PLCS7200温度控制系统设计

上传人:无*** 文档编号:128714268 上传时间:2022-08-01 格式:DOC 页数:30 大小:2.53MB
收藏 版权申诉 举报 下载
PLCS7200温度控制系统设计_第1页
第1页 / 共30页
PLCS7200温度控制系统设计_第2页
第2页 / 共30页
PLCS7200温度控制系统设计_第3页
第3页 / 共30页
资源描述:

《PLCS7200温度控制系统设计》由会员分享,可在线阅读,更多相关《PLCS7200温度控制系统设计(30页珍藏版)》请在装配图网上搜索。

1、 .wd.盐城纺织职业技术学院毕业设计论文 基于PLCS7-200温度控制系统毕业设计肖 志 敏 班 级 电气1012班 专 业 电气自动化技术 所 在 系 机电工程系 指导教师 靖 文 完成时间2012年12月17日至2013年6月16日基于PLCS7-200温度控制系统毕业设计 摘 要 温度是工业生产中常见的工艺参数之一,任何物理变化和化学反响过程都与温度密切相关。在科学研究和生产实践的诸多领域中, 温度控制占有着极为重要的地位, 特别是在冶金、化工、建材、食品、机械、石油等工业中,具有举足轻重的作用。对于不同生产情况和工艺要求下的温度控制,所采用的加热方式,燃料,控制方案 也有所不同。例

2、如冶金、机械、食品、化工等各类工业生产中广泛使用的各种加热炉、热处理炉、反响炉等;燃料有煤气、天然气、油、电等。温度控制系统 的工艺过程复杂多变,具有不确定性,因此对系统要求更为先进的控制技术和控制理论。 可编程控制器PLC可编程控制器是一种工业控制计算机,是继承计算机、自动控制技术和通信技术为一体的新型自动装置。它具有抗干扰能力强,价格廉价, 可靠性强,编程简单,易学易用等特点,在工业领域中深受工程操作人员的喜欢,因此PLC已在工业控制的各个领域中被广泛地使用。关键字: 温度控制 PLC 新型自动装置 AbstractTemperature is the common industrial

3、production process parameter, any physical change and chemical reaction process closely is related with the temperature. In scientific research and production practice of many areas, temperature control occupied an extremely important position, especially in the metallurgical, chemical, building mat

4、erials, food, machinery, petroleum industry, which play a decisive role role. For different production conditions and technological requirements of temperature control, the way of heating, fuel, control scheme is also different. For example, metallurgy, machinery, food, chemical and other types of i

5、ndustrial production is widely used in all kinds of heating furnace, heat treatment furnace, reactor; fuel gas, natural gas, oil, electricity etc. Temperature control system of the process is complex and changeable, uncertain, so the system requires more advanced control technique and control theory

6、. Programmable logic controller ( PLC ) programmable controller is a kind of industrial control computer, is the successor of computer, automatic control technology and communication technology as a whole new type of automatic device. It has strong anti-interference ability, low price, high reliabil

7、ity, easy programming, easy to use and other characteristics, in the industry in the field by the project operator like, so PLC has in the various fields of industrial control has been widely used. Key words: temperature control PLC automatic device目 录引 言4 1、温度控制系统的意义4 2、温度控制系统背景4 3、研究介绍4第一章 硬件设计6 第

8、1节 硬件配置6 第2节 I/O分配表8 第3节 硬件接线图9第二章 软件设计10 第1节 PID控制程序设计10 第2节 S7-200程序设计流程图14 第3节 内存地址分配与PID指令回路表15 第4节 S7-200程序设计梯形图16第三章 组态编程20 第1节 PLC通信配置与通信方式21 第2节 网络的通讯PPI协议21 第3节 组态软件22 第4节 组态定义外部设备和数据变量23 第5节 组态界面25 第6节 启动组态 26结论28致谢29参考文献30 引 言1、温度控制系统的意义温度及湿度的测量和控制对人类日常生活、工业生产、气象预报、物资仓储等都起着极其重要的作用。在许多场合,及

