某污水厂反硝化滤池设计计算

上传人:仙*** 文档编号:87243951 上传时间:2022-05-09 格式:DOC 页数:16 大小:93KB
收藏 版权申诉 举报 下载
某污水厂反硝化滤池设计计算_第1页
第1页 / 共16页
某污水厂反硝化滤池设计计算_第2页
第2页 / 共16页
某污水厂反硝化滤池设计计算_第3页
第3页 / 共16页
资源描述:

《某污水厂反硝化滤池设计计算》由会员分享,可在线阅读,更多相关《某污水厂反硝化滤池设计计算(16页珍藏版)》请在装配图网上搜索。

1、 . . . 第七章 设计依据和指导思想7.1设计依据7.1.1XX市桥东污水处理厂升级改造工程反硝化生物滤池和高效沉淀池主要机械设备供货QD-M1-103包招标文件7.1.2业主及招标机构投供的相关图纸资料及现场实际条件。7.1.3我司采用同类工艺治理同类污水的工程经验及相关工艺设计资料。7.2设计规及标准7.2.1城镇污水处理厂污染物排放标准GB 1891820027.2.2室外排水设计规GB50014-20067.2.3污水再生利用工程设计规GB50335-20027.2.4建筑给水排水设计规GB50015-20037.2.5城市污水再生利用 城市杂用水水质GB/T18920-20027

2、.2.6工业企业设计卫生标准GBZ1-20027.2.7城市污水处理站污泥排放标准7.2.8城市区域环境噪声标准GB3096-937.2.9工业企业厂界噪声标准7.2.10采暖通风和空调设计规GBJ19-877.2.11恶臭污染物排放标准GB14554-937.2.12低压配电设计规7.2.13通用用电设备配电设计规GB50055-937.2.14供配电系统设计规GB50052-957.2.15电力装置的继电保护和自动装置设计规GB50062-927.2.16民用建筑照明设计标准GJ133-907.2.17民用建筑节能设计标准JGJ26-957.2.18工业企业照明设计标准GB50034-92

3、7.2.19工业与民用电力装置的接地设计规GBJ65-837.2.20工业自动化仪表工程施工及检验规GBJ930867.2.21建筑设计防火规GBJ16-877.2.22建筑部装修设计防火规GB50222-957.2.23建筑结构设计标准BGJ989;7.2.24给水排水工程结构设计规GBJ69-847.2.25建筑结构荷载规7.2.26凝土结构设计规7.2.27建筑结构设计统一标准7.2.28地下工程防水技术规7.2.29混凝土外加剂应用技术规7.2.30建筑地基基础设计规7.2.31建筑地基处理技术规7.2.32工业建筑防腐蚀设计规7.2.33建筑物防雷设计规20XX版7.2.34建筑抗震

4、设计规7.2.35砌体结构设计规GB5003-20017.3 主要设计原则7.3.1 根据招标文件要求,选用供货围之一的工艺方案进行设计,该套技术工艺先进成熟,运行稳定定可靠。7.3.2 采用质量优良的设备及产品,确保污水处理设施能够长期稳定运行。7.3.3 在工艺设计细节上进行优化,在确保污水处理出水稳定达到规定的标准的前提下,处理设施投资省、占地少、能耗低、节省运行费用。7.3.4在系统整体布局和操作环境等细节设计上,充分考滤工艺操作的管理方便,确保系统长期运行稳定、可靠、安全实用,并具有较好的生产环境和劳动条件。7.3.5降低噪声、消除异味,改善污水处理站及周围环境。7.3.6严格执行国

5、家有关设计规、标准,重视消防、安全工作。7.3.7设备及电器原器件的选型充分考虑污水处理厂原有设备的统一性、互换性和协调性。7.3.8建构筑物布置与站区及周边建筑物协调一致,总体布局合理美观。7.4 设计围7.4.1XX市桥东污水处理厂升级改造工程反硝化生物滤池和高效沉淀池的工艺设计。7.4.2 本方案设计边界围为工艺流程框图中双点画线框以的相关部分。详见本设计方案工艺流程部分。7.4.3本系统的全部设备选型及非标设备设计、工艺管道计。7.4.4本系统的的电气、自动控制及仪表系统设计。7.4.5本系统的给排水及消防系统设计7.4.6本系统的技术经济分析及运行管理生产设计第八章 设计基础资料8.

