沸腾两相流综述

上传人:小** 文档编号:64148691 上传时间:2022-03-21 格式:DOC 页数:12 大小:113.50KB
收藏 版权申诉 举报 下载
沸腾两相流综述_第1页
第1页 / 共12页
沸腾两相流综述_第2页
第2页 / 共12页
沸腾两相流综述_第3页
第3页 / 共12页
资源描述:

《沸腾两相流综述》由会员分享,可在线阅读,更多相关《沸腾两相流综述(12页珍藏版)》请在装配图网上搜索。

1、沸腾换热文献综述引言近二十年来,多相流体力学和多相传热学发展迅速。在热能、动力、化工、核能、石油、 冶金、制药、电子、航空航天、生物工程等领域均有重要应用。在多柑流研究中,流动沸腾 尤为重要,很多行业的许多生产设备中都涉及到流动沸腾换热工况,人至电站锅炉的沸腾管、 化工精馆塔、蒸汽机车,小至MEMS的冷却无不与流动沸腾有关。沸腾换热只有传热温差小,换热强度高等特点,在许多工业与技术领域内得到了广泛应 用。管内溶液的蒸发就是沸腾换热过程,此过程伴随着汽液相的转换,属于汽液两相流动体 系。由于蒸发的溶液本身只有某些特性,例如有些物料在浓缩时可能析出结晶、易于结垢、 粘度较人等,使得蒸发器的安全稳定

2、运行很难得到保障。将惰性固体颗粒加入到汽液两相流 动体系中,形成汽液固三相流,可以较好地解决蒸发换热装置在运行过程中出现的壁面结垢 利传热强化问题。但由于沸腾多柑流动的特点使得其流动状况非常复杂,而加入固体颗粒后 形成汽液固三相流动就更为复杂,因此,对沸腾两相流动及汽液固三相流动的动力学特征研 究一直是人们感兴趣的课题。流体动力学特性的硏究是多相流体系的基础,它为与Z相关的物理过程提供了重要的第 一手资料,可为流动体系的进一步研究如传热、传质、化学反应等,以及设备的设计和放大 提供可靠的依据。因此,开展气(汽)液固多柑流体系的流体动力学研究,対于深入理解务 相流体系的内在运动规律和流型转化机制

3、具冇十分重要的意义。在多相流动过程中,由于汽、液、固相界面的变形和运动等原因,使得相界面运动貝有 动态特性,表现出强烈的非线性性质,是一个多变量相关的复杂非线性系统,其主要特征为 复杂性。在此复杂现象中,也必然存在着某种规律性,这种规律性表现为一系列混沌运动。 2;:仅采用传统的基于线性原则的分析方法,如谱分析技术、随机分析技术等,不能深入地从 本质上揭示动态的、非线性的多相流动及传递现象和流动机制。因此,对这些多相流动复杂 过程的研究,运用非线性理论是十分必要的。沸腾两相流的研究历程对于沸腾两相流的研究早在19世纪末20世纪初,就随着蒸汽机的发明和锅炉的出现而 出现。在1949年正式出现了两

4、相流这一名词。随着动力工业中高温高压参数的引入,以及 宇航工业、商用孩电站的发展,人量有关汽液两相流与传热的研究论文开始出现。对两相流 的研究冃的是判定在何种外界条件卜热设备中会出现两相流动,以及两相流不同流型的传热 特性、流动特性、对系统稳定工作状态的影响等等。研究内容包括宏观模型研究、流型研究、 流动特性研究、传热特性研究,以及它们对两相流系统稳定性的影响。两相流动过程数学模型研究主要基于以卜几点:从质量守恒,能呈守恒,动量守恒出 发,将这些平衡应用于各个相界面。以现令的实验数据(流型、控制体内部流动变量的分布 等)将流动过程进行某些理想化处理。考虑到现有的实验数据并根据某些普遍适用的规律