9、时准确获得目标的温度、湿度信息是十分重要的,近年来,温湿度测控领域开展迅速,并且随着数字技术的开展,温湿度的测控芯片也相应的登上历史的舞台,能够在工业、农业等各领域中广泛使用。2、温度控制系统背景自70年代以来,由于工业过程控制的需要,特别是在微电子技术和计算机技术的迅猛开展以及自动控制理论和设计方法开展的推动下,国内外温度控制系统开展迅速,并在职能化、自适应、参数自整定等方面取得成果,在这方面,一日本、美国、德国、瑞典等国技术领先,都产生了一批商品化的、性能优异的温度控制器及仪器仪表,并在各行各业广泛应用。温度控制系统在国内各行各业的应用虽然十分广泛,但从国内生产的温度控制器来讲,总体开展水

10、平仍然不高,同日本、美国、德国等先进国家相比仍然有着较大的差距。目前,我国在这方面总体水平处于20实际80年代中后期水平,成熟产品主要以“点位控制及常规的PID控制器为主,它只能适应一般温度系统控制,难于控制滞后、复杂、时变温度系统控制。而适应于较高控制场合的智能化、自适应控制仪表,国内技术还不十分成熟。形成商品化并在仪表控制系统参数的自整定方面,还没开发性能可靠的自整定软件。参数大多靠人工经历及我国现场调试来确定。随着科学技术的不断开展,人们对温度控制系统的要求越来越高,因此,高精度、智能化、人性化的温度控制系统是国内外必然开展趋势。3、 研究介绍 3.1 PLC 可编程控制器的英文名称是P

11、rogrammable Logic Controller,即可编程逻辑控制器,简称PLC。早期PLC仅仅是替代继电器控制装置完成顺序控制、定时等任务,但是其简单易懂、安装方便、体积小、能耗低、有故障显示、能重复使用的特点,使得PLC很快就得到了推广应用。随着超大规模集成电路技术和微处理器性能的飞速开展,PLC的软、硬件功能不能丰富、完善。国际电工委员会IEC对PLC的正式定义:“可编程控制器是一种数字运算操作的电子系统,专为工业环境应用而设计,它采用一类可编程的存储器,用于其内部存储程序、执行逻辑运算、顺序控制、定时、计数与算术操作等面向用户的指令,并通过数字或模拟或输入/输出控制各种类型的机

12、械或生产过程。可编程控制器及其有关外部设备,都按易于与工业控制系统联成一个整体、易于扩大其功能的原则设计。3.2 上位机即便远离生产现场,操作人员仍可以通过远程计算机即上位机直接向生产设备发出控制指令的。上位机屏幕上可以动态实时显示各种信号变化液压,水位,温度等,便是人机界面Human Machine Interface。而下位机是获取设备状况及直接控制设备的计算机,一般是PLC或单片机。3.3组态软件组态软件,处在自动控制系统监控层一级的软件平台和开发环境,使用灵活的组态方式,为用户提供快速构建工业自动控制系统监控功能的、通用层次的软件工具。随着工业自动化水平的迅速提高,计算机在工业领域的广

13、泛应用,种类繁多的控制设备和过程监控装置在工业领域的应用,传统的工业控制软件已无法满足用户的各种需求。在开发传统的工业控制软件时,一旦工业被控对象有变动,就必须修改其控制系统的源程序,导致其开发周期长;已开发成功的工控软件又由于每个控制工程的不同而使其重复使用率很低,导致它的价格昂贵。通用工业自动化组态软件能够很好地解决传统工业控制软件存在的种种问题,使用户能根据自己的对象和控制目的的任意组态,完成最终的自动化控制工程。 第一章 硬件设计第1节 硬件配置 1.1 西门子S7-200 CUP226S7-200系列PLC可提供4种不同的 根本单元和6种型号的扩展单元。其系统构成包括 根本单元、扩展

