公路钢筋溷凝土及预应力溷凝土桥涵设计规范JTGD622004技术交流鲍卫刚课件

上传人:沈*** 文档编号:136993076 上传时间:2022-08-17 格式:PPT 页数:79 大小:3.24MB
收藏 版权申诉 举报 下载
公路钢筋溷凝土及预应力溷凝土桥涵设计规范JTGD622004技术交流鲍卫刚课件_第1页
第1页 / 共79页
公路钢筋溷凝土及预应力溷凝土桥涵设计规范JTGD622004技术交流鲍卫刚课件_第2页
第2页 / 共79页
公路钢筋溷凝土及预应力溷凝土桥涵设计规范JTGD622004技术交流鲍卫刚课件_第3页
第3页 / 共79页
资源描述:

《公路钢筋溷凝土及预应力溷凝土桥涵设计规范JTGD622004技术交流鲍卫刚课件》由会员分享,可在线阅读,更多相关《公路钢筋溷凝土及预应力溷凝土桥涵设计规范JTGD622004技术交流鲍卫刚课件(79页珍藏版)》请在装配图网上搜索。

1、 公路钢筋混凝土及预应力混凝土桥涵公路钢筋混凝土及预应力混凝土桥涵设计规范设计规范JTG D62-2004JTG D62-2004技术交流技术交流 公路钢筋混凝土及预应力混凝公路钢筋混凝土及预应力混凝土桥涵设计规范土桥涵设计规范JTG D62-2004JTG D62-2004的基本变化的基本变化基本变化基本变化:1 1 设计理论变化带来的直接或间接设计理论变化带来的直接或间接的变化的变化2 2 安全度调整带来的变化安全度调整带来的变化3 3 公式、构造等的完善修改公式、构造等的完善修改4 4 新增内容新增内容 第第1 1章章 总则总则 1.0.2 1.0.2 适用范围适用范围 本规范的适用范围

2、与原规范相同,即仅适用本规范的适用范围与原规范相同,即仅适用于用硅酸盐水泥、矿渣水泥、火山灰水泥配制的于用硅酸盐水泥、矿渣水泥、火山灰水泥配制的目前实际工程中大量使用的混凝土制作的一般的目前实际工程中大量使用的混凝土制作的一般的钢筋混凝土及预应力混凝土构件的设计,不适用钢筋混凝土及预应力混凝土构件的设计,不适用于特种混凝土如轻质混凝土制作的桥涵结构构件于特种混凝土如轻质混凝土制作的桥涵结构构件设计。设计。第第3 3章章 材料材料1 1 混凝土材料混凝土材料混凝土强度等级上限由混凝土强度等级上限由6060号增加到号增加到C80C80,C50C50以下为普通强度以下为普通强度混凝土,混凝土,C50

3、C50及以上为高强度混凝土。及以上为高强度混凝土。C50C50及以上高强的混凝土可用常规水泥、砂石料和常规工艺配制,及以上高强的混凝土可用常规水泥、砂石料和常规工艺配制,具有高强、早强、工作度良好、变形小、抗渗抗腐蚀性能优良等特具有高强、早强、工作度良好、变形小、抗渗抗腐蚀性能优良等特点;能大幅度提高结构构件的承载能力,减小尺寸和自重,加快施点;能大幅度提高结构构件的承载能力,减小尺寸和自重,加快施工进度。高性能混凝土将成为桥梁建筑的基本材料。工进度。高性能混凝土将成为桥梁建筑的基本材料。混凝土强度等级混凝土强度等级用用150mm150mm150mm150mm150mm150mm立方体抗压强度

4、标立方体抗压强度标准值确定并冠以准值确定并冠以C C表示。抗压强度标准值系指试件用标准表示。抗压强度标准值系指试件用标准方法制作、养护至方法制作、养护至2828天龄期,以标准试验方法测得的具天龄期,以标准试验方法测得的具有有95%95%保证率的抗压强度(以保证率的抗压强度(以MPaMPa计)。计)。混凝土标号混凝土标号系指龄期为系指龄期为2828天、尺寸为天、尺寸为200mm200mm的标准立方体、的标准立方体、标准值取标准值取85%85%保证率确定的混凝土抗压强度。保证率确定的混凝土抗压强度。(规范中应用的混凝土轴心抗压强度是针对棱柱体的,并对高强混凝土(规范中应用的混凝土轴心抗压强度是针对

5、棱柱体的,并对高强混凝土有强度的脆性折减。)有强度的脆性折减。)混凝土强度等级与原规范的混凝土标号应按下列公式进行换混凝土强度等级与原规范的混凝土标号应按下列公式进行换算:算:混凝土的变异系数:混凝土的变异系数:混凝土强度混凝土强度 C20 C25 C30 C35 C40 C45 C50 C55 C60C20 C25 C30 C35 C40 C45 C50 C55 C60 变异系数变异系数 0.18 0.16 0.14 0.13 0.12 0.12 0.11 0.11 0.100.18 0.16 0.14 0.13 0.12 0.12 0.11 0.11 0.10混凝土强度等级与原规范混凝土标

6、号变换关系:混凝土强度等级与原规范混凝土标号变换关系:原标号原标号 20 25 30 35 40 45 50 55 6020 25 30 35 40 45 50 55 60 现强度现强度 C18 C23 C28 C33 C38 C43 C48 C53 C58C18 C23 C28 C33 C38 C43 C48 C53 C58 bffkcuRf)1(95.0645.11,第第3 3章章 材料材料3.1.2 3.1.2 公路桥涵受力构件的混凝土强度等级应按下列公路桥涵受力构件的混凝土强度等级应按下列规定采用:规定采用:1 1 钢筋混凝土构件不应低于钢筋混凝土构件不应低于C20C20,当用,当用H

7、RB400HRB400、KL400KL400级级钢筋配筋时,不应低于钢筋配筋时,不应低于C25C25;2 2 预应力混凝土构件不应低于预应力混凝土构件不应低于C40C40。原规范第原规范第2.1.12.1.1条:条:用于公路桥梁承重部分的混凝土标号规定如下:用于公路桥梁承重部分的混凝土标号规定如下:1515号、号、2020号、号、2525号、号、3030号、号、4040号、号、5050号和号和6060号。号。钢筋混凝土构件的混凝土标号不宜低于钢筋混凝土构件的混凝土标号不宜低于1212号;当采用号;当采用、级钢级钢筋时,混凝土标号不宜低于筋时,混凝土标号不宜低于2020号;在预应力混凝土组合梁中

8、,钢筋混号;在预应力混凝土组合梁中,钢筋混凝土部分的混凝土标号不宜低于凝土部分的混凝土标号不宜低于2525号。号。预应力混凝土构件的混凝土标号不宜低于预应力混凝土构件的混凝土标号不宜低于3030号;当采用碳素钢丝号;当采用碳素钢丝、刻痕钢丝、钢铰线、热处理钢筋(、刻痕钢丝、钢铰线、热处理钢筋(级钢筋)作预应力钢筋时,混级钢筋)作预应力钢筋时,混凝土标号不宜低于凝土标号不宜低于4040号。号。第第3 3章章 材料材料 2 2 钢筋钢筋 公路桥梁用普通钢筋:公路桥梁用普通钢筋:R235R235(原(原级钢筋)级钢筋)HRB335HRB335(原(原级钢筋)级钢筋)HRB400HRB400和和KL4

