基于某51单片机地数字电压表格设计

上传人:痛*** 文档编号:101858864 上传时间:2022-06-05 格式:DOC 页数:17 大小:521.50KB
收藏 版权申诉 举报 下载
基于某51单片机地数字电压表格设计_第1页
第1页 / 共17页
基于某51单片机地数字电压表格设计_第2页
第2页 / 共17页
基于某51单片机地数字电压表格设计_第3页
第3页 / 共17页
资源描述:

《基于某51单片机地数字电压表格设计》由会员分享,可在线阅读,更多相关《基于某51单片机地数字电压表格设计(17页珍藏版)》请在装配图网上搜索。

1、文档数字电压表简称DVM,数字电压表根本原理是将输入的模拟电压信号转化为数字信号,再进展输出显示。而A/D转换器的作用是将连续变化的模拟信号量转化为离散的数字信号,器根本结构是由采样保持,量化,编码等几局部组成。因此AD转换是此次设计的核心元件。输入的模拟量经过AD转换器转换,再由驱动器驱动显示器输出,便得到测量的数字电压。本次自己的设计作品从各个角度分析了AD转换器组成的数字电压表的设计过程与各局部电路的组成与原理,并且分析了数模转换进而使系统运行起来的原理与方法。通过自己的实践提高了动手能力,也只有亲历亲为才能收获掌握到液晶学过的知识。其实也为建立节约本钱的意识有些帮助。本次设计同时也牵涉

2、到了几个问题:精度、位数、速度、还有功耗等不足之处,这些都是要慎重考虑的,这些也是在本次设计中的收获。1.3 本次设计要求本次设计的作品要求制作数字电压表的量程为0到10v,由于用到的模数转换芯片是ADC0809,设计系统给的供电电压为+5v,所以能够测量的电压围为-0.25v到5.25v之间,但是一般测量的直流电压围都在这之上,所以采用电阻分压网络,设计的电压测量围是0到25v之间,满足设计要求的最大量程5v的要求。同时设计的精度为小数点后三位,满足要求的两位小数的精度,在不考虑AD芯片的量化误差的前提下,此次设计的精度能够满足一般测量的要求。2单片机和AD相关知识2.1 51单片机相关知识

3、51单片机是对目前所有兼容intel 8031指令系统的单片机的统称。该系列单片机的始祖是intel的8031单片机,后来随着技术的开展,成为目前广泛应用的为单片机之一。单片机是在一块芯片集成了CPU、RAM、ROM、定时器计数器和多功能I/O口等计算机所需要的根本功能部件的大规模集成电路,又称为MCU。51系列单片机包含以下几个部件:一个位CPU;一个片振荡器与时钟电路;4KB的ROM程序存储器;一个128B的RAM数据存储器;寻址64KB外部数据存储器和64KB外部程序存储空间的控制电路;32条可编程的I/O口线;两个16位定时计数器;一个可编程全双工串行口;个中断源、两个优先级嵌套中断结

4、构。51系列单片机如如下图:图1 51单片机引脚图2.2 AD转换器相关知识ADC0809是美国国家半导体公司生产的CMOS工艺8通道,8位逐次逼近式转换器。其部有一个8通道多路开关,它可以根据地址码锁存译码后的信号,只选通8路模拟输入信号中的一个进展A/D转换。1主要特性:18路输入通道,8位A/D转换器,即分辨率为8位。 2具有转换起停控制端。 3转换时间为100s(时钟为640kHz时),130s时钟为500kHz时 4单个+5V电源供电 5模拟输入电压围0+5V,不需零点和满刻度校准。 6工作温度围为-40+85摄氏度 7低功耗,约15mW。 2部结构ADC0809是CMOS单片型逐次

5、逼近式A/D转换器,部结构如图1322所示,它由8路模拟开关、地址锁存与译码器、比拟器、8位开关树型A/D转换器、逐次逼近存放器、逻辑控制和定时电路组成。 图2 ADC0909引脚3 数字电压表系统设计此次设计的是数字电压表,要求的电压围是05v,而设计扩展的量程为025v。系统设计主要包括四个局部:分别是电源模块、AD模数转换局部、51单片机最小系统局部、1602液晶显示局部。首先由单片机初始化ADC0809模数转换芯片和1602液晶显示,当外接被测电压后,ADC0809将模拟电压信号转换为数字信号输入到单片机的I/O口,通过单片机处理后将电压的大小显示在1602液晶上面。如下是本次设计作品