14、单元、编程器、存储卡、写入器等。S7-200系列的 根本单元如表2.1所示。表2.1 S7-200系列PLC中CPU22X的 根本单元型号输入点输出点可带扩展模块数S7-200CPU221640S7-200CPU222862个扩展模块S7-200CPU22424107个扩展模块S7-200CPU224XP24167个扩展模块S7-200CPU22624167个扩展模块本论文采用的是CUP226。它具有24输入/16输出共40个数字量I/O点。可连接7个扩展模块,最大扩展至248路数字量I/O点或35 路模拟量I/O点。26K字节程序和数据存储空间。6个独立的30kHz高速计数器,2路独立的20

15、kHz高速脉冲输出,具有PID控制器。2个RS485通讯/编程口,具有PPI通讯协议、MPI通讯协议和自由方式通讯能力。I/O端子排可很容易地整体拆卸。用于较高要求的控制系统,具有更多的输入/输出点,更强的模块扩展能力,更快的运行速度和功能更强的内部集成特殊功能。 1.2 传感器热电偶是一种感温元件,它直接测量温度,并把温度信号转换成热电动势信号。常用热电偶可分为标准热电偶和非标准热电偶两大类。所调用标准热电偶是指国家标准规定了其热电势与温度的关系、容许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度

16、表,主要用于某些特殊场合的测量。标准化热电偶我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。本论文采用的是K型热电阻。 1.3 EM235模拟量输入模块EM235模块是组合强功率精细线性电流互感器、意法半导体ST单片集成变送器ASIC芯片于一体的新一代交流电流隔离变送器模块,它可以直接将被测主回路交流电流转换成按线性比例输出的DC420mA通过250电阻转换DC 15V或通过500电阻 转换DC210V恒流环标准信号,连续输送到接收装置计算机或显示仪表。表2-1所示为若何用DIP开关设置EM235模块。

17、开关1到6可选择模拟量输入范围和分辨率。所有的输入设置成一样的模拟量输入范围和格式。表2.2所示为若何选择单/双极性开关6、增益开关4和5和衰减开关1、2和3。下表2.2中,ON为接通,OFF为断开。表2.2 EM 235选择模拟量输入范围和分辨率的开关表单极性满量程输入分辨率SW1SW2SW3SW4SW5SW6ONOFFOFFONOFFON0到50mV12.5VOFFONOFFONOFFON0到100mV25VONOFFOFFOFFONON0到500mV125uAOFFONOFFOFFONON0到1V250VONOFFOFFOFFOFFON0到5V1.25mVONOFFOFFOFFOFFON

18、0到20mA5AOFFONOFFOFFOFFON0到10V2.5mV根据温度检测和控制模块,我设置PID开关为010001图2.1 DIP开关 1.4 温度检测和控制模块由学校提供,模拟真实锅炉的温度检测和控制模块,可自行将010V模拟信号转化为占空比对锅炉进展加热。输出的模拟信号也是010V,锅炉外接24V直流电源。第2节 I/O分配表 表2.3 I/O分配表输入I0.0启动按钮I0.1停顿按钮输出Q0.0启动指示灯Q0.1停顿指示灯Q0.2正常运行指示灯Q0.3温度越上限报警指示灯Q0.4锅炉加热指示灯第3节 硬件接线图 硬件连接图 EM 235 CN连接图 第二章 软件设计第1节 PID

19、控制程序设计模拟量闭环控制较好的方法之一是PID控制,PID在工业领域的应用已经有60多年,现在依然广泛地被应用。比例控制(P)是一种最简单的控制方式。其控制器的输出与输入误差信号成比例关系。其特点是具有快速反响,控制及时,但不能消除余差。在积分控制(I)中,控制器的输出与输入误差信号的积分成正比关系。积分控制可以消除余差,但具有滞后特点,不能快速对误差进展有效的控制。在微分控制(D)中,控制器的输出与输入误差信号的微分即误差的变化率成正比关系。微分控制具有超前作用,它能猜测误差变化的趋势。防止较大的误差出现,微分控制不能消除余差。PID控制,P、I、D各有自己的长处和缺点,它们一起使用的时候