5、,如热力学第.定律,对各相以及相 界而的冇关物性参数,进行某些理想化处理。对发生在边界上的传送,进行某些理想化处理。 这种理想化导出传输定律,以及某些理论的和实际的限制(方程组闭合的必要件,方程易于 处理性等等)。由以上叙述可以看出,从热力学平衡(包括局部平衡)为前握的两相流模化包括质量、 动呈和能量平衡、各相相应的物构定律以及边界条件及初始条件,然后把这一系列方程组合 成闭介方程组,进行数值模拟,解得不同工况卜的流场特征参数分布。具体解这些方程组时, 涉及到模型简化的问题。一般是采用宏观的方法,即将两相工质视为连续介质进行研究。工 程上常用的有均相流模型、分柑流模型等等。然而这些宏观模型人多

6、都釆用这样一个基本假 设,即相间热力学平衡。这些模型对一般场介虽有简单易懂的优点,但对于沸腾过程中相界 面存在强烈热质交换的情况,则显得不合适。流型的定义是各式各样的,一方面是由于流态定义本身的人为特点:另一方面是由于对 基本相同的流型给予不同的名称。流型的判断通常是用冃测或其它方法进行流型的分类,并 通过诸如相折算速度或总质量流率和干度等参数画成流型图。通常这些流型图无普适意义。 于是人们继续研究坐标可以通用化的流型图。这类研梵成功的可能性不人,因为对于每一个 流型过渡来说,存在肴不同的柑关通用参数。然而通用流型图仍被广泛应用,并fl对于垂直 流动尤以Hewitt和Roberts的通用流型图

7、影响般广在这个流型图中釆用的坐标是各相的 折算动量流率足液体和气体的折算流率,即备相流经单位流道筱向的体枳流率)。国外对沸腾流动匚况的研究冃前还基本处于対各匸况机理的研究阶段,看重于定性地解 释各种工况下的动量平衡,根本的缺点是在平衡的多场力学模型指导下,用平均化的方法抹 杀掉了各种流动工况两相时空分布的特点。而由干很难釆用实测的空泡系数作为基本参 数,研究结果基本无法实际应用。传统的两相流系统流型的分析,大多是基于稳态和准稳态的。在工程上来讲,就是认为 流动工况是相间作用力、流动驱动力和壁面阻力Z间的平衡。但在实际的运行中,两相流的 动态特性是十分重要的,并且由于反应堆流道中的几何因素以及反

8、应堆运行工况的多变性, 在各种反馈机制的作用卞,某些微小的扰动町能导致产生各种不稳定现象。两相流不稳定性 可分为两个主要类型:静态不稳定性和动态(脉动)不稳定性。静态不稳定性是指在稳态运 行工况下的不连续性变化。换句话说,稳态流动在一定条件下变得不稳定了,它转化为另外 一个完全不同的运行工况。引起静态流动个稳定性的原内有:界面的不稳定性、流动与压降 之间的某些关系以及传热机理的某些变化。流型转换就属于最常见的静态不稳定,它主要是 由于界面不稳定引起的I平衡模型无法解决此类问题,因为流动沸腾工况是个相界面稳定 性问题。根据已有的对于流动工况的理论研究和实验來看,质量流率和空泡率是流体流动工 况的

9、决定因素,同时这两者之间又是相互影响的。而造成这一问题复杂性的最根本的原因是 在于这两者具有时空分布的随机性。这一问题不可能在线性前提卜在控制基元平衡概念的基 础上求得分析解,因此必须用非线性的动态方程來描述。在近几十年中学者们逐步将波动理 论引入对两相流动这一复杂系统动态现象的研究中。在波动理论中,将空泡波看作为一种连 续波。由于空泡梯度?a的存在,将会导致流动速度的不断变化,从而产生体枳力f,其直接 作用于流体的效果是导致速度的扰动。u,即产生动力波。在此认识的基础上,波传播观点, 将流动工况视为连续波与动力波相互作用在特定流动条件卜的非线性解。这种对于两相流动 的认识,也为解决两相流动沸