6、的框图:图3 系统框图 3.2 单片机电路单片机最小系统如如下图所示,各个引脚都已经标出,而且四个I/O口都已经用排阵引出,方便外接I/O扩展用。图4 单片机最小系统3.3 ADC采样电路由于ADC0809是带地址锁存的模数转换器件,ADDA、ADDB、ADDC为模拟通道选择,编码为000111分别选中IN0IN7。ALE为地址锁存信号,其上升沿锁存ADDA、ADDB、ADDC的信号,译码后控制模拟开关,接通八路模拟输入中相应的一路。CLK为输入时钟,为AD转换器提供转换的时钟信号,典型工作频率为640KHz。START为AD转换启动信号,正脉冲启动ADDAADDC选中的一路模拟信号开始转换。

7、OE为输出允许信号,高电平时候打开三态输出缓存器,是转换后的数字量从D0D7输出。EOC为转换完毕信号,启动转换后EOC变为低电平,转换完成后EOC编程高电平。图5 ADC模数转换以下是1602液晶引脚的接线图,中间没有接线的为数据控制端口。 1602字符型通常有14条引脚线或16条引脚线的LCD,多出来的2条线是背光电源线 VCC(15脚)和地线GND(16脚),其控制原理与14脚的LCD完全一样: 图6 1602引脚图由于此次系统的芯片工作电压为+5v,所以用常用的三端稳压器LM317和LM337构成的电源系统供电,其中ADC0809要提供一个准确的参考电源才能正常的工作,而LM317正好

8、能够达到要求。图7 系统供电局部3.6 数字电压表系统电路原理图如下是此次数字电压表系统的总原理图,其中的连线用网络标号表示出来,省去了连线的麻烦,而且是总图的可读性增强。图8 数字电压表总原理图4 软件设计4.1 系统总流程图此次设计的数字电压表系统比拟简单,就设置了一个量程为025v,所以没有用到按键控制,也没有其他的功能,因此程序比拟简单,在输入模拟信号时采用电阻分压,最终的采样输入电压只有实际输入电压的十分之一,所以在编写程序中要编写一段数据调整程序,如下为系统总流程图:开始完毕初始化AD采样量化液晶显示图9 系统流程图4.2 程序代码/*电压表*/#include#include/库

9、函数头文件,代码中引用了_nop_()函数/*ADC初始定义*/sbit start=P30; /转换开始控制sbit oe=P32; /输出允许控制sbit eoc=P31; /转换完毕信号sbit clock=P33; /转换时钟sbit P0_2=P02; /蜂鸣器sbit P0_5=P05;sbit P0_6=P06;sbit P0_7=P07; /*1602液晶初始定义*/sbit RS=P00; /读控制sbit RW=P03; /写控制sbit E=P01; /使能端unsigned char da0,da1,da2,da3,da4;unsigned int temp;unsig

10、ned int d1,d2,d3; unsigned char dat; /数字电压量unsigned char lcdd=0123456789;void lcd_w_cmd(unsigned char ); /写命令函数void lcd_w_dat(unsigned char dat); /写数据函数void display(unsigned char dat); /显示函数unsigned char lcd_r_start(); /读状态函数void int1(); /LCD初始化函数void delay(unsigned char t); /可控延时函数void delay1(); /软

11、件实现延时函数,5个机器周期/*显示函数局部*/void display(unsigned char dat)temp=5*dat; /量程扩大五倍da0=temp/51/10; /十位da1=temp/51%10; /个位d1=temp%51;d1=d1*10;da2=d1/51; /十分位d2=d1%51;d2=d2*10;da3=d2/51; /百分位d3=d2%51;d3=d3*10;da4=d3/51; /千分位lcd_w_cmd(0x0c); /设置光标不显示、不闪烁delay(20);lcd_w_cmd(0xc0); /第二行起始显示地址0x80delay(20);delay(2