20、又和互相制约,但只有合理地选取PID值,就可以获得较高的控制质量。 1.1 PID控制算法图3.1 闭环控制系统如图3.1所示,PID控制器可调节回路输出,使系统到达稳定状态。偏差e和输入量r、输出量c的关系: 3-1 控制器的输出为: 3-2 -PID回路输出 -比例系数P -积分系数I -微分系数D PID调节的传输函数为 3-3数字计算机处理这个函数关系式,必须将连续函数离散化,对偏差周期采样后,计算机输出值。其离散化的规律如表3.1所示:表3.1 模拟与离散形式模拟形式离散化形式所以PID输出经过离散化后,它的输出方程为: 3-4 式中, 称为比例项 称为积分项 称为微分项上式中,积分

21、项是包括第一个采样周期到当前采样周期的所有误差的累积值。计算中,没有必要保存所有的采样周期的误差项,只需要保存积分项前值,计算机的处理就是按照这种思想。故可利用PLC中的PID指令实现位置式PID控制算法量。 1.2 PID在PLC中的回路指令西门子S7-200系列PLC中使用的PID回路指令,见表3.2表3.2 PID回路指令名称PID运算指令格式PID指令表格式PID TBL,LOOP梯形图使用方法:当EN端口执行条件存在时候,就可进展PID运算。指令的两个操作数TBL和LOOP,TBL是回路表的起始地址,本文采用的是VB100,因为一个PID回路占用了32个字节,所以VD100到VD13

22、2都被占用了。LOOP是回路号,可以是07,不可以重复使用。PID回路在PLC中的地址分配情况如表3.3所示。表3.3 PID指令回路表偏移地址名称数据类型说明0过程变量PVn实数必须在0.01.0之间4给定值SPn实数必须在0.01.0之间8输出值Mn实数必须在0.01.0之间12增益Kc实数比例常数,可正可负16采样时间Ts实数单位为s,必须是正数20采样时间Ti实数单位为min,必须是正数24微分时间Td实数单位为min,必须是正数28积分项前值MX实数必须在0.01.0之间32过程变量前值PVn-1实数必须在0.01.0之间 1.3 回路输入输出变量的数值转换方法本文中,设定的温度是给

23、定值SP,需要控制的变量是炉子的温度。但它不完全是过程变量PV,过程变量PV和PID回路输出有关。在本文中,经过测量的温度信号被转化为标准信号温度值才是过程变量,所以,这两个数不在同一个数量值,需要他们作比较,那就必须先作一下数据转换。传感器输入的电压信号经过EM235转换后,是一个整数值,但PID指令执行的数据必须是实数型,所以需要把整数转化成实数。使用指令DTR就可以了。如本设计中,是从AIW0读入温度被传感器转换后的数字量。其转换程序如下: MOVW AIW0 AC0 DTR AC0 AC0 MOVR AC0 VD100 1.4 实数归一化处理因为PID中除了采样时间和PID的三个参数外

24、,其他几个参数都要求输入或输出值0.01.0之间,所以,在执行PID指令之前,必须把PV和SP的值作归一化处理。使它们的值都在0.01.0之间。单极性的归一化的公式: 3-5 1.5 PID参数整定PID参数整定方法就是确定调节器的比例系数P、积分时间Ti和和微分时间Td,改善系统的静态和动态特性,使系统的过渡过程到达最为满意的质量指标要求。一般可以通过理论计算来确定,但误差太大。目前,应用最多的还是工程整定法:如经历法、衰减曲线法、临界比例带法和反响曲线法。经历法又叫现场凑试法,它不需要进展事先的计算和实验,而是根据运行经历,利用一组经历参数,根据反响曲线的效果不断地改变参数,对于温度控制系