6、1 地理位置XX地处省中南部,位于北纬3726-3846,东经1133111529之间,东与接壤,南与毗连,西与为邻,北与为界。辖区总面积15848平方公里。8.2城市性质XX市是省省会,1925年开始设市、旧称石门市,1948年初改称为XX市,它是我国建市较早,有一定工业基础的较大城市,经过几十年的发展,现已成为我北重要工业基地,并是全国的纺织、化工、医药、电子工业中心之一。同时又是省的政治、经济、文化、科学、教育中心。8.2气象条件XX地处暖温带、半湿润、半干旱季风型大陆性气候,四季分明。年平均气温:12.9极端最高气温:42.7极端最低气温:-26.5多年平均降水量:537.2mm年降水

7、量的6080%,集中在68月份,春冬季节干旱少雨,年际变化悬殊。主导风向:东南风 次主导风向:西北风 风频率:10%冬季平均风速1.8米/秒夏季平均风速1.5米/秒最大积雪厚度:19厘米最大冻土厚度:53厘米年平均雷曝日数为:31天8.3本系统设计进水条件进水水量本合同设计规模为日平均流量50万m3/day,总变化系数1.3,高峰设计流量28431m3/h。进水水质进生物滤池构筑物水质指标:XX桥东污水处理厂生物滤池进水水质值序号项目要求设计值1BOD5302CODcr703SS304TN655NO3-N576NH4+-N57TP78水温14-258.4本系统设计出水要求高效沉淀池处理后出水达

8、到下表要求:表8-2序号项目要求设计值1BOD5122CODcr503SS134TN155TP0.58.5取样与监测1.出水水质取样在高效沉淀池末端总出水管设置取样口。2.取样频率至少为每2h一次,取24H混合样,以日均值计。3.监测分析方法按城镇污水处理厂污染物排放标准GB 189182002中要求的方法执行。第九章 本系统污水处理工艺流程9.1工艺流程概述本系统主体工艺包括两部分,即反硝化生物滤池和高效沉淀池两部分。反硝化生物滤池的主要作用是将废水中的硝态氮通过反硝化过程而转化为氮气,从而达到脱氮的目的,同时进一步去除废水中的BOD、COD等,从而提高出水水质。高效沉淀池的主要作用是通过加

9、入除磷剂、絮凝剂等,去除废水中的总磷,同时进一步去除废水中的SS,确保出水水质达标。为了保证上述功能的实现及系统长期稳定运行的需要,需对系统进行细化设计,确定如下系统工艺流程。9.2系统设计工艺流程框图系统设计工艺流程框图如下:剩余污泥中间提升泵站二沉池出水反硝化生物滤池循 环 水 池反 冲 洗 水 池混 合 池反 应 池高效沉淀池去滤布滤池循环泵反冲洗泵甲醇投加FeCl3投加PAM投加反冲洗废水池反冲洗废水排 水 泵预处理段去污泥处理单元污泥泵回流污泥说明:加药流向线污泥流向线污水流向线反冲洗水流向线线框内为本设计方案范围二级生物处理系统DN生物滤池和高效沉淀池系统工艺流程9.3系统工艺流程

10、详细说明:9.3.1污水处理流程:二沉池出水经中间提升泵站提升进入生物滤池总进水槽,由总进水槽分配至每格生物滤池进水管,每格生物滤池进水管将污水送至滤池底部,污水自下而上以一定的流速流经生物滤料,滤料上长满生物膜,污水与生物膜相接触,在生物膜微生物的作用下,污水得到净化。同时充满滤料的滤床可以有效的截留水中的悬浮物质,从而使污水能得到进一步澄清。由于反硝化过程需要消耗碳源,当碳源不足时通过投加甲醇补充碳源,保证反硝化过程的正常运行。反硝化生物滤池出水首先进入循环水池,设有循环水泵,通过循环水泵的提升,将循环水池的的处理水泵入反硝化生物滤池进水总槽,与原水混合。通过处理水回流,一方面用于提高反硝