9、00KL400(原(原级钢筋和余热钢筋)级钢筋和余热钢筋)钢筋及其强度标准值均取自最新现行国家标准,钢筋及其强度标准值均取自最新现行国家标准,保证率不小于保证率不小于95%95%。取消了。取消了级钢筋、级钢筋、5 5号钢钢筋号钢钢筋 公路桥梁用预应力钢筋:公路桥梁用预应力钢筋:钢绞线钢绞线 钢丝(应力消除的光面钢丝、刻痕钢丝、螺旋肋钢丝)钢丝(应力消除的光面钢丝、刻痕钢丝、螺旋肋钢丝)精轧螺纹钢筋精轧螺纹钢筋 原规范中的冷拉钢筋和冷拔低碳钢丝均予删去原规范中的冷拉钢筋和冷拔低碳钢丝均予删去 此外,本规范还规定可以采用此外,本规范还规定可以采用环氧树脂涂层钢筋环氧树脂涂层钢筋 钢筋的强度指标有微

10、调,原因为冶金的标准及本规范的材钢筋的强度指标有微调,原因为冶金的标准及本规范的材料分项系数均有微调。料分项系数均有微调。第第3 3章章 材料材料第第4 4章章 桥梁计算的一般规定桥梁计算的一般规定4.1.4 4.1.4 斜板计算斜板计算 当整体式斜板桥的斜交角(板的支承轴线的垂当整体式斜板桥的斜交角(板的支承轴线的垂直线与桥纵轴线的夹角)不大于直线与桥纵轴线的夹角)不大于1515时,可按正时,可按正交板计算,计算跨径为:当交板计算,计算跨径为:当l/bl/b1.31.3时,按两支时,按两支承轴线间垂直距离的正跨径计算;当承轴线间垂直距离的正跨径计算;当l/bl/b1.31.3时时,按顺桥向纵

11、轴线的斜跨径计算;以上,按顺桥向纵轴线的斜跨径计算;以上l l为斜跨为斜跨径,径,b b为垂直于桥纵轴线的板宽。为垂直于桥纵轴线的板宽。装配式铰接斜板桥的预制板块,可按宽为两板边垂直装配式铰接斜板桥的预制板块,可按宽为两板边垂直距离,计算跨径为斜跨径的正交板计算。距离,计算跨径为斜跨径的正交板计算。原规范第原规范第4.1.94.1.9条:条:整体式或装配式斜板桥,当斜度等于或小于整体式或装配式斜板桥,当斜度等于或小于1515时,时,可按正交板计算。可按正交板计算。4.2.1 4.2.1 效应计算效应计算 结构的作用(或荷载)效应可按弹性理论进行结构的作用(或荷载)效应可按弹性理论进行计算。对超

12、静定结构,在进行作用(荷载)效应计算。对超静定结构,在进行作用(荷载)效应分析时,结构构件的抗弯刚度可采用:分析时,结构构件的抗弯刚度可采用:允许开裂的构件允许开裂的构件0.80.8E Ec cI I,不允许开裂的构件,不允许开裂的构件E Ec cI I。其中的其中的I I为混凝土毛截面惯性矩。为混凝土毛截面惯性矩。(7575版桥规为版桥规为E EcI/1.5cI/1.5)(本条仅适用于作用效应分析,不适用于正常使用极限状(本条仅适用于作用效应分析,不适用于正常使用极限状态的挠度计算)态的挠度计算)原第原第3.2.13.2.1条取消:条取消:多梁式上部结构无论整体式板或铰接式板,有中横隔多梁式

13、上部结构无论整体式板或铰接式板,有中横隔梁或无中横隔梁,计算行车系梁的活载内力时,均宜采梁或无中横隔梁,计算行车系梁的活载内力时,均宜采用弹性理论空间计算方法。用弹性理论空间计算方法。第第4 4章章 桥梁计算的一般规定桥梁计算的一般规定4.2.2 T4.2.2 T梁截面翼缘有效宽度梁截面翼缘有效宽度 2 2 外梁翼缘的有效宽度取相邻内梁翼缘有效宽度的一半,外梁翼缘的有效宽度取相邻内梁翼缘有效宽度的一半,加上腹板宽度的加上腹板宽度的1/21/2,再加上外侧悬臂板平均厚度的,再加上外侧悬臂板平均厚度的6 6倍或倍或外侧悬臂板实际宽度两者中的较小者。外侧悬臂板实际宽度两者中的较小者。预应力混凝土梁在

14、计算预加力引起的混凝土应预应力混凝土梁在计算预加力引起的混凝土应力时,预加力作为轴向力产生的应力可按实际翼力时,预加力作为轴向力产生的应力可按实际翼缘全宽计算;由预加力偏心引起的弯矩产生的应缘全宽计算;由预加力偏心引起的弯矩产生的应力可按翼缘有效宽度计算。力可按翼缘有效宽度计算。对超静定结构进行作用(或荷载)效应分析时对超静定结构进行作用(或荷载)效应分析时,T T形、箱形截面梁的翼缘宽度可取实际全宽。形、箱形截面梁的翼缘宽度可取实际全宽。(各个国家的相关规定稍有差异,我们的规定偏于安全考虑)(各个国家的相关规定稍有差异,我们的规定偏于安全考虑)第第4 4章章 桥梁计算的一般规定桥梁计算的一般

15、规定4.2.3 4.2.3 箱形截面梁翼缘有效宽度箱形截面梁翼缘有效宽度 箱形截面梁的翼缘有效宽度问题,其原理与箱形截面梁的翼缘有效宽度问题,其原理与T T形截面梁一样。箱形截面梁翼缘有效宽度,目前比形截面梁一样。箱形截面梁翼缘有效宽度,目前比较通用的是较通用的是德国规范德国规范DIN1075DIN1075推荐的方法。这个方法已为推荐的方法。这个方法已为德国钢桥设计规范德国钢桥设计规范DIN1073DIN1073、美美国规范国规范AASHTO-LRFDAASHTO-LRFD所采用。所采用。梁桥梁桥第七章也介绍了这个方法。本规范编制时,委托湖南大学第七章也介绍了这个方法。本规范编制时,委托湖南大

16、学作了进一步的验证分析计算,结果表明该方法可用,故本规范最终采纳了这个方法。作了进一步的验证分析计算,结果表明该方法可用,故本规范最终采纳了这个方法。注意点:注意点:1 1 当梁高当梁高 时,翼缘有效宽度应采用翼缘时,翼缘有效宽度应采用翼缘实际宽度。实际宽度。2 2 预应力混凝土梁在计算预加力引起的混凝土应预应力混凝土梁在计算预加力引起的混凝土应力时,预加力作为轴向力产生的应力可按实际翼力时,预加力作为轴向力产生的应力可按实际翼缘全宽计算;由预加力偏心引起的弯矩产生的应缘全宽计算;由预加力偏心引起的弯矩产生的应力可按翼缘有效宽度计算。力可按翼缘有效宽度计算。3 3 对超静定结构进行作用(或荷载

