广东高考数学二轮复习第二部分专题四立体几何(课件练习)(打包7套)理.zip
广东高考数学二轮复习第二部分专题四立体几何(课件练习)(打包7套)理.zip,广东,高考,数学,二轮,复习,第二,部分,专题,立体几何,课件,练习,打包
专题强化练十一 空间点、线、面的位置关系一、选择题1(2018浙江卷)已知平面,直线m,n满足m,n,则“mn”是“m”的()A充分不必要条件B必要不充分条件C充分必要条件 D既不充分也不必要条件解析:若m,n,mn,由线面平行的判定定理知m.若m,m,n,不一定推出mn,直线m与n可能异面故“mn”是“m”的充分不必要条件答案:A2(2017全国卷)在正方体ABCDA1B1C1D1中,E为棱CD的中点,则()AA1EDC1 BA1EBDCA1EBC1 DA1EAC解析:如图,由题设知,A1B1平面BCC1B1,从而A1B1BC1.又B1CBC1,且A1B1B1CB1,所以BC1平面A1B1CD,又A1E平面A1B1CD,所以A1EBC1.答案:C3(2018河南开封一模)在空间中,a,b是两条不同的直线,是两个不同的平面,则下列命题中的真命题是()A若a,b,则abB若a,b,则abC若a,ab,则bD若,a,则a解析:对于A,若a,b,则a,b可能平行,可能相交,可能异面,故A是假命题;对于B,设m,a,b均与m平行,则ab,故B是假命题;对于C,b或b在平面内,故C是假命题;对于D,若,a,则a与没有公共点,则a,故D是真命题答案:D4(2018全国卷)在正方体ABCDA1B1C1D1中,E为棱CC1的中点,则异面直线AE与CD所成角的正切值为()A.B.C.D.解析:因为CDAB,所以BAE即为异面直线AE与CD所成的角设正方体的棱长为2,则BE.因为AB平面BB1C1C,所以ABBE.在RtABE中,tan BAE.所以异面直线AE与CD所成角的正切值为.答案:C5(2018长沙雅礼中学联考)对于四面体ABCD,有以下命题:若ABACAD,则AB,AC,AD与底面所成的角相等;若ABCD,ACBD,则点A在底面BCD内的射影是BCD的内心;四面体ABCD的四个面中最多有四个直角三角形;若四面体ABCD的6条棱长都为1,则它的内切球的表面积为.其中正确的命题序号是()A B C D解析:正确,若ABACAD,则AB,AC,AD在底面的射影相等,即与底面所成角相等;不正确,如图1,点A在平面BCD的射影为点O,连接BO,CO,可得BOCD,COBD,所以点O是BCD的垂心;正确,如图2,若AB平面BCD,BCD90,则四面体ABCD的四个面均为直角三角形;正确,设正四面体的内切球的半径为r,棱长为1,高为,根据等体积公式S4Sr,解得r,那么内切球的表面积S4r2.故正确的命题是.答案:D二、填空题6.如图,在空间四边形ABCD中,点MAB,点NAD,若,则直线MN与平面BDC的位置关系是_解析:由,得MNBD.而BD平面BDC,MN平面BDC,所以MN平面BDC.答案:平行7正方体ABCDA1B1C1D1中,E为线段B1D1上的一个动点,则下列结论中正确的是_(填序号)ACBE;B1E平面ABCD;三棱锥EABC的体积为定值;直线B1E直线BC1.解析:因AC平面BDD1B1,故正确;因B1D1平面ABCD,故正确;记正方体的体积为V,则VEABCV,为定值,故正确;B1E与BC1不垂直,故错误答案:8直三棱柱ABCA1B1C1的侧棱长都为1,ABBC1,且直线AB与平面BB1C1C所成的角为60,则异面直线A1B,AC所成角的余弦值为_解析:由于ABCA1B1C1为直三棱柱,则AB与平面BB1C1C所成的角即为ABC.依题设,ABBC1,ABC60,则ABC为正三角形由ACA1C1,知BA1C1为异面直线A1B与AC所成的角由于A1C11,A1B,C1B.由余弦定理得:cos BA1C1.答案:三、解答题9(2018湖南益阳模拟)如图所示,在四棱锥PABCD中,平面PAB平面ABCD,ADBC,AD2BC,DABABP90.