2019-2020年高二下学期第二次段考试题(数学理).doc
《2019-2020年高二下学期第二次段考试题(数学理).doc》由会员分享,可在线阅读,更多相关《2019-2020年高二下学期第二次段考试题(数学理).doc(6页珍藏版)》请在装配图网上搜索。
2019-2020年高二下学期第二次段考试题(数学理) 以下公式或数据供参考 ①独立性检验临界值表: . 当时,有的把握说明两个事件A与B有关;时,有95%把握说某两事件A与B有关; 时, 有99%把握说某两事件A与B有关.当时,两个事件没有关联. ②. 一、选择题:本大题共10小题,每小题5分,共50分.在每小题的四个选项中,选出符合题目要求的一项. 1.设为虚数单位,则展开式中的第三项为 ( ) A.4 B.-4 C.6 D.-6 2.从台甲型和台乙型电视机中任意取出台,其中至少有甲型与乙型电视机各台,则不同的取法共有( ) A.种 B.种 C.种 D.种 3.一工厂生产的100个产品中有90个一等品,10个二等品,现从这批产品中抽取4个,则最多有一个二等品的概率为( ) A. B. C. D. 4.若,则不等式等价于( ) A.或 B. C.或 D.或 5.甲、乙两人进行乒乓球比赛,比赛规则为“3局2胜”,即以先赢2局者为胜.根据经验,每局比赛中甲获胜的概率为0.6,则本次比赛中甲以2:1的比分获胜的概率为( ) A.0.288 B.0.144 C.0.432 D.0.648 6.某外商计划在个候选城市投资3个不同的项目,且在同一个城市投资的项目不超过2个,则该外商不同的投资方案有( ) A.16种 B.36种 C.42种 D.60种 7.将二颗骰子各掷一次,设事件A=“二个点数不相同”,B=“至少出现一个6点”,则概率 等于( ) A. B. C. D. 8.某产品的广告费用与销售额的统计数据如下表: 广告费用(万元) 4 2 3 5 销售额(万元) 49 26 39 54 根据上表数据预计广告费用为6万元时,销售额为( ) A.63.6万元 B.65.5万元 C.67.7万元 D.72.0万元 9.从数字1,2,3,4,5中,随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于9的概率为 ( ) A. B. C. D. 10.设,若函数,有大于零的极值点,则( ) A. B. C. D. 二、填空题:本大题共5小题,每小题5分,共25分. 11.设随机变量服从二项分布,且 ; 12.计算 . 13. 调查了某地若干户家庭的年收入x(单位:万元)和年饮食支出y(单位:万元),调查显示年收入x与年饮食支出y具有线性相关关系,并由调查数据得到y对x的回归直线方程:.由回归直线方程可知,家庭年收入每增加1万元,年饮食支出平均增加____________万元. 14. 如图所示,在一个边长为1的正方形AOBC内, 曲线和曲线围成一个叶形图(阴影部分), 向正方形AOBC内随机投一点,该点落在正方形AOBC内任何 一点是等可能的,则所投的点落在叶形图内部的概率为__________. 15.若不等式对任意的实数恒成立,则实数的取值范围是 . 三、解答题:(共75分) 16.(本小题满分12分) 下面是对智商在40~69之间的人的出生季节所作的一项调查。结果如下(单位:人): 智商 季节 40~54 55~69 合计 夏和秋 20 30 50 春和冬 10 X 50 合计 30 70 Y (Ⅰ) 请求出表中X和Y的值; (Ⅱ) 问智商在40~69之间的人的智商与出生季节是否有关联? 17.(本小题满分12分) 某校从6名教师中,选派4名同时到3个边远地区支教,每个地区至少选派1名. (Ⅰ) 共有多少种不同的选派方法? (Ⅱ) 若6名教师中的甲,乙二位教师不能同时支教,共有多少种不同的选派方法? 18. (本小题满分12分) 已知的展开式中的二项式系数之和为256. (Ⅰ)证明展开式中没有常数项; (Ⅱ)求展开式中所有有理项. 19. (本小题满分12分) 学校为绿化环境,移栽了甲、乙两种大树各2株.设甲、乙两种大树移栽的成活率分别为和,且各株大树是否成活互不影响. (Ⅰ)求移栽的4株大树中恰有3株成活的概率; (Ⅱ)设移栽的4株大树中成活的株数为,求分布列与期望. 20.(本小题满分13分) 随机抽取某厂的某种产品100件,经质检,其中有一等品63件、二等品25件、三等品10件、次品2件.已知生产1件一、二、三等品获得的利润分别为6万元、2万元、1万元,而1件次品亏损2万元.设1件产品的利润(单位:万元)为. (1)求的分布列; (2)求1件产品的平均利润(即的数学期望); (3)经技术革新后,仍有四个等级的产品,但次品率降为,一等品率提高为.如果此时要求1件产品的平均利润不小于5.13万元,则三等品率最多是多少? 21.(本小题满分14分) 设函数 (Ⅰ)当时,求的展开式中二项式系数最大的项; (Ⅱ)对任意的实数,证明 :(是的导函数); 修水一中高二第二次段考数学答案(理) 二、填空题(本题共5小题,每小题5分,共25分) 11.0.32 . 1024 0.254 . . 三、解答题(本大题共6小题,共75分,解答应写出必要的文字说明,证明过程及演算步骤) .(本小题满分12分) 解: (Ⅰ) X=40 ,Y=100 (Ⅱ) = 有95%把握说智商在40~69之间的人的智商与出生季节有关. .(本小题满分12分) 解:(Ⅰ) 从6名教师中选出4人,有种方法,4名教师选派到3个边远地区支教,每个地区至少选派1名,有种方法,根据分步计数原理,共有种方法. (Ⅱ) 甲,乙二位教师都不支教,有种不同的选派方法 ;甲,乙二位教师恰有一名支教,有种不同的选派方法. 根据分步计数原理,共有+=756种方法. .(本小题满分12分) 解:设表示甲种大树成活株,, 表示乙种大树成活株,, 则独立.由独立重复试验中事件发生的概率公式有,. 据此算得 ,,, ,,. (I)所求概率为 . 综上知有分布列: 0 1 2 3 4 从而,的期望为 (株). 解法二: 分布列的求法同前. 令,分别表示甲、乙两种树成活的株数,则 , 故有,=, 从而知(株). .(本小题满分13分) 解:(1)的所有可能取值有6,2,1,-2;, , 故的分布列为: 6 2 1 -2 P 0.63 0.25 0.1 0.02 (2) (3)设技术革新后的三等品率为,则此时1件产品的平均利润为 依题意,,即,解得 所以三等品率最多为 .(本小题满分14分) (Ⅰ)解:展开式中二项式系数最大的项是第3项,这项是 (Ⅱ)证法一:因 证法二: 因 而 故只需对和进行比较。- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019 2020 年高 学期 第二次 段考 试题 学理

链接地址:https://www.zhuangpeitu.com/p-3194483.html