17、)效应分析时对超静定结构进行作用(或荷载)效应分析时,箱形截面梁的翼缘宽度可取实际全宽。,箱形截面梁的翼缘宽度可取实际全宽。第第4 4章章 桥梁计算的一般规定桥梁计算的一般规定3.0/ibh 4.2.7 4.2.7 为验算变高度预应力混凝土梁斜截面抗裂的需要,本规为验算变高度预应力混凝土梁斜截面抗裂的需要,本规范补充了该类梁考虑弯矩和轴向力引起的附加剪应力的计算范补充了该类梁考虑弯矩和轴向力引起的附加剪应力的计算方法,列于附录方法,列于附录B-1983B-1983年年公路公路杂志范家聪杂志范家聪预应力变截预应力变截面梁的剪应力计算面梁的剪应力计算一文一文 。McNcc21221)(1)(1tg

18、AAbAIASbtgAbAAIASbccvcclc222)2(1)2(1tgISSAIAAbtgISSAIAAbcvcvclclc)2()(421xllhHtgnn)2()(421xlltgnn第第4 4章章 桥梁计算的一般规定桥梁计算的一般规定 4.2.9 4.2.9 混凝土的徐变系数和收缩应变的计算公式采用混凝土的徐变系数和收缩应变的计算公式采用的是的是CEB-FIPCEB-FIP(19901990)上的公式并作了适当简化。)上的公式并作了适当简化。原规范采用的是原规范采用的是CEB-FIPCEB-FIP(19781978)的公式。)的公式。通常认为,混凝土的应力在不超过其强度的通常认为,

19、混凝土的应力在不超过其强度的0.4-0.50.4-0.5(混凝土的轴心抗压设计强度小于其极限强度的(混凝土的轴心抗压设计强度小于其极限强度的5-%5-%)时,应时,应力与应变基本保持线形关系,应变、应力叠加原理成力与应变基本保持线形关系,应变、应力叠加原理成立。从而,出现了许多计算方法,常用的有老化理论立。从而,出现了许多计算方法,常用的有老化理论、弹性徐变体理论、弹性模量修正法、按龄期调整的、弹性徐变体理论、弹性模量修正法、按龄期调整的模量修正法(模量修正法(TrostTrost法、金成棣法、范立础法、法、金成棣法、范立础法、BazantBazant法、法、Step-by-stepStep-

20、by-step法等)。法等)。第第4 4章章 桥梁计算的一般规定桥梁计算的一般规定原规范的:原规范的:第第3.2.123.2.12条(箱梁应计算扭转剪力)条(箱梁应计算扭转剪力)第第3.2.133.2.13条(组合梁应根据具体情况进行换算计算)条(组合梁应根据具体情况进行换算计算)第第3.2.143.2.14条(预制梁与现浇板的组合梁的徐变计算原则)条(预制梁与现浇板的组合梁的徐变计算原则)第第3.2.153.2.15条(组合梁组合面的剪应力计算公式)条(组合梁组合面的剪应力计算公式)第第3.2.163.2.16条(组合面的容许剪应力限值规定)条(组合面的容许剪应力限值规定)第第3.2.173

21、.2.17条(组合梁应设剪力键)条(组合梁应设剪力键)修改后分别在相关章节中体现。修改后分别在相关章节中体现。第第4 4章章 桥梁计算的一般规定桥梁计算的一般规定4.3 4.3 拱的计算拱的计算(由原来的(由原来的7 7条增加至条增加至1414条)条)4.3.1 4.3.1 无铰拱和双铰拱的计算可无铰拱和双铰拱的计算可不考虑拱上建筑与主拱圈的联合作不考虑拱上建筑与主拱圈的联合作用。本节内有关无铰拱和双铰拱的用。本节内有关无铰拱和双铰拱的计算规定计算规定,均适用于主拱圈裸拱受均适用于主拱圈裸拱受力而不考虑其与拱上建筑的联合作力而不考虑其与拱上建筑的联合作用。用。拱的计算如考虑拱上建筑与主拱圈的联

22、拱的计算如考虑拱上建筑与主拱圈的联合作用,拱上建筑的结构应符合计算所预合作用,拱上建筑的结构应符合计算所预设的条件。设的条件。计算由车道荷载引起的拱的正弯矩时,计算由车道荷载引起的拱的正弯矩时,拱顶、拱跨拱顶、拱跨1/41/4应乘以折减系数应乘以折减系数0.70.7,拱,拱脚应乘以脚应乘以0.90.9,中间各个截面的正弯矩折,中间各个截面的正弯矩折减系数可用直线插入法确定。减系数可用直线插入法确定。第第4 4章章 桥梁计算的一般规定桥梁计算的一般规定4.3.2 4.3.2 特大跨径和大跨径拱桥应优选特大跨径和大跨径拱桥应优选拱轴线,使拱在各种作用(或荷载拱轴线,使拱在各种作用(或荷载)组合作用

23、下,在各个受力阶段,)组合作用下,在各个受力阶段,轴向力偏心较小。轴向力偏心较小。在优选过程中,在优选过程中,尚需考虑与施工方法相配合,适应尚需考虑与施工方法相配合,适应施工各阶段受力特点,满足施工受施工各阶段受力特点,满足施工受力的要求。力的要求。中、小跨径悬链线拱桥中、小跨径悬链线拱桥,可用不考虑弹性压缩的结构自重,可用不考虑弹性压缩的结构自重压力线与拱轴线的五点重合(拱顶压力线与拱轴线的五点重合(拱顶、1/41/4拱跨、拱脚),选择拱轴系拱跨、拱脚),选择拱轴系数。数。特大跨径和大跨径拱桥,如结构自重压特大跨径和大跨径拱桥,如结构自重压力线与拱轴线偏离过大,或在结构自重及力线与拱轴线偏离

24、过大,或在结构自重及其所引起的弹性压缩和温度下降、混凝土其所引起的弹性压缩和温度下降、混凝土收缩等作用下,轴向力偏心距较大时,拱收缩等作用下,轴向力偏心距较大时,拱轴线及拱的几何尺寸宜作适当调整。轴线及拱的几何尺寸宜作适当调整。第第4 4章章 桥梁计算的一般规定桥梁计算的一般规定4.3.10 4.3.10 大跨径拱桥应验算拱顶、拱跨大跨径拱桥应验算拱顶、拱跨3/83/8、拱跨拱跨1/41/4和拱脚四个截面;对于中、小跨和拱脚四个截面;对于中、小跨径拱桥,拱跨径拱桥,拱跨1/41/4截面可不验算;特大跨截面可不验算;特大跨径拱桥,除上述径拱桥,除上述4 4个截面外,需视截面配个截面外,需视截面配