11、化滤池的水力负荷,保证滤池适宜的滤速,另一方面出水回流可对原水中的SS、硝态氮等进行稀释,降低其在进水中的浓度,有利于保证滤池系统正常稳定运行,出水稳定达标。同时回流可以增滤池中的反硝化微生物,提高滤池的反硝化处理效果。循环水池出水进入反冲洗水池,反冲洗水池设有反冲洗水泵,以备滤池反冲洗时使用。反冲洗水池溢流水自流进入高效沉池系统的混合池,混合池分成两格,均设有高速混合搅拌机,分别投加三氯化铁除磷剂、PAM助凝剂,在混合搅拌机的作用下,使投加的絮凝剂、助凝剂与废水充分混合,然后自流进入反应池,与高效沉淀区的回流污泥在此混合,并通过反应池的反应搅拌机的搅动,创造适宜的反应速度梯度,使细小悬浮物结

12、大易于沉淀,为后续的沉淀分离创造条件。反应池出水进入高效沉淀池,通进预沉浓缩区进行沉淀、浓缩,然后由下而上穿过斜管实现泥水分离。高效沉淀池上部设有集水槽,处理水通过集水槽收集流出系统。处理达标后污水流入滤布滤池等污水处理厂的其他处理单元作进一步处理。9.3.2反硝化滤池冲洗流程:由于微生物的不断繁殖,生物膜逐渐增厚,超过一定厚度后,吸附的有机物,在传递到滤料表面的微生物之前已被代。此时,滤料表面的层微生物因得不到有机营养而进入源代,失去其粘附在滤料上的性能,脱落下来。这时滤池则需要进行冲洗。冲洗采用气水联合反应洗。冲洗是在与正常过滤的相同方向进行的。实际上是顺向冲洗,反冲洗只是习惯的说法。当需

13、要冲洗时,由反冲洗水泵提升反冲洗水池的滤池处理水进行反冲,冲洗废水自流进入反冲洗废水池,由反冲洗废水排水泵排入污水处理站的预处理段初沉池作进一步处理。冲洗空气则通过启动自鼓风机来实现。系统设计有智能控制系统,可通过时间、水头损失、处理出水水质等控制系统自动完成反冲洗,从而保证冲洗强度恰当和适宜,既要冲洗得有效、彻底,又要保护滤床及生物群不被破坏,从而在冲洗结束后,系统可以尽快的回复其工艺性能。冲洗可根据需要选用水冲洗、气冲洗、气水联合冲洗。冲洗周期大于12小时,每格滤池交替进行冲洗。滤池系统可根据需要采用正常强度的反冲洗和超强度的反冲洗。9.3.3高效沉淀池污泥流程:高效沉淀池的污泥通过沉淀、

14、在污泥浓缩机运转下浓缩,然后通过污泥循环泵泵入反应池,与混合池来水混合,为细小悬浮物反应结大创造晶核条件,并充分利用回流污泥的絮凝作用,提高反应效果,减少反应加药量。沉淀系统经过一段进间运行后,产生的污泥越来越多,这时剩余污泥需要排出系统。此时,通过污泥排泥泵将污泥泵入污泥处理系统进行脱水处理。9.4对工艺流程的优化1、建议将二级生物处理前预处理出水分一股直接引至中间提升泵站,与二沉池出水按一定比例混合,由于预处理出水中含有大量的有机物,可改善生物滤进水碳源缺少的状况,从而减少反硝化滤池碳源的投加量,可节约碳源投加方面的运行费用。2、招标文件建议采用聚铝作为除磷剂及混凝剂,建议改为三氯化铁。三

