RBI、BI/RBO高低电平控制时,未能实现数字的正常显示。正确设置各个端口的控制电平可能实现对LT、RBI、BI /RBO三个端口的正常控制。三、结论1.实验结果:(1)测试74LS148的逻辑功能表5 74LS148的逻辑功能测试结果(2)测试译码器74LS47控制管脚LT、RBI和BI/RBO的功能表6译码器74LS47控制管脚LT、RBI和BI / RBO的功能测试结果功能输入BI /RBO输出显示字形LTRBIDCBAabcdefg及数 / / / /nAAAAAAA字形火灯c/XX /XX /XX /XX /041r1r1r1r1r1r1r火灯o试灯XXrXCXrX0A0A0A0A0A0A0Ao火零c104廿c廿cc1rrr十r十rr十A火零c00r0r0A00r0r00011a1X、0000丁1A11r.001r1r11rx12X、/0000100102n4nnnn44nn41X1

展开阅读全文
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!