25、筋情况,另行选择控制截面进行验算。筋情况,另行选择控制截面进行验算。4.3.11 4.3.11 多跨无铰拱桥应按连拱计算。连拱计多跨无铰拱桥应按连拱计算。连拱计算方法可以采用可靠的简化方法。当桥算方法可以采用可靠的简化方法。当桥墩抗推刚度与主拱抗推刚度之比大于墩抗推刚度与主拱抗推刚度之比大于3737时,时,可按单跨拱桥计算。可按单跨拱桥计算。4.3.12 4.3.12 桁架拱计算桁架拱计算4.3.13 4.3.13 刚架拱计算刚架拱计算4.3.14 4.3.14 系杆拱计算系杆拱计算(原规范的第(原规范的第4 4节节-墩台计算、第墩台计算、第5 5节节-铰和支座计算分铰和支座计算分别转入新规范

26、的第别转入新规范的第8.28.2、8.38.3、8.48.4节)节)第第4 4章章 桥梁计算的一般规定桥梁计算的一般规定第第5 5章章 持久状况承载能力极限状态计算持久状况承载能力极限状态计算 5.1.1 5.1.1 公路桥涵的持久状况设计应按承载能力极限状态的要公路桥涵的持久状况设计应按承载能力极限状态的要求,对构件进行承载力及稳定计算,必要时尚应进行结构求,对构件进行承载力及稳定计算,必要时尚应进行结构的倾覆和滑移的验算。在进行承载能力极限状态计算时,的倾覆和滑移的验算。在进行承载能力极限状态计算时,作用(或荷载)(其中汽车荷载应计入冲击系数)的效应作用(或荷载)(其中汽车荷载应计入冲击系

27、数)的效应应采用其组合设计值;结构材料性能采用其强度设计值。应采用其组合设计值;结构材料性能采用其强度设计值。本节所谈的承载能力极限状态计算,均指对持久状况下的结构。这种状本节所谈的承载能力极限状态计算,均指对持久状况下的结构。这种状况的况的承载能力极限状态应包括对构件的抗弯、抗压、抗拉、抗剪、抗扭承载能力极限状态应包括对构件的抗弯、抗压、抗拉、抗剪、抗扭等的强度及受压构件的稳定进行计算;当有必要时还应对结构的倾覆和等的强度及受压构件的稳定进行计算;当有必要时还应对结构的倾覆和滑移进行验算。滑移进行验算。这是结构设计最主要的部分。计算时汽车荷载应计入冲这是结构设计最主要的部分。计算时汽车荷载应

28、计入冲击系数,在构件进行承载力及稳定计算时,作用(或荷载)及结构构件击系数,在构件进行承载力及稳定计算时,作用(或荷载)及结构构件的抗力均应采用已考虑了分项系数的设计值;在多种作用(或荷载)情的抗力均应采用已考虑了分项系数的设计值;在多种作用(或荷载)情况下,应将各设计值效应进行最不利组合,并根据参与组合的作用(或况下,应将各设计值效应进行最不利组合,并根据参与组合的作用(或荷载)情况,取用不同的效应组合系数。荷载)情况,取用不同的效应组合系数。第第5 5章主要增加了以下内容:章主要增加了以下内容:连续梁和悬臂梁斜截面抗剪承载力计算;连续梁和悬臂梁斜截面抗剪承载力计算;普通钢筋沿截面腹部均匀配

29、置的钢筋混凝土普通钢筋沿截面腹部均匀配置的钢筋混凝土偏心受压构件的正截面抗压承载力计算;偏心受压构件的正截面抗压承载力计算;钢筋混凝土双向偏心受压构件的正截面承载钢筋混凝土双向偏心受压构件的正截面承载力计算;力计算;T T形、形、I I形、箱形截面钢筋混凝土构件(矩形形、箱形截面钢筋混凝土构件(矩形截面原规范已有)的抗弯剪扭的承载力计算;截面原规范已有)的抗弯剪扭的承载力计算;混凝土板抗冲切承载力计算。混凝土板抗冲切承载力计算。第第5 5章章 持久状况承载能力极限状态计算持久状况承载能力极限状态计算5.1.4 5.1.4 构件正截面的承载力应按下列构件正截面的承载力应按下列基本假定基本假定进行

30、进行计算:计算:1 1 构件弯曲后,其截面仍保持为平面;构件弯曲后,其截面仍保持为平面;2 2 截面受压混凝土的应力图形简化为矩形,其压截面受压混凝土的应力图形简化为矩形,其压力强度取混凝土的轴心抗压强度设计值;截面受力强度取混凝土的轴心抗压强度设计值;截面受拉混凝土的抗拉强度不予考虑;拉混凝土的抗拉强度不予考虑;3 3 极限状态计算时,受拉区钢筋应力取其抗拉强极限状态计算时,受拉区钢筋应力取其抗拉强度设计值或(小偏压构件除外);受压区或受压度设计值或(小偏压构件除外);受压区或受压较大边钢筋应力取其抗压强度设计值或。较大边钢筋应力取其抗压强度设计值或。4 4 钢筋应力等于钢筋应变与其弹性模量

31、的乘积,钢筋应力等于钢筋应变与其弹性模量的乘积,但不大于其强度设计值。但不大于其强度设计值。第第5 5章章 持久状况承载能力极限状态计算持久状况承载能力极限状态计算 变化:变化:1 1 原规范的受压区混凝土的极限压应变为原规范的受压区混凝土的极限压应变为0.0030.003,新规范对普通强度混凝土取,新规范对普通强度混凝土取0.00330.0033,高强度,高强度混凝土混凝土C50C50C80C80取极限压应变为取极限压应变为0.0033-0.0030.0033-0.003 2 2 受压区混凝土应力图形仍维持等效矩形应力受压区混凝土应力图形仍维持等效矩形应力块,但矩形应力图形高度与实际受压区高

32、度之比,块,但矩形应力图形高度与实际受压区高度之比,原对钢筋混凝土构件取原对钢筋混凝土构件取0.90.9,对预应力混凝土构件取,对预应力混凝土构件取0.80.8;新规范对普通强度混凝土取;新规范对普通强度混凝土取0.80.8,高强度混凝,高强度混凝土土C50C50C80C80取取0.8-0.740.8-0.74;3 3 矩形应力块的压力强度,原规范给出混凝土矩形应力块的压力强度,原规范给出混凝土抗压设计强度,再除以抗压设计强度,再除以1.251.25系数;本规范直接给出系数;本规范直接给出混凝土轴心抗压强度设计值。混凝土轴心抗压强度设计值。第第5 5章章 持久状况承载能力极限状态计算持久状况承

33、载能力极限状态计算 5.1.5 5.1.5 构件承载能力极限状态设计表达式构件承载能力极限状态设计表达式 新规范:预应力混凝土连续梁等超静定结构,在计新规范:预应力混凝土连续梁等超静定结构,在计算承载能力极限状态时应考虑由预应力引起的次效算承载能力极限状态时应考虑由预应力引起的次效应。应。原规范对预应力混凝土连续梁等超静定结构,在承原规范对预应力混凝土连续梁等超静定结构,在承载能力极限状态计算中是不考虑预应力引起的次效载能力极限状态计算中是不考虑预应力引起的次效应的,该规范规定应的,该规范规定“对于预应力混凝土连续梁,在对于预应力混凝土连续梁,在弹性阶段的计算中尚应计入由预加应力引起的混凝弹性