25、统,工程上已经有大量的经历,表3.4 温度控制器参数经历数据被控变量规律的选择比例度积分时间分钟微分时间分钟温度滞后较大20603100.53根据反复的试凑,调处比较好的结果是P=15,I=2.0,D=0.5第2节 S7-200程序设计流程图运行PLC初始化PID初始化运行指示灯调用子程序0设定温度设定PID值每100ms调用一次中断程序读入温度并转换把实际温度值放入VD100调用PID指令输出PID值返回主程序子程序0中断程序图3.2 设计流程图第3节 内存地址分配与PID指令回路表 3.1 内存地址分配 表3.5 内存地址分配地址说明VD0实际温度存放VD4设定温度存放VD30实际温度的存

26、放 3.2 PID指令回路表 表3.6 内存地址分配地址名称说明VD100过程变量PVn必须在0.01.0之间VD104给定值SPn必须在0.01.0之间VD108输出值Mn必须在0.01.0之间VD112增益Kc比例常数,可正可负VD116采样时间Ts单位为s,必须是正数VD120采样时间Ti单位为min,必须是正数VD124微分时间Td单位为min,必须是正数VD128积分项前值MX必须在0.01.0之间VD132过程变量前值PVn-1必须在0.01.0之间第4节 S7-200程序设计梯形图 4.1 初次上电1)读入模拟信号,并把数值转化显示锅炉的当前电压2)判断炉温是否在正常范围,打亮正

27、常运行指示灯/温度越上限报警指示灯 4.2 启动/停顿阶段启动过程:按下启动按钮后,开场标志位M0.1置位,M0.2复位。翻开运行指示灯Q0.0,熄灭并停顿指示灯初始化PID。开场运行子程序0。停顿过程:按下停顿按钮后,开场标志位M0.1复位,点亮停顿指示灯,熄灭运行指示灯。并把输出模拟量AQW0清零,停顿锅炉继续加热。停顿调用子程序0,仍然显示锅炉温度。停顿时模拟量输出清零,防止锅炉继续升温。 4.3 子程序1输入设定温度2把设定温度、P值、I值、D值都导入PID3每100ms中断一次子程序进展PID运算 4.4 中断程序,PID的计算1模拟信号的采样处理,归一化导入PID2DIP程序运算3

28、输出DIP运算结果,逆转换为模拟信号 第三章 组态编程第1节 PLC通信配置与通信方式 3.1 串行数据传送和并行数据传送1)并行数据传送:并行数据传送时所有数据位是同时进展的,以字或字节为单位传送。并行传输速度快,但通信线路多、成本高,适合近距离数据高速传送。2)串行数据传送:串行数据传送时所有数据是按位(bit)进展的。串行通信仅需要一对数据线就可以。在长距离数据传送中较为适宜。PLC网络传送数据的方式绝大多数为串行方式,而计算机或PLC内部数据处理、存储都是并行的。假设要串行发送、接收数据,则要进展相应的串行、并行数据转换,即在数据发送前,要把并行数据先转换成串行数据;而在数据接收后,要

29、把串行数据转换成并行数据后再处理。 3.2 异步方式与同步方式根据串行通信数据传输方式的不同可以分为:异步方式和同步方式。1)异步方式:又称起止方式。它在发送字符时,要先发送起始位,然后才是字符本身,最后是停顿位。字符之后还可以参加奇偶校验位。异步传送较为简单,但要增加传送位,将影响传输速率。异步传送是靠起始位和波特率来保持同步的。2)同步方式:同步方式要在传送数据的同时,也传递时钟同步信号,并始终按照给定的时刻采集数据。同步方式传递数据虽提高了数据的传输速率,但对通信系统要求较高。PLC网络多采用异步方式传送数据。第2节 网络的通讯PPI协议PPI是一种主从设备协议:主设备给附属装置发送请求

30、,附属装置进展响应。附属装置不发出讯息,而是一直等到主设备发送请求或轮询时才作出响应。主设备与附属装置的通讯将通过按PPI协议进展管理的共享连接来进展。PPI不限制与任何一个附属装置进展通讯的主设备的数目,网络上最多可安装32个主设备。图4.1 PPI网络如果在用户程序中激活PPI主设备模式,则S7-200 CPU在处于RUN运行模式时可用作主设备。激活PPI主设备模式之后,可使用“网络读取或“网络写入指令从其它S7-200读取数据或将数据写入其它S7-200。当S7-200用作PPI主设备时,它将仍然作为附属装置对来自其他主设备的请求进展响应。对于简单的单台主设备网络,编程站和S7-200