15、氯化铁除磷效果与聚铝相差不大,磷酸铁沉淀效果好。但三氯化铁的价格约比聚合氯化铝要低得多,从而可节约运行费用。第十章 反硝化生物滤池10.1 反硝化生物滤池净化原理反硝化生物滤池是利用附着在生物滤料上的含有大量反硝化细菌的生物膜在厌氧条件下将硝态氮NO3-N、亚硝态氮NO2-N转化为氮气的生物滤池,从而确保出水总氮达标。其净化原理如下:反硝化细菌以NO3-N或NO2-N作为电子受体,以有机碳为碳源,对NO3-N或NO2-N进行转化去除。在反硝化菌的代活动下,硝态氮有二个转化途径,即:同化反硝化合成,最终产物为反硝化细菌菌体细胞物质有机氮化合物,保持反硝化反应的持续进行。异化反硝化分解,最终产物为

16、气态氮,从而达到脱氮的目的,以异化反硝化为主。反硝化反应式如下: 同化反硝化 4H-2H2O 2NH2OH2NH3 -2H2O-2H2O-H2O2HNO32HNO22HNO 异化反硝化 -H2ON2ON2由于反硝化细菌在将硝态氮或亚硝态氮转化为氮气的过程中,需要消耗碳源,因此,可进一步去除废水中的有机碳,从而进一步降低废水中的COD、BOD浓度,从而做到COD、BOD等指标达标。但由于采用后置反硝化反滤池,经处理后的污水可能存在有机物不足的情况,这时,则需另外投加有机物补充碳源,本投标文件采用投加甲醇的方案解决有机碳不足的问题。此时有机物的需要量为:Cm=2.47NO3-N+1.53NO3-N

17、+0.87DO 并按考滤30%的余量计算。10.2 反硝化生物滤池工艺描述10.2.1反硝化滤池总体布局及流程描述本投标系统的反硝化生物滤池为三级串联后置反硝化生物滤池,滤池配置为两组28格,每组14格,单格平面尺寸为12680mm9270mm。附设有反冲洗废水池和废水泵、鼓风机房及压缩空气系统等。每组每格反硝化滤池的进水闸阀、排水阀、反冲洗水阀、反冲洗气阀、出水调节阀以及排气阀均采用气动阀门,供气由空压机供气,由电磁阀控制开闭。滤池设计为分流进水,定水位形式。每格滤池各设一个进水阀门。滤池水位由滤池出水堰控制,滤池采用向上流过滤,滤池出水接至总出水管排至高效沉淀池。二级处理后的污水经中间提升

18、泵站提升进入生物滤池总进水槽,由总进水槽分配至每格生物滤池进水管,每格生物滤池进水管将污水送至滤池底部,污水自下而上以一定的流速流经生物滤料,滤料上长满生物膜,污水与生物膜相接触,在生物膜微生物的作用下,消耗有机物碳源,分解污水中的硝态氮、亚硝态氮,从而使污水得到净化,达到脱碳、脱氮的目的。同时充满滤料的滤床可以有效的截留水中的悬浮物质,去除SS,从而使污水能得到进一步澄清。系统设有碳源投加系统,当碳源不足时,可通过投加少量的甲醇来弥补,确保脱氮所需碳源,保证脱氮效果。由于微生物的不断繁殖,生物膜逐渐增厚,超过一定厚度后,吸附的有机物,在传递到滤料表面的微生物之前已被代。此时,滤料表面的层微生

19、物因得不到有机营养而进入源代,失去其粘附在滤料上的性能,脱落下来。这时滤池则需要进行冲洗。本反硝化生物滤池冲洗采用气水联合冲洗,冲洗水采用生物滤池出水,由反冲洗水泵进行冲洗,冲洗空气则采用罗茨鼓风机供气。冲洗水排至反冲洗废水池,回流继续处理。冲洗强度通过自动控制系统进行控制,确保冲洗得有效、彻底,又保证滤床及生物群不被破坏,从而在冲洗结束后,系统可以尽快的回复其工艺性能。每格滤池交替进行冲洗,反冲洗周期大于12小时。系统自控设有冲洗有2种形式:正常强度的冲洗和超强度的冲洗,两种冲洗的冲洗时间、冲洗流量不同,超强度冲洗流量更大,时间更长,这此参数均可通过电脑进行调节。冲洗是在与正常过滤的相同方向

