2019-2020年高二上学期文科实验班第二次月考数学试题 含答案.doc
《2019-2020年高二上学期文科实验班第二次月考数学试题 含答案.doc》由会员分享,可在线阅读,更多相关《2019-2020年高二上学期文科实验班第二次月考数学试题 含答案.doc(8页珍藏版)》请在装配图网上搜索。
2019-2020年高二上学期文科实验班第二次月考数学试题 含答案注意事项:1.本卷为衡阳八中高二年级文科实验班第二次月考试卷,分两卷。其中共22题,满分150分,考试时间为120分钟。2.考生领取到试卷后,应检查试卷是否有缺页漏页,重影模糊等妨碍答题现象,如有请立即向监考老师通报。开考15分钟后,考生禁止入场,监考老师处理余卷。3.请考生将答案填写在答题卡上,选择题部分请用2B铅笔填涂,非选择题部分请用黑色0.5mm签字笔书写。考试结束后,试题卷与答题卡一并交回。预祝考生考试顺利第I卷 选择题(每题5分,共60分)本卷共12题,每题5分,共60分,在每题后面所给的四个选项中,只有一个是正确的。1.下列有关命题的说法正确的是( )A命题“若x2=1,则x=1”的否命题为:“若x2=1,则x1”B若pq为真命题,则p,q均为真命题C命题“存在xR,使得x2+x+10”的否定是:“对任意xR,均有x2+x+10”D命题“若x=y,则sinx=siny”的逆否命题为真命题2.已知p:2+2=5;q:32,则下列判断错误的是( )A“pq”为真,“q”为假 B“pq”为假,“p”为真C“pq”为假,“p”为假 D“pq”为真,“p”为真3.设曲线在点(3,2)处的切线与直线ax+y+1=0垂直,则a=( )A2 B C D24.已知A、B为双曲线E的左右顶点,点M在E上,AB=BM,三角形ABM有一个角为120,则E的离心率为( )A B C D25.与椭圆共焦点且过点P(2,1)的双曲线方程是( )ABCD6.设双曲线的中心为点,若有且只有一对相交于点.所成的角为的直线和,使,其中.和.分别是这对直线与双曲线的交点,则该双曲线的离心率的取值范围是A. B. C. D.7.已知函数f(x)在R上的导函数为f(x),若f(x)f(x)恒成立,且f(0)=2,则不等式f(x)2ex的解集是( )A.(2,+)B.(0,+)C.(,0)D.(,2)8.定义:如果函数f(x)在a,b上存在x1,x2(ax1x2b),满足f(x1)=,f(x2)=,则称数x1,x2为a,b上的“对望数”,函数f(x)为a,b上的“对望函数”已知函数f(x)=x3x2+m是0m上的“对望函数”,则实数m的取值范围是( )A(1,) B(,3) C(1,2)(2,3) D(1,)(,3)9.已知是双曲线的左、右焦点,过且垂直于轴的直线与双曲线交于两点,若为钝角三角形,则该双曲线的离心率的取值范围是( )ABCD10.如图是函数y=f(x)的导函数y=f(x)的图象,给出下列命题:2是函数y=f(x)的极值点;1是函数y=f(x)的最小值点;y=f(x)在x=0处切线的斜率小于零;y=f(x)=在区间(2,2)上单调递增则正确命题的序号是( )A B C D11.椭圆的左、右焦点分别F1(c,0),F2(c,0),若椭圆上存在点P,使得sinPF1F2sinPF2F10,则离心率e的取值范围是( )A B C D12.设函数是定义在上的可导函数,其导函数为,且有,则不等式的解集为( )(A) (B)(-xx,0) (C) (D)(-xx,0)第II卷 非选择题(共90分)二.填空题(每题5分,共20分)13.下列命题正确的序号是 命题“若ab,则2a2b”的否命题是真命题;若命题p:“0”,则;p:“0”;若p是q的充分不必要条件,则p是q的必要不充分条件;方程ax2+x+a=0有唯一解的充要条件是a=x1045f(x)122114.已知函数f(x)的定义域为1,5,部分对应值如下表,f(x)的导函数y=f(x)的图象如图示 下列关于f(x)的命题: 函数f(x)的极大值点为0,4; 函数f(x)在0,2上是减函数; 如果当x1,t时,f(x)的最大值是2,那么t的最大值为4; 当1a2时,函数y=f(x)a有4个零点;函数y=f(x)a的零点个数可能为0、1、2、3、4个 其中正确命题的序号是 15.已知f(x)=x36x2+9xabc,abc,且f(a)=f(b)=f(c)=0现给出如下结论:f(0)f(1)0;f(0)f(1)0;f(0)f(3)0;f(0)f(3)0其中正确结论的序号是 16.以下四个关于圆锥曲线的命题中:设A、B为两个定点,k为正常数,则动点P的轨迹为椭圆;双曲线与椭圆有相同的焦点;方程2x25x+2=0的两根可分别作为椭圆和双曲线的离心率;和定点A(5,0)及定直线的距离之比为的点的轨迹方程为其中真命题的序号为 三.解答题(共6题,共70分)17.(本题满分10分)已知全集,非空集合,(1)当时,求;(2)命题,命题,若是的必要不充分条件,求实数的取值范围 18.(本题满分12分)已知抛物线C:y2=2px(p0)的焦点为F,点P在C上且其横坐标为1,以F为圆心,|FP|为半径的圆与C的准线l相切(1)求p的值;(2)设l与x轴交点E,过点E作一条直线与抛物线C交于A、B两点,求线段AB的垂直平分线在x轴上的截距的取值范围 19.(本题满分12分)已知函数f(x)=ax2+lnx(a+1)x+a(a为常数)(1)当a=2时,求函数f(x)的单调区间;(2)若函数f(x)在区间1,+)的最小值为1,求实数a的取值范围 20.