34、阶段的计算中尚应计入由预加应力引起的混凝土弹性变形的二次力,土弹性变形的二次力,但在塑性阶段计算中则但在塑性阶段计算中则可不计由预加应力引起的二次力可不计由预加应力引起的二次力”。第第5 5章章 持久状况承载能力极限状态计算持久状况承载能力极限状态计算5.2 5.2 受弯构件受弯构件 5.2.1 5.2.1 受弯构件的纵向受拉钢筋和截面受压区混凝土同时达受弯构件的纵向受拉钢筋和截面受压区混凝土同时达到其强度设计值时,构件的到其强度设计值时,构件的正截面相对界限受压区高度正截面相对界限受压区高度(为纵向受拉钢筋和受压区混凝土同时达到其强度设计值时为纵向受拉钢筋和受压区混凝土同时达到其强度设计值时

35、的受压区高度)应按表的受压区高度)应按表5.2.15.2.1采用。采用。表表5.2.1 5.2.1 相对界限受压区高度相对界限受压区高度 第第5 5章章 持久状况承载能力极限状态计算持久状况承载能力极限状态计算 混凝土强度等级混凝土强度等级钢筋种类钢筋种类C50及以下及以下C55C60C65C70C75C80R2350.620.600.58HRB3350.560.540.52HRB400、KL4000.530.510.49钢绞线、钢丝钢绞线、钢丝0.400.380.360.35精轧螺纹钢筋精轧螺纹钢筋0.400.380.36 5.2.2 5.2.2 截面受压区高度应符合下列要求:截面受压区高度

36、应符合下列要求:为防止受弯构件的超筋设计,规范规定了截面受压区高度的限制条件,其为防止受弯构件的超筋设计,规范规定了截面受压区高度的限制条件,其中相对界限受压区高度,通过计算已于本规范表中相对界限受压区高度,通过计算已于本规范表5.2.15.2.1中列出。当给定钢中列出。当给定钢筋种类和混凝土强度等级,根据可求得相应的受拉钢筋配筋率,这个即筋种类和混凝土强度等级,根据可求得相应的受拉钢筋配筋率,这个即为受弯构件界限(最大)配筋率。因此,截面受压区高度的限制条件也为受弯构件界限(最大)配筋率。因此,截面受压区高度的限制条件也就是限制受弯构件的配筋率。超过这个限制条件,受弯构件有可能出现就是限制受

37、弯构件的配筋率。超过这个限制条件,受弯构件有可能出现超筋,也有可能出现脆性破坏。一般地说,当设计计算的受压区高度不超筋,也有可能出现脆性破坏。一般地说,当设计计算的受压区高度不能满足上述要求时,表明受拉区纵向钢筋配置过多或构件高度不足,需能满足上述要求时,表明受拉区纵向钢筋配置过多或构件高度不足,需要进行调整;当构件受拉区配置不同种类钢筋时,应选用相应于各种钢要进行调整;当构件受拉区配置不同种类钢筋时,应选用相应于各种钢筋较小的,以使构件维持更多的延性。但是,这个限制条件只是从理论筋较小的,以使构件维持更多的延性。但是,这个限制条件只是从理论上得到保证,当接近或相等时,受弯构件仍有可能发生具有

38、明显脆性破上得到保证,当接近或相等时,受弯构件仍有可能发生具有明显脆性破坏特征的界限破坏。因此,在实际工程中应尽量避免出现两者接近或相坏特征的界限破坏。因此,在实际工程中应尽量避免出现两者接近或相等的情况。等的情况。(适筋梁与超筋梁的界限)(适筋梁与超筋梁的界限)第第5 5章章 持久状况承载能力极限状态计算持久状况承载能力极限状态计算0hxb 最小配筋率的限制最小配筋率的限制(适筋梁与少筋梁的界限)(适筋梁与少筋梁的界限)9.1.12-2:9.1.12-2:受弯构件、偏心受拉构件及轴心受拉构件的一侧受拉钢筋受弯构件、偏心受拉构件及轴心受拉构件的一侧受拉钢筋的配筋百分率不应小于如下计算值,同时不

39、应小于的配筋百分率不应小于如下计算值,同时不应小于0.200.20。4545*混凝土抗拉强度设计值混凝土抗拉强度设计值/钢筋抗拉强度设计值钢筋抗拉强度设计值 部分预应力混凝土受弯构件中普通受拉钢筋的截面面积不部分预应力混凝土受弯构件中普通受拉钢筋的截面面积不应小于应小于0.0030.003bhbh0 0。受拉构件的受拉最小配筋率是根据钢筋混凝土构件破坏时受拉构件的受拉最小配筋率是根据钢筋混凝土构件破坏时,截面所能承受的弯矩不小于同一截面的素混凝土构件所,截面所能承受的弯矩不小于同一截面的素混凝土构件所承受的弯矩的原则确定的,其目的是当混凝土手拉边缘出承受的弯矩的原则确定的,其目的是当混凝土手拉

40、边缘出现裂缝时,梁不致因配筋过少而脆性破坏。现裂缝时,梁不致因配筋过少而脆性破坏。第第5 5章章 持久状况承载能力极限状态计算持久状况承载能力极限状态计算 5.2.7 5.2.7 受弯构件斜截面抗剪强度计算,将原适用于预应力混受弯构件斜截面抗剪强度计算,将原适用于预应力混凝土简支梁的两项和(混凝土和箍筋分别抗剪)公式改为同凝土简支梁的两项和(混凝土和箍筋分别抗剪)公式改为同时适用于钢筋混凝土和预应力混凝土简支梁的两项积(混凝时适用于钢筋混凝土和预应力混凝土简支梁的两项积(混凝土和箍筋共同抗剪)公式,同时适用于连续梁和悬臂梁的验土和箍筋共同抗剪)公式,同时适用于连续梁和悬臂梁的验算:算:(a)(

41、a)考虑纵向钢筋的抗剪作用但适当降低,将公式中的考虑纵向钢筋的抗剪作用但适当降低,将公式中的(2+p)(2+p)改为(改为(2+0.6p2+0.6p););(b)(b)采用提高系数考虑梁受压翼缘对抗剪承载力的有利因素;采用提高系数考虑梁受压翼缘对抗剪承载力的有利因素;(c)(c)增加了连续梁正负弯矩区段的抗剪计算规定;增加了连续梁正负弯矩区段的抗剪计算规定;(d)(d)考虑预应力对抗剪承载力的提高,按原苏联考虑预应力对抗剪承载力的提高,按原苏联建筑法规建筑法规取取1.25;1.25;(e)(e)考虑了竖向预应力钢筋应力不均匀分布影响系数考虑了竖向预应力钢筋应力不均匀分布影响系数0.75 0.7