31、CPU既可以通过PPI多台主设备电缆连接,也可以通过安装在编程站中的通讯处理器CP卡连接。在图上部的范例网络中,编程站STEP7-Micro/WIN是网络主设备。在图下部的范例网络中,人机界面HMI设备例如TD 200、TP或OP是网络主设备。在两个范例网络中,S7-200 CPU是对主设备的请求进展响应的附属装置。图4.2 单台主设备PPI网络第3节 组态软件组态王开发监控系统软件,是新型的工业自动控制系统正以标准的工业计算机软、硬件平台构成的集成系统取代传统的封闭式系统。具有适应性强、开放性好、易于扩展、经济、开发周期短等优点。通常可以把这样的系统划分为控制层、监控层、管理层三个层次构造。

32、其中监控层对下连接控制层,对上连接收理层,它不但实现对现场的实时监测与控制,且在自动控制系统中完成上传下达、组态开发的重要作用。尤其考虑三方面问题:画面、数据、动画。通过对监控系统要求及实现功能的分析,采用组态王对监控系统进展设计。组态软件也为试验者提供了可视化监控画面,有利于试验者实时现场监控。而且,它能充分利用Windows的图形编辑功能,方便地构成监控画面,并以动画方式显示控制设备的状态,具有报警窗口、实时趋势 曲线等,可便利的生成各种报表。它还具有丰富的设备驱动程序和灵活的组态方式、数据链接功能。第4节 组态定义外部设备和数据变量 4.1 外部设备的定义组态王把那些需要与之交换数据的硬

33、件设备或软件程序都做为外部设备使用。外部硬件设备在本文中就是PLC S7-200。可使用“设备配置向导一步步完成设备的连接。 4.2 定义数据变量要实现组态王对S7-200的在线控制,就必须建设两者之间的联系,那就需要建设两者的数据变量。 根本类型的变量可以分为“内存变量和“I/O变量两类。内存变量是组态王内部的变量,不跟监控设备进展交换。而I/O变量时两者之间互相交换数据的桥梁,S7-200和组态王的数据交换是双向的,一者的数据发生变化,另外一者的数据也跟着变化。所以需要在创立连接前新建一些变量。本文中,PLC用内存VD0来存放当前的实际温度。并规定温度超过105为温度过高,立即要作出相应警

34、示信号。如图4.3所示。点击工程管理器中的“数据词典再双击右边窗口的新建,在出现的定义变量口中填写相应的要求项,并可在“报警定义中设定报警。如图4.4所示。图4.3 定义画面变量设置图4.4 定义变量报警 4.3 数据类型只对I/O类型的变量起作用,共有9种类型: Bit:1位, 0或1 Byte:8位, 一个字节 Short:16位, 2个字节 Ushort:16位, 2个字节 BCD:16位, 2个字节 Long:32位, 4个字节 LongBCD:32位, 4个字节 Float:32位, 4个字节 String:128个字符长度第5节 组态界面 5.1 温度控制主界面图4.5 监控画面第

35、6节 启动组态 6.1 初次上电初次上电,没有模拟量输入,只显示PID值和当前温度,曲线图为锅炉温度的实时曲线图。图4.6 初次上电 6.2 启动启动后,锅炉开场升温,并维持在50摄氏度左右。图4.7 启动加热 6.3 停顿按下停顿按钮后,锅炉停顿加热,停顿灯亮,温度开场下降。图4.8 停顿 6.4 报警当温度越上限时,系统报警。图4.9 报警结 论此次毕业设计了基于PLC的温度控制系统。PLC可编程控制器以其可靠性高、抗干扰能力强、编程简单、功能强大、性价比高、体积小、能耗低等显著特点广泛应用于现代工业的自动控制之中。PID闭环控制是控制系统中应用很广泛的一种控制算法,对大局部控制对象都有良