(本题满分12分)已知函数f(x)=(x36x2+3x+t)ex,tR()若函数f(x)在点(0,f(0)处的切线方程为4xy+1=0,则求t的值()若函数y=f(x)有三个不同的极值点,求t的值;()若存在实数t0,2,使对任意的x1,m,不等式f(x)x恒成立,求正整数m的最大值 21.(本题满分12分)已知和是椭圆:的两个焦点,且点在椭圆上()求椭圆的方程;()直线与椭圆有且仅有一个公共点,且与轴和轴分别交于点,当面积取最小值时,求此时直线的方程 22.(本题满分12分)已知椭圆E:过点(0,1),且离心率为(1)求椭圆E的方程;(2)如图,A,B,D是椭圆E的顶点,M是椭圆E上除顶点外的任意一点,直线DM交x轴于点Q,直线AD交BM于点P,设BM的斜率为k,PQ的斜率为m,则点N(m,k)是否在定直线上,若是,求出该直线方程,若不是,说明理由 衡阳八中xx年下期高二年级文科实验班第二次月考数学参考答案题号123456789101112答案DCDBBABBBABC13.14.15.16.17.(1),当时,. (2)若是的必要不充分条件,即是充分不必要条件,可知集合是集合的真子集,由,所以,解得.18.(1)因为以F为圆心、|FP|为半径的圆与C的准线l相切,所以圆的半径为p,即|FP|=p,所以FPx轴,又点P的横坐标为l,所以焦点F的坐标为(1,0),从而p=2;(2)由(1)知抛物线C的方程为y2=4x,设A(x1,y1),B(x2,y2),线段AB的垂直平分线与x轴的交点D(x0,0),则由|DA|=|DB|,y12=4x1,y22=4x2,得(x1x0)2+y12=(x2x0)2+y22,化简得x0=+2设直线AB的方程为x=my1,代入抛物线C的方程,得y24my+4=0,由0得m21,由根与系数关系得y1+y2=4m,所以x1+x2=m(y1+y2)2=4m22,代入得x0=2m2+13,故线段AB的垂直平分线在x轴上的截距的取值范围是(3,+)19.(1)函数f(x)的定义域为(0,+),f(x)=x2+lnx3x+1,f(x)=2x+3=,当x1时,f(x)0,当0x时,f(x)0;当x1时,f(x)0;故f(x)的单调减区间是(,1),单调增区间是(1,+)和(0,);(2)f(x)=,当a1时,f(x)0,即f(x)在1,+)上单调递增,所以f(x)f(1)=1,当0a1时,f(x)在(1,)上单调递减,所以,当x(1,)时,f(x)f(1)=1,不合题意,当a0时,f(x)0,即f(x)在1,+)上单调递减,所以f(x)f(1)=1,不合题意,综上所述,实数a的取值范围是1,+)20.() 函数f(x)=(x36x2+3x+t)ex,则f(x)=(x33x29x+3+t)ex,函数f(x)在点(0,f(0)处的切线斜率为f(0)=3+t,由题意可得,3+t=4,解得,t=1; () f(x)=(x33x29x+3+t)ex,令g(x)=x33x29x+3+t,则方程g(x)=0有三个不同的根,又g(x)=3x26x9=3(x22x3)=3(x+1)(x3)令g(x)=0得x=1或3且g(x)在区间(,1),(3,+)递增,在区间(1,3)递减,故问题等价于即有,解得,8t24; ()不等式f(x)x,即(x36x2+3x+t)exx,即txexx3+6x23x转化为存在实数t0,2,使对任意的x1,m,不等式txexx3+6x23x恒成立即不等式0xexx3+6x23x在x1,m上恒成立即不等式0exx2+6x3在x1,m上恒成立设(x)=exx2+6x3,则(x)=ex2x+6设r(x)=(x)=ex2x+6,则r(x)=ex2,因为1xm,有r(x)0故r(x)在区间1,m上是减函数又r(1)=4e10,r(2)=2e20,r(3)=e30故存在x0(2,3),使得r(x0)=(x0)=0当1xx0时,有(x)0,当xx0时,有(x)0从而y=(x)在区间1,x0上递增,在区间x0,+)上递减又(1)=e1+40,(2)=e2+50,(3)=e3+60,(4)=e4+50,(5)=e5+20,(6)=e630所以当1x5时,恒有(x)0;当x6时,恒有(x)0;故使命题成立的正整数m的最大值为521.()依题意,又,故所以故所求椭圆的方程为()由消得由直线与椭圆仅有一个公共点知,整理得由条件可得,所以 将代入得因为,所以,当且仅当,即时等号成立,有最小值因为,所以,又,解得故所求直线方程为或22.(1)依题意,b=1,又a2=b2+c2,3a2=4c2=4(a2b2)=4a24,即a2=4椭圆E的方程为:;(2)由(1)知,A(2,0),B(2,0),D(0,1),直线AD的方程为y=,由题意,直线BP的方程为y=k(x2),k0且k,由,解得P(),设M(x1,y1),则由,消去y整理得(4k2+1)x216k2x+16k24=0,即,即M(),设Q(x2,0),则由M,D,Q三点共线得:kDM=kDQ,即,则,PQ的斜率m=2k+1=4m,即点N(m,k)在定直线4x2y1=0上- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019-2020年高二上学期文科实验班第二次月考数学试题 含答案 2019 2020 年高 学期 文科 实验 第二次 月考 数学试题 答案
装配图网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.zhuangpeitu.com/p-3153356.html