42、5。pbsbcsdVVVV0svsvKcucsffPbhV,03321)6.02(1045.0ssbsdsbAfVsin1075.03ppbpdpbAfVsin1075.03第第5 5章章 持久状况承载能力极限状态计算持久状况承载能力极限状态计算钢筋混凝土梁的斜截面剪切破坏主要模式:钢筋混凝土梁的斜截面剪切破坏主要模式:斜拉破坏、斜拉破坏、剪压破坏剪压破坏、斜压破坏、斜压破坏 5.2.9 5.2.9 矩形、矩形、T T形和形和I I形截面的受弯构件,其抗剪截面(形截面的受弯构件,其抗剪截面(上限)应符合下列要求:上限)应符合下列要求:(5.2.95.2.9)“抗剪上限值抗剪上限值”公式维持了与

43、原规范相同的水平,以防止钢筋混凝土公式维持了与原规范相同的水平,以防止钢筋混凝土梁的斜裂缝开展过宽或出现斜压破坏。在计算中如不能满足该公梁的斜裂缝开展过宽或出现斜压破坏。在计算中如不能满足该公式的要求,就应加大梁的截面尺寸或提高混凝土的强度等级。式的要求,就应加大梁的截面尺寸或提高混凝土的强度等级。5.2.10 5.2.10 矩形、矩形、T T形和形和I I形截面的受弯构件,当符形截面的受弯构件,当符合下列条件时合下列条件时 (5.2.105.2.10)可不进行斜截面抗剪承载力的验算,仅需按本规范第可不进行斜截面抗剪承载力的验算,仅需按本规范第9.3.139.3.13条构造要求配置箍筋(下限)

44、。条构造要求配置箍筋(下限)。第第5 5章章 持久状况承载能力极限状态计算持久状况承载能力极限状态计算)(1050.00230kNbhfVtdd)(1051.00,30kNbhfVkcud5.2.11 5.2.11 本条规定了钢筋混凝土简支梁、等高度和变高度(本条规定了钢筋混凝土简支梁、等高度和变高度(承托)连续梁的承托)连续梁的抗剪配筋设计方法抗剪配筋设计方法。基本思路与原规范。基本思路与原规范相同。基本思路与原规范相同。但在梁的最大设计剪力相同。基本思路与原规范相同。但在梁的最大设计剪力分配上,对原规范作了修改。原规范规定混凝土和箍筋分配上,对原规范作了修改。原规范规定混凝土和箍筋共同承担

45、最大设计剪力的共同承担最大设计剪力的60%60%,弯起钢筋则承担,弯起钢筋则承担40%40%;本;本规范改为前者承担不少于规范改为前者承担不少于60%60%,后者承担不超过,后者承担不超过40%40%。预应力混凝土受弯构件一般是不配置普通弯起钢筋的,抗剪配筋设预应力混凝土受弯构件一般是不配置普通弯起钢筋的,抗剪配筋设计也就只是确定箍筋间距。计也就只是确定箍筋间距。只要在由作用(或荷载)引起的最大设只要在由作用(或荷载)引起的最大设计剪力中减去由预应力弯起钢筋引起的剪力设计值后,就可与钢筋计剪力中减去由预应力弯起钢筋引起的剪力设计值后,就可与钢筋混凝土受弯构件同样计算。混凝土受弯构件同样计算。)

46、()()6.02(102.022,6232221mmVVbhfAfpSpbdoosvsvkcuv第第5 5章章 持久状况承载能力极限状态计算持久状况承载能力极限状态计算 5.3 5.3 受压构件受压构件 5.3.15.3.1、5.3.2 5.3.2 配有箍筋、螺旋式或焊接环式间接钢筋的钢配有箍筋、螺旋式或焊接环式间接钢筋的钢筋混凝土轴心受压构件仍保留原规范的计算公式,但公式增筋混凝土轴心受压构件仍保留原规范的计算公式,但公式增加了系数加了系数0.9,0.9,适当提高其安全度。此外适当提高其安全度。此外,对配置螺旋式间接对配置螺旋式间接钢筋的轴压构件,其套箍系数原规范取钢筋的轴压构件,其套箍系数

47、原规范取2.02.0。试验表明,螺。试验表明,螺旋箍筋对高强度混凝土的约束效果不如对普通强度混凝土,旋箍筋对高强度混凝土的约束效果不如对普通强度混凝土,本规范适当降低套箍系数,参照有关资料,对本规范适当降低套箍系数,参照有关资料,对C55C55、C60C60、C65C65、C70C70,分别取,分别取1.951.95、1.901.90、1.851.85、1.801.80。)(9.00sosdssdcorcddAkfAfAfNSAdAsocorso1第第5 5章章 持久状况承载能力极限状态计算持久状况承载能力极限状态计算 5.3.8 5.3.8 本条参照本条参照GBJ10-89GBJ10-89规

48、范规范新增的内容。截面腹部均匀配置纵向新增的内容。截面腹部均匀配置纵向钢筋的偏心受压构件,其正截面的承载力由两部分组成:一是由混凝土与钢筋的偏心受压构件,其正截面的承载力由两部分组成:一是由混凝土与上、下两边的纵向钢筋构成的承载力;二是由腹部均匀配置的纵向钢筋构上、下两边的纵向钢筋构成的承载力;二是由腹部均匀配置的纵向钢筋构成的承载力。沿截面腹部均匀配置纵向普通钢筋且每排不少于成的承载力。沿截面腹部均匀配置纵向普通钢筋且每排不少于4 4根的矩形根的矩形、T T形和形和I I形截面钢筋混凝土偏心受压构件正截面抗压承载力的计算:形截面钢筋混凝土偏心受压构件正截面抗压承载力的计算:前者与一般钢筋混凝

49、土偏心受压构件同样计算,利用本规范公式(前者与一般钢筋混凝土偏心受压构件同样计算,利用本规范公式(5.3.6-5.3.6-1 1)、()、(5.3.6-25.3.6-2)并经简单转化可得。后者可根据基本假定,并利用平衡)并经简单转化可得。后者可根据基本假定,并利用平衡方程和变形协调条件进行计算,但计算过程繁琐,不便于设计应用。一般方程和变形协调条件进行计算,但计算过程繁琐,不便于设计应用。一般采用简化的方法,要求腹部纵向钢筋等直径、等间距布置,且每排不少于采用简化的方法,要求腹部纵向钢筋等直径、等间距布置,且每排不少于4 4根,假定这些钢筋的截面变换为一钢带而作计算。根,假定这些钢筋的截面变换

50、为一钢带而作计算。swssssdffcddNAAfhbbbhfN00)(swsssdfffcddMahAfhhhbbbhfeN)()2/()()5.01(00200swswswAfN)5.01(swswswswhAfM)(5.02第第5 5章章 持久状况承载能力极限状态计算持久状况承载能力极限状态计算 5.3.95.3.9和附录和附录C C 本规范有关圆截面钢筋混凝土偏本规范有关圆截面钢筋混凝土偏心受压构件正截面的承载力计算,仅适用于强度等心受压构件正截面的承载力计算,仅适用于强度等级级C50C50及以下混凝土制作的构件,在原规范的基础及以下混凝土制作的构件,在原规范的基础上作了以下改变:对影