10、腾问题提供了一个全新的角度。为了使建模研究的目的向着满 足丁程需要的方向发展,必须考虎两相流的动力学特性,在建模过程中引进系统动力学思路, 把网络方法和参数辨识方法应用于沸腾流动中,逐渐达到建立能用于解决工程问题的沸腾流 动波动模型,先期的应用前景在于识别流动工况。从学科意义匕来说,虽然对两相流动的分析普遍采用三方程描述(即两相加权质最、动 量、能量守恒方程),但对于动态稳定性课题,必须考虎相间作用的非线性后果。相应的研 究方法,必须逐步过渡到非线性热力学和动力学结介的热动力学方法上。热动力学方法将不 可逆热力学理论和动力学方法结合起来,引入网络理论,用网络表述热力学系统及各子系统 间的相互作

11、用,并对每-个子系统建立起传输矩阵。子系统之间通过简单的联结与反馈,建 立起热力学系统的动态模型它对于系统的分析、优化和控制有看指导意义。在几十年的研究过程中,各国研究人员一II在不懈的努力试图弄清沸腾两相流的机理、 预测其流动状况利传热状况以便为工业应用提供科学依据。从理论模型角度来说,常用的宏 观模型是均相流模型、分相流模型、漂移流模型,它们假设前捉中仃个共同点,两相间保 持热力学平衡,也就是两相温度相同且处于饱和状态,而假设前提的不同之处在于对两相流 速的处理上面。流型图是流型随试验过程中参数变化而变化的图。一般的绘制方法是在绝热 的管道中(少数在加热管中),保持-定流量的液流,并注入不

12、凝性气体,造成两相流动。通过改变液流速度和气流速度,观察流道中的流型变化情况,并将结果绘制在一张图ho研 究者根据流动方式不同,给出了许多的流型图:如垂直上升管流型图,垂直下降管流型图, 水平管流型图,倾斜管流型图等等。压降和截而含汽率是汽液两相流IF常觅要的参数,现在 主要还是靠试验总结的经验公式来满足1:程计算的需要。斥降计算是各种匸程设备的基本计算参数。直管内两相流压降由三部分组成:dP dPF dPG dzfit dzpms sindz Adzaz pG pL其中等式左边为总压降,右边第一项为縻阻压降,表示流体克服摩擦阻力所需要的压力梯度,第二项为提升床降,表示流体克服逼力所需要的压力

13、梯度,第三项为加速斥降,为造 成流体加速所需要的压力梯度。其中现行对摩阻压力降的计算,通常采用相同流量条件卜的 纯液或是纯气的单相压力降公式= 甞的形式,并通过试验对公式进行修正。例如对 摩擦阻力系数入进行修正,或是直接在公式中添加修正因子p。现在己经积累了人量的试脸 资料和经验公式,但各公式计算结果往往相差较大。从上面的描述来看,现行的两相流分析具有卜面几个特点:1. 现冇的两相流系统的分析均采用了热力学平衡假设,因此多是基丁稳态和准稳态的分析方法。这一假设对于受热区子系统就比较牵强,因为在发生沸腾的受热区子系统中,液 体要沸腾必然存在一个沸腾周期,肉此实际的两相间是处于热力学非平衡态的,非

14、平衡的热 力学过程导致了子系统中的各类参数,例如密度、压力并非平衡的,而定处于振荡中。振荡 在流体中的传播就是波动过程,这种波动必然导致主流区中参数的起伏振荡。当这种起伏作 用不人时,在宏观上并不明显,但是当动力学正反馈条件满足的时候,这种起伏将被放人, 直至在宏观上可见。2. 时、空尺度都存在着自己的局限性:有必要在主流区和受热区采用不同的时间尺度。在主流区中,主要是波动过程,因此是以波的传播时间0)为其特征时间尺度,而在受热区中, 扩散时间为特征时间尺度。现冇的两相流的经脸公式中往往以水利II径为其特征空间尺度, 这一点是无物理根据的。两相流由于气相含最不同和气相在液相中的分布导致物理性质