20、进行的,使用已过滤的清水。反冲洗水泵提供反冲洗水,工艺鼓风机提供冲洗空气。系统设有布水系统,确保反硝化滤池进水及冲洗水及冲洗空气配水配气均匀。布水系统整体混凝土滤板和调节滤头的布水系统,滤头及底模采用聚苯乙烯材质,材料耐腐蚀强。并且滤头具有保证气水共同冲洗时空气的均匀分配。滤头系统的设计,除了考虑空气冲洗时,整个滤板上的分配均匀外,还考虑风机了起动时空气进流涌动的脉冲。系统设有循环水泵,当处理水量低时,可通过处理水循环来保证滤池的水负荷满足要求,从保证不同原水流量情况下滤池的正常运行。10.2.2反硝化滤池自控系统描述系统的控制总控制台以协调滤池控制台及反冲洗设备的工作状态。反硝化滤池的控制系

21、统采用分散控制、集中管理,各单格滤池旁设分控柜就地柜一个,控制滤池的过滤及其阀门,包括反冲洗时的相关阀门。整个滤池设公共柜一个,安装于滤池集中控制室,处理各分控柜的反冲洗申请,以及反冲洗设备的控制。各分控柜和公共柜通过工业控制网连接起来,实现数据的传输。并设上位机监控站一台,动态显示滤池工艺工作状况、设备运行状况、反冲洗参数设置等。该系统可实现整个滤池工艺的无人职守、全自动化控制。该控制系统具备运行稳定、安全、可靠、能耗低、操作简单、明了、维护方便、快捷、适应性强等特点。此系统是建立在PLC基础上,由滤池控制单元和公共控制单元组成。滤池控制单元可实现下列功能:自动控制无人操作的滤池的过滤和反冲

22、洗 一旦出现故障,将生产损失限于故障单元使操作员能人工或自动启动反冲洗用计时器和/或水头损失的启动自动反冲洗滤池控制单元向负责控制和故障排除工作的操作人员显示最多的数据,包括但不限于:滤池水头损失滤池状态:反冲洗、等候反冲洗、生产中、停止或故障已经反冲洗的上一个滤池自各个滤池上一次冲洗的过滤时间阀门状态:开、关或故障反冲洗废水泵状态:可用、开、关或故障气洗鼓风机状态:可用、开、关或故障当一个滤池需要时,公共控制单元负责在对下列各项进行检查后自动开始反冲洗:压缩空气压力高反冲洗泵和鼓风机为可用状态无其它冲洗滤池滤池上设有反映出各滤池的进水水质、液位、堵塞状况、反冲洗过程控制液位计等自动控制仪表。

23、具体详见自动控制5.2系统自动控控制系统技术性能描述10.2.3反硝化滤池工艺设计计算反硝化滤池所需滤料计算 滤料体积按下式计算VDN=QN0-Ne/1000qND式中:VDN:所需反硝化滤料体积m3Q:进入滤池的日平均污水量m3/dN0:进水中硝态氮浓度Ne:出水中硝态氮浓度qND:滤料的反硝化负荷,kg NO3N/m3滤料.d,城市污水一般取0.8-4.0由招标文件给定的进水水质条件:Q=5000001.3=650000m3/d注:1.3为小时变化系数。N0=57 Ne= 15TN-5NH4-N=10qND=2.82针对城市污水反硝化特性取值故反硝化滤料体积为: VDN=QN0-Ne/10

24、00qND =650000 =10833 m3 取10860 m32反硝化滤池平面设计滤池总面积按下式计算:A= VDN/HH:滤料层的高度:2.5-4.5m 根据招标文件提供土建条件,取滤料层高度为:H=3.0m 则滤池总面积A= VDN/H =10860 m33.0m=3290.9m2为保证滤池配水均匀,滤池按28格设计。则单格池的面积为A单=3290.9m228=117.5m2取长边12.68m,则滤池短边:9.27单池尺寸:12.68m9.27m3反硝化滤池高度设计 取:配水区高度:0.95m 承托层高度:0.3m 滤料层高度:3.3m 清水区高度:1.1m 超高:0.94m 滤池总高