12、); lcd_w_dat(V); /显示字符串volatage islcd_w_dat(o);lcd_w_dat(l); lcd_w_dat(a);lcd_w_dat(t);lcd_w_dat(a);lcd_w_dat(g);lcd_w_dat(e);lcd_w_dat( );/显示电压的大小 lcd_w_dat(lcddda0); /十位lcd_w_dat(lcddda1); /个位lcd_w_dat(.); /小数点 lcd_w_dat(lcddda2); /十分位lcd_w_dat(lcddda3); /百分位lcd_w_dat(lcddda4);/千分位lcd_w_dat(V); /单

13、位 /*主函数*/void main()P0_2=1; /关蜂鸣器P0_5=P0_6=P0_7=0; /选择000第一通道int1(); /LCD初始化 while(1) start=0; start=1; /获得上升沿复位 start=0; /获得下降沿启动转换,同时ALE开锁存 do clock=clock; /时钟信号 while(eoc=0); /等待转换完毕,eoc=1完毕 oe=1; /三态锁存缓冲器打开 dat=P1;/数字电压信号输出 oe=0; /三态锁存缓冲器关闭 display(dat); /*延时函数*/void delay(unsigned char t) unsig

14、ned char j,i; for(i=0;it;i+) for(j=0;j20;j+); /*延时函数1*/void delay1() _nop_(); _nop_(); _nop_();/*LCD初始化函数*/void int1() lcd_w_cmd(0x3c); / 设置工作方式 lcd_w_cmd(0x0c); / 设置光标 lcd_w_cmd(0x01); / 清屏 lcd_w_cmd(0x06); / 设置输入方式 lcd_w_cmd(0x80); / 设置初始显示位置/*LCD读状态函数*/返回值:返回状态字,最高位D7=0,LCD控制器空闲;D7=1,LCD控制器忙unsig

15、ned char lcd_r_start() unsigned char s; RW=1; /RW=1,RS=0,读LCD状态 delay1(); RS=0; delay1(); E=1; /E端时序 delay1(); s=P2; /从LCD的数据口读状态 delay1(); E=0; delay1(); RW=0; delay1(); return(s); /返回读取的LCD状态字/*LCD写命令函数*/void lcd_w_cmd(unsigned char ) unsigned char i; do / 查LCD忙操作 i=lcd_r_start(); / 调用读状态字函数 i=i&0

16、x80; / 与操作屏蔽掉低7位 delay(2); while(i!=0); / LCD忙,继续查询,否如此退出循环RW=0;delay1();RS=0; / RW=0,RS=0,写LCD命令字delay1();E=1; /E端时序delay1();P2=; /将中的命令字写入LCD数据口delay1();E=0;delay1();RW=1;delay(255);/*LCD写数据函数*/void lcd_w_dat(unsigned char dat) unsigned char i; do / 查忙操作 i=lcd_r_start(); / 调用读状态字函数 i=i&0x80; / 与操作

17、屏蔽掉低7位 delay(2); while(i!=0); / LCD忙,继续查询,否如此退出循环RW=0;delay1();RS=1; / RW=1,RS=0,写LCD数据delay1();E=1; / E端时序delay1();P2=dat; / 将dat中的显示数据写入LCD数据口delay1();E=0;delay1();RW=1;delay(255);5 数字电压表电路仿真5.1 仿真总图为了验证此次设计原理图的正确性,在制作实物之前用专业软件做了仿真,在Proteus软件中设置AT89C51单片机的晶振频率为12 MHz。本电路EA接高电平,没有扩展片外ROM。如如下图是此次系统仿