15、的变 化,因此气泡本身的大小才反映了其特征尺度1=舟当然仅单个气泡不足以造成流型的变 2v化,研究中应采用介于微观尺度和宏观尺度之间的介观尺度来分析两相流系统,所谓介观尺 度就是流体微团的尺度。3. 现有的沸腾流动数学模型从直觉出发,对每一可以分得出来的流动子系统分别写一 套守恒方程,対传热过程用能最守恒方程来表示,最后用经验综合式或其它简化的分析模型 來離介这三套守恒方程,使之成为闭介的数学模型。这就是所谓沸腾的多场力学模型。认为 各子系统各有自己的保守场,只是用并不够严格的经验方法来维系各子系统间的关系。这种 方広抹杀了各种流动工况两柑时、空分布的特点。这与实际两相流系统由于动力学和热力学

16、 带来的动态性相差甚远。并且由于流道中的几何因素以及系统运行工况的多变性,在齐种反 馈机制的作用F.这些小的扰动有町能导致各种不稳定现象。这样,建立在热力学平衡基础 上的经典热力学与传热学的稳态或准稳态的模型方法已显不足,需要引进动态分析的观点和 方法,采用系统动力学分析的思路,建立能提取动态特征的模型方法;4. 匸如前面所述,两相流流型的判断是-个非常巫要的问题。现行的流型谱方法绝大 部分是以绝热管中的气液混介流试验数据为基础的,因此与实际的受热流动情况冇不小的差 距。为了反映受热特点,还应该在表征流型的图或公式中加入热流密度,汽化潜热和比热这 些和换热有关的量。同时这种方法的适用范国应限制

17、干试验范闌以内,不只备很好的外推性。 而II对于无法进行原型试验的复杂流道(如反应堆水利热工装宜),就无法用这种方法。对 两相流更婆参数如压降各分最、空泡系数等都来源于试验数据拟合得到的经验公式,肉此在 使用这些经验公式的时候,必须特别注盘试脸范国和试验边界条件多相流研究的最新进展两相流问题经常会在石汕、化学、核工业中遇到,这就要求我们必须了解,分析和设计 两相流系统。由于两相流系统本身比较复杂,人们开始是用经验方法;来解决它。近来,人 们逐渐尝试用模型的方法來解决。模型方法的先决条件就是流型的存在。现在已经有各种各 样的理论来预测流型,流型也可以由管中齐相的几何分布来识别。如界面、流动机理、

18、压力 梯度、滞留呈、压力传导系数等参数的空间几何分布都会I人1流型不冋而佇所不冋。虽然早在1914年,就已经出现对气液混合物的研究,也出现了多种经典的计算井筒 压力梯度的方法如:1963年的Duns - Ros方法&、1965年Hagedorn - B row n方法;、1967 年的 Orkiszew ski 方法、1972 年的 Aziz- Govier 方法、1973 年的 Beggs - B rill 方 法10、1986年的Hasan - Kabir方法“等。但是由于其流动机理的复杂性及其不同压力和温 度下的流体性质参数计算结果准确性低的限制,使得一直没有一种准确性高、适应性广、能

19、够满足工程计算需要的方法。近几年,又出现了新的进展。2001年,Kaya等人把前人的力学模型进行了总结与修正,首先预测流型,再利用每 种流型的水动力模型计算直井和斜井中的两相流的流动性质。他们从理论和实验卜研究和 确定了直井流动的五种不同流型:泡流、分散泡流、段塞流、搅动流和环流。后來,证明此 模型也同样适介于斜管。多相管流的计算准确程度受多种内素影响,除了所选用的计算方法外,关键是不同压 力和温度下的流体性质参数。实际上,需要进行计算的人多数油旧都缺乏这方面的实跋资料。 冃前,虽然仃一些计算流体性质参数的相关式口 J供选用,但在使用中应根据各油田的高压 物性实验资料对所选用的计算公式进行检验

20、和必要的修正。Kaya法本身的流型判断界限比较模糊,有时甚至有跳跃现象存在。而且,方法中的许 多参数取值(如CO, Cs等)的取值是根据作者当地的地质条件、油藏条件以及流体性质等 提出的,不一定适合本油R1的实际情况。因此,计算可能存在误差。2002年,Allan等提出一种计算井筒和管道多相流参数的新方法。不同于严觅依赖当 地圧力P、温度T的传统表格法,即不需要将压力P、温度T内插入标准图版,也不把油、 气、水分别考虑。他们提出的“组分追踪法”准确地考虑了并组分相对于空间和时间的变化, 并预测了在烧类和水变化基础匕的流体性质如密度、粘度、热传导、热容以及表面张力等,从 而更准确地预测压降、温度