25、: H总=0.95+0.3+3.0+1.1+0.94=6.29m 与招标文件提供的土建条件图相符4滤池循环系统设计回流比取日平均水量的60%,平均小时回流水量为:500000m3/d24h/d60%=12500m3/h设计选用8台回流水泵,6用2备,每台回流水泵参数为:流量Q=2083m3/h, 扬程H=4m5滤池水冲洗系统计算 滤池水冲洗系统分为四组,每组分别负责7格滤池的冲洗,每组冲洗系统每次只反冲一个滤池,依次轮流进行。滤池水冲洗强度取:5.4L/一般5-6 L/每格滤池需要的冲洗水量为:5.4L/121.2m23.6=2356.128 m2/h根据现场高差条件、滤池水头损失、管道及局部

26、阻力损件,确定水泵扬程为12m。故每组冲洗系统选三台Q=1180m3/h TMH=12m的离心泵,两用1备。四组共需反冲洗水泵12台8用4备气冲洗系统计算考滤到气水联合反冲洗,而水冲洗分四组设计。故气冲洗系统按同时对四格滤池进行冲洗考滤。气冲洗强度取:13.45L/ 一般12-18 L/则需要的冲洗空气量为:13.45 L/121.2m243.6=23474 m3/h选4台罗茨鼓风机同时工作,单台风量为:23474 m3/h4=5868.5 m3/h,取5880 m3/h。根据滤池水位、阻力损失、管道沿程及局部阻力损失,风压选900mbar。气冲洗选用Q=5880 m2/h P=900mbar

27、罗茨鼓风机6台,4用2备。10.2.4反硝化滤池碳源投加计算1进水碳源校核由于反硝化需要消耗碳源,每将1mg的NO3-N转化为氮气,需要消耗2.86mg有机物溶解性COD。反硝化生物滤池进水COD浓度小于等于70mg/l,一般溶解性COD仅占65%。,故进水中的有机物最多仅够去除硝态氮的量为:700.652.86=15.9mg/l。考虑到进水浓度在70mg/l的下限及其他因素影响。这部份有机物于去除的硝态氮按13mg/l计算。因此,要保证污水中所有硝态氮完全完全成反硝化,必须投加碳源。2完全反硝化需甲醇投加量的计算采用投加甲醇的方法来补充碳源。由于进水中NO3-N为57mg/lNO2-N含量按

28、0计,出水中剩余NO3-N按 10mg/l,废水中溶解氧浓度按0.5mg/l。需投加甲醇的量按下式计算:Cm=2.47NO3-N+1.53NO2-N+0.87DO =2.47+1.530+0.870.5 =84.5 mg/l考滤30%的余量,实际每天需投加的甲醇量为:84.51.3=109.85mg/l 故甲醇用量按110mg/l投加计算。由于满负荷按高效沉淀池处理出水为日处理废水50万m3,考虑到滤池反洗,沉淀池排泥等因素影响,考滤损失水量为5%,因此反硝化滤池实际处理水量为:500000m3=525000 m3故系统每天需投加的甲醇总量为:525000 m3120 g/ m31000=63

29、000kg按高效沉淀池处理出水500000m3/d考虑,吨水甲醇投加量为:63000kg500000m3/d=0.126kg/m33减少碳源投加量的建议方案建议直接将污水处理厂二级生物处理前的预处理出水引一部分至中间提升泵站的集水池,使其与二沉池出水按一定比例混合,由于这部分水中含有大量的有机物,可作为反硝化生物滤池的碳源,从而减少甲醇投加量,节约运行费用,但混入比例不能太大,否则,由于引入的该股废水中非溶解性COD将对出水的COD等指标产生影响。根据我司运行经验,混合比例控控制在15%-25%,甲醇投加量可减少30%左右。即吨水甲醇投加量可减为0.126kg/m31-30%=0.088 kg/m3。16 / 16

展开阅读全文
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!