(1)求证:AD平面PAB;(2)求证:ABPC;(3)若点E在棱PD上,且CE平面PAB,求的值(1)证明:因为DAB90,所以ADAB.因为平面PAB平面ABCD,且平面PAB平面ABCDAB,所以AD平面PAB.(2)证明:由(1)知ADAB,因为ADBC,所以BCAB.又因为ABP90,所以PBAB.因为PBBCB,所以AB平面PBC,因为PC平面PBC,所以ABPC.(3)解:过E作EFAD交PA于F,连接BF.如图所示因为ADBC,所以EFBC.所以E,F,B,C四点共面又因为CE平面PAB,且CE平面BCEF,平面BCEF平面PABBF,所以CEBF,所以四边形BCEF为平行四边形,所以EFBCAD.在PAD中,因为EFAD,所以,即.10(2018北京卷)如图,在四棱锥PABCD中,底面ABCD为矩形,平面PAD平面ABCD,PAPD,PAPD,E,F分别为AD,PB的中点(1)求证:PEBC;(2)求证:平面PAB平面PCD;(3)求证:EF平面PCD.证明:(1)因为PAPD,E为AD的中点,所以PEAD.因为底面ABCD为矩形,所以BCAD.所以PEBC.(2)因为底面ABCD为矩形,所以ABAD.又因为平面PAD平面ABCD,平面PAD平面ABCDAD,所以AB平面PAD.所以ABPD.又因为PAPD,且PAABA,所以PD平面PAB.又PD平面PCD,所以平面PAB平面PCD.(3)如图,取PC中点G,连接FG,DG.因为F,G分别为PB,PC的中点,所以FGBC,FGBC.因为ABCD为矩形,且E为AD的中点,所以DEBC,DEBC.所以DEFG,DEFG.所以四边形DEFG为平行四边形所以EFDG.又因为EF平面PCD,DG平面PCD,所以EF平面PCD.11如图,在矩形ABCD中,AB2AD,M为DC的中点,将ADM沿AM折起使平面ADM平面ABCM.(1)当AB2时,求三棱锥MBCD的体积;(2)求证:BMAD.(1)解:取AM的中点N,连接DN.如图所示因为在矩形ABCD中,M为DC的中点,AB2AD,所以DMAD.又N为AM的中点,所以DNAM.又因为平面ADM平面ABCM,平面ADM平面ABCMAM,DN平面ADM.所以DN平面ABCM.因为AD1,所以DN.又SBCMCMCB.所以V三棱锥MBCDV三棱锥DBCMSBCMDN.(2)证明:由(1)可知,DN平面ABCM.又BM平面ABCM,所以BMDN.在矩形ABCD中,AB2AD,M为DC中点,所以ADM,BCM都是等腰直角三角形,且ADM90,BCM90,所以BMAM.又DN,AM平面ADM,DNAMN,所以BM平面ADM.又AD平面ADM,所以BMAD.7专题强化练十 空间几何体的三视图、表面积及体积一、选择题1如图,在正方形ABCDA1B1C1D1中,P为BD1的中点,则PAC在该正方体各个面上的正投影可能是()A B C D解析:图是PAC在底面上的投影,是PAC在前后侧面上的投影因此正投影可能是,选项B正确答案:B2(2018烟台二模)某几何体的三视图如2题图所示,其中俯视图右侧曲线为半圆弧,则几何体的表面积为()A342 B322C.22 D.22解析:由三视图,该几何体是一个半圆柱挖去一直三棱柱形成依题设知,几何体的底面面积S底12()22.所以该几何体表面积为S2(2)(212)S底422342.答案:A3(2018北京卷)某四棱锥的三视图如3题图所示,在此四棱锥的侧面中,直角三角形的个数为()A1 B2 C3 D4解析:在正方体中作出该几何体的直观图,记为四棱锥PABCD,如图,由图可知在此四棱锥的侧面中,直角三角形的个数为3.答案:C4中国古代数学名著九章算术中,将底面是直角三角形的直棱柱称为“堑堵”已知“堑堵”的正视图和俯视图如图所示,则该“堑堵”的侧视图的面积为()A18 B18 C18 D.解析:在俯视图RtABC中,作AHBC交于H.由三视图的意义,则BH6,HC3,根据射影定理,AH2BHHC,所以AH3.易知该“堑堵”的侧(左)视图是矩形,长为6,宽为AH3,故侧视图的面积S6318.