51、响承载力较小的计算参数进上作了以下改变:对影响承载力较小的计算参数进行简化,重新编制了计算表格,减少规范附表的篇行简化,重新编制了计算表格,减少规范附表的篇幅。幅。第第5 5章章 持久状况承载能力极限状态计算持久状况承载能力极限状态计算 5.3.10 5.3.10 偏心受压构件的偏心距增大系数,原规范是按弹性稳偏心受压构件的偏心距增大系数,原规范是按弹性稳定理论推导出来的,它本来适用于钢压杆,为了使其也适用定理论推导出来的,它本来适用于钢压杆,为了使其也适用于钢筋混凝土构件,将公式中按欧拉公式计算所得的临界荷于钢筋混凝土构件,将公式中按欧拉公式计算所得的临界荷载,用钢筋混凝土偏压构件截面刚度加

52、以修正。由于钢筋混载,用钢筋混凝土偏压构件截面刚度加以修正。由于钢筋混凝土构件系非均匀性材料,且出现裂缝,目前国际上一般不凝土构件系非均匀性材料,且出现裂缝,目前国际上一般不采用弹性稳定理论来求解。本规范参照工民建的研究资料按采用弹性稳定理论来求解。本规范参照工民建的研究资料按极限转动曲率法求增大系数值,但第一个系数的计算公式不极限转动曲率法求增大系数值,但第一个系数的计算公式不同。同。实际工程中受压构件的边界约束条件多样,需要视具体情况而定。实际工程中受压构件的边界约束条件多样,需要视具体情况而定。212000)(/140011hlhe0.17.22.0001he0.101.015.102h

53、l第第5 5章章 持久状况承载能力极限状态计算持久状况承载能力极限状态计算 5.3.12 5.3.12 增加了钢筋混凝土双向偏心受压构件承载增加了钢筋混凝土双向偏心受压构件承载力的计算公式,是尼克丁根据材料力学方法按单向偏力的计算公式,是尼克丁根据材料力学方法按单向偏心受压构件推导的近似公式,国内外规范普遍采用,心受压构件推导的近似公式,国内外规范普遍采用,只适用于正截面承载力的验算。只适用于正截面承载力的验算。试验表明,双向偏心受压构件的破坏形态与单向偏心受压构试验表明,双向偏心受压构件的破坏形态与单向偏心受压构件的破坏形态相似,所以单向偏心受压构件正截面承载力计件的破坏形态相似,所以单向偏

54、心受压构件正截面承载力计算的基本假定也适用于双向偏心受压构件。但由于破坏时受算的基本假定也适用于双向偏心受压构件。但由于破坏时受压区的形状较为复杂,如用正截面承载力计算的基本假定来压区的形状较为复杂,如用正截面承载力计算的基本假定来精确计算双向偏心受压构件的承载力,过程势必复杂繁琐。精确计算双向偏心受压构件的承载力,过程势必复杂繁琐。目前各国规范均采用近似的计算方法。目前各国规范均采用近似的计算方法。uouyuxdNNNN11110第第5 5章章 持久状况承载能力极限状态计算持久状况承载能力极限状态计算 5.5 5.5 受扭构件受扭构件 5.5.1 5.5.1 矩形截面钢筋混凝土受扭构件的承载

55、力计算,原矩形截面钢筋混凝土受扭构件的承载力计算,原规范只给出矩形截面构件的计算公式,是假定破坏裂缝规范只给出矩形截面构件的计算公式,是假定破坏裂缝与构件纵轴线成与构件纵轴线成4545角推演出来的,且不考虑混凝土的角推演出来的,且不考虑混凝土的抗扭作用。本规范按变角度空间桁架理论(或斜弯曲理抗扭作用。本规范按变角度空间桁架理论(或斜弯曲理论)建立抗扭承载力计算公式,破坏裂缝倾斜角也非仅论)建立抗扭承载力计算公式,破坏裂缝倾斜角也非仅4545,同时也考虑了混凝土的抗扭作用。在抗扭构件中,同时也考虑了混凝土的抗扭作用。在抗扭构件中,矩形截面是其基本单元体,本规范把抗扭构件计算扩,矩形截面是其基本单

56、元体,本规范把抗扭构件计算扩展到展到T T形、形、I I形和箱形截面构件。形和箱形截面构件。纯扭:纯扭:vcorsvsvttdadSAAfWfT102.135.0corsvsvvstsdUAfSAf1第第5 5章章 持久状况承载能力极限状态计算持久状况承载能力极限状态计算 5.5.3 5.5.3 矩形和箱形截面承受弯、剪、扭的构件,其截矩形和箱形截面承受弯、剪、扭的构件,其截面应符合下列公式要求:面应符合下列公式要求:当符合下列条件时当符合下列条件时 可不进行构件的抗扭承载力计算,仅需按本规范第可不进行构件的抗扭承载力计算,仅需按本规范第9.3.149.3.14条条规定配置构造钢筋。规定配置构

57、造钢筋。受扭构件当抗扭钢筋配置过多时,可能出现混凝土被压坏而钢筋达不到屈服强度,必须限受扭构件当抗扭钢筋配置过多时,可能出现混凝土被压坏而钢筋达不到屈服强度,必须限制截面的最小尺寸。也就是使截面混凝土剪应力不超过某一限值,类似构件斜截面抗制截面的最小尺寸。也就是使截面混凝土剪应力不超过某一限值,类似构件斜截面抗剪承载力计算时的上限值。对弯剪扭构件,由于其受力的复杂性,目前只能将扭矩产剪承载力计算时的上限值。对弯剪扭构件,由于其受力的复杂性,目前只能将扭矩产生的剪应力与弯剪产生的剪应力叠加起来,使其总和不超过混凝土强度的规定限值。生的剪应力与弯剪产生的剪应力叠加起来,使其总和不超过混凝土强度的规

58、定限值。本条规定的限值基本维持原规范的水平。在设计中,当由剪扭产生的剪应力超过规范本条规定的限值基本维持原规范的水平。在设计中,当由剪扭产生的剪应力超过规范公式(公式(5.5.3-15.5.3-1)规定的限值时,就应修改构件截面尺寸或提高混凝土强度等级。)规定的限值时,就应修改构件截面尺寸或提高混凝土强度等级。本条公式(本条公式(5.5.3-25.5.3-2)类似于构件斜截面抗剪计算的下限值,按该公式计算并满足限值的)类似于构件斜截面抗剪计算的下限值,按该公式计算并满足限值的要求时,构件可不配置抗扭钢筋。但为了防止脆断和保证构件破坏时具有一定延性,要求时,构件可不配置抗扭钢筋。但为了防止脆断和