18、真的总原理图局部:图8 仿真总图通过用protues软件的仿真发现此次设计的系统原理图能够实现电压的正确测量,而且电压的误差较小,1602液晶屏能够正确显示出测量出来的结果。5.2 仿真结果显示如如下图为此次仿真的测量电压的结果的截图:图9 仿真结果显示6 系统性能分析通过理论分析和电路仿真,现在对此次课程设计的数字电压表系统设计结果进展总结。通过仿真我们可以看到仿真结果和理论分析是相符合的,也即此次设计的系统能够在一定的条件下达到课程设计目的,实现对外接电压的测量,电路结构简单,但是可以看出在系统的稳定性与可靠性方面做得不够。具体表现在以下几个方面:1数字电压表系统中对于外界被测电压的变化反

19、响不够灵敏,变化比拟慢,主要是因为ADC模数转换芯片的转换速率不够;2数字电压表系统测量的外界电压不够准确,跟用示波器或者高精度的电压表测量的结果有偏差,主要是因为ADC芯片的位数不够;3而且ADC的参考电压不准确也会造成测量结果的不准确;4另外很重要的影响因素是因为AD芯片的测量输入电压最大为5v,而设计的是25v,量程扩大了五倍,运用的是电阻分压网络,如果用精细电阻可以做到很高的精度,而设计中用的是5%误差的碳膜电阻,温度系数高,而且不稳定,这是很重要的一个影响因素。针对上述问题,理论上可以用一下方法进展改良:1在换用高精度的ADC芯片能够改善测量精度的问题,一般用12位AD既能满足要求;

20、2制作高精度电压参考源,通过提高ADC模数转换芯片的参考电压的精度来提高测量的电压精度;3运用高精度的金属膜电阻构成分压网络,能够最大限度提高精度;4通过查阅书籍可以找到ADC0809的误差系数和碳膜电阻的温度系数,然后在编程的时候进展软件的补偿和参数校正,能够最优化的用软件来补偿硬件的误差问题,这个在编程思想中是很重要的。虽然时间紧迫,最终按照仿真成功的原理图焊接实物,并调试,调试成功!而且在教师的指点下,使系统得到了最大优化的提高。7 心得体会通过与同学的讨论与认真计算设计分析所完成的,课程设计的任务是设计、组装并调试一个数字电压表测量系统。需要我们综合运用单片机等课程的知识,通过查阅资料

21、、方案论证与选定;设计和选取电路和元器件;分析指标与讨论,完成设计任务。在这次课程设计中,我学会了怎样去根据课题的要求去设计电路和调试电路。动手能力得到很大的提高。从中我发现自己并不能很好的熟练去使用我所学到的高频电路知识。在以后学习中我要加强对使用电路的设计和选用能力。但由于电路比拟简单、定型,而不是真实的生产、科研任务,所以我们根本上能有章可循,完成起来并不困难。把过去熟悉的定型分析、定量计算逐步,元器件选择等手段结合起来,掌握工程设计的步骤和方法,了解科学实验的程序和实施方法。这对今后从事技术工作无疑是个很好的训练。通过这种综合训练,我们可以掌握电路设计的根本方法,提高动手组织实验的根本

22、技能,培养分析解决电路问题的实际本领,为以后毕业设计和从事电子实验实际工作打下根底。同时也让我充分认识到自己的空想与实践的差异,认识莫眼高手低,莫闭门造车,知识都在不断更新和流动之中,而扎实的根底是一切创造的源泉,只有从本质上理解了原理,才能更好的于疑途寻求柳暗花明,实现在科学界的美好畅游和寻得创造的快乐。还有就是每次在组团做试验都会感觉特别的充实,我们可以按照自己设计的电路去完成,教师也不是死板的要求我们怎么怎么,而是给了我们尽可能大的自己决定的余地,这次的元器件都是按照我们设计出来的电路参数给定的,而且每位教师都很耐心的为我们解决试验中所出现的问题,最后真心的感教师对我们课程设计的建议和帮助,我们才得以圆满的完成这次课程设计!参考文献1群芳,士军,黄建.单片微型计算机与接口技术. :电子工业,20082群芳.单片机原理接口与应用.:清华大学,20053迎新.单片微型计算机原理、应用与接口技术.:国防工业,19994顶峰.单片微机应用系统设计与使用技术.:机械工业,20075伟.单片机c语音程序设计实例基于protues仿真.:电子工业,200716 / 17

展开阅读全文
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!