答案:C5(2018北京西城质检)已知A,B是球O的球面上两点,AOB90,C为该球面上的动点若三棱锥OABC的体积的最大值为36,则球O的表面积为()A36 B64 C144 D256解析:因为AOB的面积为定值,所以当OC垂直于平面AOB时,三棱锥OABC的体积取得最大值由R2R36,得R6.从而球O的表面积S4R2144.答案:C6(2018全国卷)设A,B,C,D是同一个半径为4的球的球面上四点,ABC为等边三角形且其面积为9,则三棱锥DABC体积的最大值为()A12 B18 C24 D54解析:设等边ABC的边长为x,则x2sin 609,得x6.设ABC外接圆的半径为r,则2r,得r2.所以球心到ABC所在平面的距离d2,则点D到平面ABC的最大距离d1d46.故V三棱锥DABC的最大值为SABC69618.答案:B二、填空题7(2018浙江卷改编)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是_解析:由三视图知,该几何体是一个底面为直角梯形的直四棱柱,所以其体积V(12)226.答案:68.(2018济南市模拟)某几何体的三视图如图所示,其中主视图的轮廓是底边为2,高为1的等腰三角形,俯视图的轮廓为菱形,左视图是个半圆则该几何体的体积为_解析:由三视图知,几何体是由两个大小相同的半圆锥的组合体其中r1,高h.故几何体的体积V12.答案:9已知长方体ABCDA1B1C1D1内接于球O,底面ABCD是边长为2的正方形,E为AA1的中点,OA平面BDE,则球O的表面积为_解析:取BD的中点为O1,连接OO1,OE,O1E,O1A.则四边形OO1AE为矩形,因为OA平面BDE,所以OAEO1,即四边形OO1AE为正方形,则球O的半径ROA2,所以球O的表面积S42216.答案:1610(2018郑州调研)某几何体的三视图如图所示,三个视图中的曲线都是圆弧,则该几何体的体积为_解析:由三视图可知,该几何体是由半个圆柱与个球组成的组合体,其体积为12313.答案:11(2018烟台质检)已知三棱锥PABC的所有顶点都在球O的球面上,ABC是边长为的正三角形,PA,PB,PC两两垂直,则球O的表面积是_解析:设球O的半径为R,且2R.因为ABC是边长为2的正三角形,PA、PB、PC两两垂直所以PAPBPC1,则2R,所以球的表面积S球4R23.答案:3三、解答题12(2018佛山质检)如图,四棱锥PABCD中,平面PAB平面ABCD,PAPB,ADBC,ABAC,ADBC1,PD3,BAD120,M为PC的中点(1)证明:DM平面PAB;(2)求四面体MABD的体积(1)证明:取PB中点N,连接MN、AN.因为M为PC的中点,所以MNBC且MNBC,又ADBC,且ADBC,得MN綊AD,所以ADMN为平行四边形,所以DMAN.又AN平面PAB,DM平面PAB,所以DM平面PAB.(2)解:取AB中点O,连接PO,POAB.又因为平面PAB平面ABCD,则PO平面ABCD,取BC中点H,连结AH,因为ABAC,所以AHBC,又因为ADBC,BAD120,所以ABC60,RtABH中,BHBC1,AB2,所以AO1,又AD1,AOD中,由余弦定理知,OD,RtPOD中,PO,所以VMABDSABDPO.5
收藏
编号:4252955
类型:共享资源
大小:4.20MB
格式:ZIP
上传时间:2020-01-04
30
积分
- 关 键 词:
-
广东
高考
数学
二轮
复习
第二
部分
专题
立体几何
课件
练习
打包
- 资源描述:
-
广东高考数学二轮复习第二部分专题四立体几何(课件练习)(打包7套)理.zip,广东,高考,数学,二轮,复习,第二,部分,专题,立体几何,课件,练习,打包
展开阅读全文
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
装配图网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。