21、变化和流型转变。他们把这种方法的计算结果与传统计算法进行了结果对比,发现在0.5英寸情况下这 种方法更准确,在1英寸卜两种方法差不多。他们认为这是因为试验的压力太小还不能把 两者的差距足够放人。在人压差下,“组分追踪法”会显示更人的优越性。2003年,E I - Sayed A. Osman用两个三层(BNPS)的神经网络模型(ANN )来预测水 平管柱中的液体滞留以及流型。通过釆用已经发表的数据作为输入來训练,发现液体滞留 模型优于其他现有关系式,只有最小的误差和最高的相关系数;流型识别模型对环空流的 识别率为100% ,层状流为97. 3% ,段塞流为96. 9%,波浪流为97. 4%。他

22、指出,随着输 入数拯的增多和训练的增加,模型的准确性也会进步提高,并町以把它应用到斜管和垂 直管流预测上去。2003年,H. Shi等提出用漂移模型来描述井筒多相流,并于2004年用 15cm的倾斜管多相流数据来漂移模型的参数。通过试验有如下结论:为气-水、油-水系 统准备的数据最好用一个包含各套、各个角度的统一方法来确定;气-水系统的数据町以用 到三相流中预测气体滞留;对于角度大于70的井筒,当气体滞留比较小(0.1左右)时, 油水之间的滑移可以忽略,三相流可以处理成两相流;对于近水平流,虽然随着气体的析出, 对汕水之间的滑移影响逐渐减小,但是滑移仍然是很人的,他们引入一个气体滞留与角度 的

23、函数a3來描述油水滑移,从而把两相流和三相流成功地整介成一个统-的模型,计算结 果也优于单一模型。对于水平井筒气液两相流,国内的张琪、吴宁等作了较多的工作,先后 提岀了水平井筒变质屋流型转变模型”、分散泡流压降模型=环空雾状流模型叭分层流压 降模型为以及间歇流模型”。根据经验公式和理论推导得到各组份的速度、密度、应力等进而 代入由质量守恒、动量守怛以及能量守怛得出的斥力梯度公式从而计算得到斥力梯度。微尺度下沸腾两相流的研究现状由于空间、信息及生物技术的发展,紧凑式蒸发器以及微尺度下相变传热问题得到众多 学者甫视。相关研究成果有:Josteir?】在并行25根内径为0.8mm、长为0.5m的细通

24、道中进行了 C02沸腾两相流实验, 在蒸汽温度为0-25C、质通量为190-570kg/m2s.热通屋为5-20 kW/m2范闱内的传热和压 降特性,干涸现彖对传热的影响较人,尤其是在高质通最和高壁温情况卜。干涸现象以核态 沸腾为主,当在高质通量卜增加雾沫量时,流型以坏状流为主。实!捡得到核态沸腾、强制对 流蒸发、干涸起始段以及干涸后模型的传热关联式。Yu等人“在内径为2.98mm的单管内进行了水的沸腾传热实验研究,质量流率为 50-200kg/m2s,入I】温度从环境温度至80C,压力为200 kPa.实验发现:在壁面过热度低 于8C时,主要的传热机制为核态沸腾,而在高壁面过热度时,壁温出现

25、脉动,从而进入过 渡沸腾区。甘云华、徐进良等人对微尺度相变传热进行了较为系统的综述,论述了控制微尺度相 变传热的准则数,分析了沸腾起始点、流型、压降、传热系数、不稳定性、临界热流密度六 人关键问题,为微蒸发器的设计、制造及运行提供了科学依据和指导。赵鹏飞等人24以氟利昂RM3为工质,对0.7、1.1和1.4mm的圆形微小通道内的沸腾流 动进行了实验研究。拟合了不同管径下强制对流沸腾换热实验关联式,定性分析了沸腾换热 系数受质量流速、干度、通道II径的影响:低干度、高质量流速时,无量纲沸腾换热系数随 干度的增加而先降低再升高:随着通道直径减小,核态沸腾换热区的干度增人。微重力下沸腾两相流的研究现