36、好的控制效果。组态软件组态王因其简单易用的特点,在HMI设计中深受用户的喜欢而得到广泛的使用。在西门子S7-200系列PLC和组态软件组态王的根基上,我们成功设计出了温度控制系统,该系统到达了快、准、稳的效果,也到达了预期的目标。再加上由组态王设计的人机界面,整个系统操作简单,控制方便,大大提高了系统的自动化程度和实用性。该温度控制系统也有一些有缺乏的地方需要改进,编程时我们用了编程软件自带的PID指令向导模块,这样虽然方便,但是使得控制系统超调量和调节时间都稍微偏大,假设不直接调用该模块,而是自己编写PID控制子程序的话,控制效果可能会更好。还有人机界面内容不够丰富,假设再加上报表系统、打印

37、功能的话,那就更完美了。日后,随着对PLC硬件系统和通信方式的深入了解,还可以丰富远程控制指令,以应对运行过程中的各种突发事件,增加其他PLC,通过构建复杂的多级网络适应大型的工业控制,使该系统运行时更加稳定可靠,性能更加完善。致 谢本次毕业设计的研究是在我的指导教师靖文教师的悉心指导下完成的,靖教师学识渊博、治学态度严谨、工作一丝不苟,更有诲人不倦的师者风范,在此谨向靖教师致以诚挚的谢意和崇高的敬意!此外,衷心感谢本组的其他成员,假设是没有他们,也就不会有这篇论文的产生。毕业在即,衷心感谢指导过我的各位教师,三年的成长离不开他们的谆谆教诲;感谢盐城纺织职业技术学院,大学生涯是人生中的一笔珍贵

38、财富;感谢10级机电工程系程俊静主任,三年的大学生活对我们电气专业的关心备至;感谢相伴度过三年的舍友、感谢同窗三年的同学、感谢帮助关心过我的学长、学姐,感谢默默关心我支持我的朋友们,祝大家在今后的生活中幸福快乐!最后感谢含辛茹苦抚养我的父母,感谢他们多年来的支持与付出! 参 考 文 献1 SIMATIC S7-200可编程序控制器系统手册M.北京机械工业出版社,2002.2 Frank.D.Petruzella.PLC教程第三版M.北京人民邮电出版社,2007.3 西门子中国.深入浅出西门子S7-200PLC第三版M.北京 航空航天大学出版社,2007.4 陈建明.电气控制与PLC应用M.北京

39、:电子工业出版社,2009.5 郑凤翼,金沙.图解西门子S7-200系列PLC应用88例J.北京电子工业出版社,2009.6 袁任光.可编程序控制器选用手册M.北京:机械工业出版社,2002.7 戴仙金.西门子S7-200系列PLC应用与开发M中国水利水电出版社,2007.8 柳梁.编程控制器PLC入门PLC及其硬件组成J.计算机时代,19965.9 毛联杰.S7-300系列PLC与组态软件Wincc实现通信的方法J.国内外机电 一体化技术,20064.10 曲还波.有效扩展可编程控制器I/O的实用方法J.设备管理与维修,2007.11 焦海生.可编程程序控制器梯形图的顺序控制设计J.内蒙古电

40、大学 刊,20066.12 赵玉英.可编程控制器在电器控制系统中的应用J.河南科技学院学报, 20063.13 张仑.可编程序控制器中PID控制的研究J.电子电气教学学报,20053.14 谢克明,夏路易.可编程控制器原理与程序设计M.北京:电子工业出版 社,2002.15 赵阳.西门子S7-300PLC及工控组态软件Wincc的应用J.北京:电子工业 出版社,1997.16 丁镇生.传感器及传感技术应用M.北京:电子工业出版社,1998.17 王永华.现代电气控制及PLC应用技术M北京:北京航天航空大学出版 社,2007.18 马小军.可编程控制器及应用M.南京:东南大学出版社,2007.19 组态王6.53使用手册M.北京亚控,2007.20 组态王6.53命令语言函数使用手册M.北京亚控,2007.

展开阅读全文
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!