59、保证构件破坏时具有一定延性,仍应按本规范第仍应按本规范第9.3.149.3.14条构造要求配筋。公式(条构造要求配筋。公式(5.5.3-25.5.3-2)规定的限值与原规范相近)规定的限值与原规范相近。第第5 5章章 持久状况承载能力极限状态计算持久状况承载能力极限状态计算kcutdoodofWTbhV,31051.0tdtdoodofWTbhV231050.0 5.5.4 5.5.4 目前钢筋混凝土剪扭构件的承载力一般按受扭目前钢筋混凝土剪扭构件的承载力一般按受扭构件承载力和受剪构件承载力分别进行计算,然后叠加构件承载力和受剪构件承载力分别进行计算,然后叠加起来。但是共同承受剪扭的构件,其剪

60、力和扭矩对构件起来。但是共同承受剪扭的构件,其剪力和扭矩对构件内的混凝土和箍筋均有一定影响。如果采取简单地叠加内的混凝土和箍筋均有一定影响。如果采取简单地叠加,对箍筋和混凝土尤其是混凝土是偏于不安全的。试验,对箍筋和混凝土尤其是混凝土是偏于不安全的。试验表明,构件在剪扭共同作用下,其截面的某一受压区域表明,构件在剪扭共同作用下,其截面的某一受压区域内承受剪切和扭转应力的双重作用,这必将降低构件内内承受剪切和扭转应力的双重作用,这必将降低构件内混凝土的抗剪和抗扭能力。由于受扭构件受力情况比较混凝土的抗剪和抗扭能力。由于受扭构件受力情况比较复杂,目前采取箍筋所承担的承载力进行简单叠加,而复杂,目前

61、采取箍筋所承担的承载力进行简单叠加,而混凝土的承载力则在受剪构件和受扭构件承载力的计算混凝土的承载力则在受剪构件和受扭构件承载力的计算公式中均引入一个剪扭构件混凝土承载力的降低系数。公式中均引入一个剪扭构件混凝土承载力的降低系数。第第5 5章章 持久状况承载能力极限状态计算持久状况承载能力极限状态计算 5.5.4 5.5.4 矩形和箱形截面剪扭构件,其抗剪扭承矩形和箱形截面剪扭构件,其抗剪扭承载力应按下列公式计算:载力应按下列公式计算:抗剪承载力抗剪承载力抗扭承载力抗扭承载力 )()6.02(20)210(,03210NffPbhVsvsvKcutdvcorsvsvtopotdatdoSAAf

62、WANfT12.1)05.035.0(odtdtbhTWV5.015.1第第5 5章章 持久状况承载能力极限状态计算持久状况承载能力极限状态计算 5.5.55.5.5、5.5.6 T5.5.6 T形、工形和带翼缘箱形截面的形、工形和带翼缘箱形截面的钢筋混凝土受扭构件,在承载力的计算中可将其钢筋混凝土受扭构件,在承载力的计算中可将其截面划分为几个矩形截面。划分的原则是:先按截面划分为几个矩形截面。划分的原则是:先按截面总高度划出腹板或矩形箱体,然后再划出受截面总高度划出腹板或矩形箱体,然后再划出受压翼缘和受拉翼缘。压翼缘和受拉翼缘。在实际桥梁工程中,真正纯扭构件或剪扭构在实际桥梁工程中,真正纯扭

63、构件或剪扭构件是很少的,大多是同时承受弯矩、剪力和扭矩件是很少的,大多是同时承受弯矩、剪力和扭矩的构件。这些弯剪扭构件的配筋按第的构件。这些弯剪扭构件的配筋按第5.5.55.5.5条规条规定,可划分为几个矩形截面分别计算和配置。定,可划分为几个矩形截面分别计算和配置。第第5 5章章 持久状况承载能力极限状态计算持久状况承载能力极限状态计算 5.6 5.6 受冲切构件受冲切构件 增加了受冲切构件的承载力计算内容,计算考虑了板厚效增加了受冲切构件的承载力计算内容,计算考虑了板厚效应和预应力效应,具体取值引自有关规范和试验资料。应和预应力效应,具体取值引自有关规范和试验资料。在集中反力作用下不配置抗

64、冲切钢筋的钢筋混凝土板,其在集中反力作用下不配置抗冲切钢筋的钢筋混凝土板,其抗冲切承载力可按下列公式计算:抗冲切承载力可按下列公式计算:在实际工程中当单靠混凝土抗冲切不能满足要求或增加板在实际工程中当单靠混凝土抗冲切不能满足要求或增加板厚有困难时,仅提高混凝土强度等级并不能合理地解决冲厚有困难时,仅提高混凝土强度等级并不能合理地解决冲切承载力的问题。此时需要设置抗冲切钢筋。切承载力的问题。此时需要设置抗冲切钢筋。ommpctdhldohUfF)15.07.0(,第第5 5章章 持久状况承载能力极限状态计算持久状况承载能力极限状态计算 5.7 5.7 局部承压承载力的计算局部承压承载力的计算 a

65、.a.将原按劈裂拉力理论建立的局压公式改为按套箍理论将原按劈裂拉力理论建立的局压公式改为按套箍理论建立的局压公式,并用混凝土局部承压修正系数来限制高建立的局压公式,并用混凝土局部承压修正系数来限制高强度混凝土局部承压应力;强度混凝土局部承压应力;b.b.计算局部承压面积和计算底面积均不扣除孔洞面积;计算局部承压面积和计算底面积均不扣除孔洞面积;c.c.原规定,局部承压承载力计算公式中由等号右边第二原规定,局部承压承载力计算公式中由等号右边第二项钢筋承担的承载力不得超过第一项由混凝土承担的承载项钢筋承担的承载力不得超过第一项由混凝土承担的承载力的力的50%50%。本规范通过局压区尺寸限制的计算,

66、可控制局。本规范通过局压区尺寸限制的计算,可控制局压垫板下沉过大的问题,因而也就可取消原规范的这项规压垫板下沉过大的问题,因而也就可取消原规范的这项规定。定。nlcdsldAfF3.10第第5 5章章 持久状况承载能力极限状态计算持久状况承载能力极限状态计算 5.7.3 5.7.3 近年来,新修建的预应力混凝土连续梁近年来,新修建的预应力混凝土连续梁和连续刚构桥,在边跨现浇段较普遍地发生了纵和连续刚构桥,在边跨现浇段较普遍地发生了纵向裂缝或斜裂缝,为此,本规范增加了分析局压向裂缝或斜裂缝,为此,本规范增加了分析局压区端块局部应力的规定。在该区域除了垫板附近区端块局部应力的规定。在该区域除了垫板附近配置间接钢筋外,另应根据局部应力分析配置闭配置间接钢筋外,另应根据局部应力分析配置闭合式箍筋。本规范第合式箍筋。本规范第9.4.29.4.2条对端块的构造箍筋作条对端块的构造箍筋作出了规定,原意在于分布这个区域可能出现的裂出了规定,原意在于分布这个区域可能出现的裂缝,端块局部应力分析所配置的箍筋可将构造箍缝,端块局部应力分析所配置的箍筋可将构造箍筋包括在内。筋包括在内。第第5 5章章 持久状况

展开阅读全文
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!