26、状在航天技术领域中,微重力作用卜的两相流动成为近年来学者关注的焦点。随着人类空 间探测与开发活动的发展,空间飞行器尤其是我人航尺器将越來越人型化和精密化,其运行 环境是微旋力气液两相流实验研究的理想环境,如空间站或航天飞机等。相关研究成果有:Ohta等人巧利用NASDATR-1A火箭利DAS MU-300航天器匕的核态沸腾实验数据,对微 重力下核态沸腾机理进行了研究。研究结果衣明:除去高热流密度或低过冷度引起的沸腾烧 毁情况,微朿力卜町以产生稳定的核态沸腾:在高热流密度和低过冷度卜,聚合而成的大气 泡脱离壁面,换热以核态沸腾占优;与常重力相比,微重力I、通常存在换热强化和换热削减 两种相反趋势

27、,视蒸发层厚度和蒸干区扩张综介特性而定。Johannes26在宇宙空间实验装置上进行了以氟里昂R11为工质的微通道沸腾传热实验, 并与在地面上重力为lg时的数据进行比较。研究结果表明,在核态沸腾区,电子元件表而 热流密度超过900 kW/rr?;甫力对传响在核态沸腾区不明显,而在过渡沸胯和膜态沸腾区 换热能力降低了 50%。赵建福等人利用俄罗斯IL-76飞机对微重力条件下方形截面管道内气液两相流压降 进行了实验研究,其实验结果与常重力卜的两相流斥降进行对比表明:均相模型和LMC模 型(Lockhart-Martinelli-Chisholm)预测结來和实验数据差异很人:血Friedel模型的预

28、测结果尽 管也与实验数据有着明显的差别,但在这些模型中是误差最小的。Yue等人进行了以弑里昂FC-72为工质的常重力和微重力卜强迫对流临界热流量(CHF) 的实验研究。流动沸腾实验装叠包括泵、预热器、试脸段、冷凝器、激光摄像仪和数据采集 系统。实验参数变化范南:流速为0.035-0.30m/s,雷诺数为50-200,热流密度为200-500 kW /m2,压力为口2 kPa。研究结果表明:微重力b CHF和过渡沸腾换热能力比常重力卜的低, 但随着流速的增加,两者间差别减少。微觅力下,强迫对流能强化换热能力。在核态沸腾区, 较高流速卜微重力比常重力条件能显著提高换热能力:在过渡沸腾区,较高流速卜

29、微重力比 常重力条件也能显著提高换热能力。旋转状态下沸腾两相流的研究现状在旋转电子机械的热量管理、涡轮发动机的能量支配、海洋条件中动力热工系统以及航 空航天飞行器的冷却系统等方面,旋转状态卜流体的流动及传热机理亦引起相关学者的关注。Stefan通过LES (Large-Eddy-Simulations)方法对挣止和旋转圆盘卜的水平横向气流的 传热特性进行了研究和对比,得出旋转和横流速度变化范用内的传热系数和关联式。通过对 圆盘固定-横向7流和圆盘旋转-静止气流两种极限状态卜的对比,发现转速和气流雷诺数的 临界比与旋转传热增幅相关。仅当高于临界值且为层流雷诺数时,旋转传热量增加。这种现 彖可通过

30、Landau模型进行描述,它与流动不稳定性造成的周期性涡流直接相关。对于高角 速度下,涡流发展为充分湍流,II迅速发生跃迁。Seghir等人叭寸旋转圆管内轴向气流的对流传热进行了实验研究,并采用反向模型、薄 壁假设模型和解析分析三种方法确定了转速为4-800rpm、旋转雷诺数为1.6X103-4.7xl0 空气流率为0-530m3/h.轴向雷诺数为0-3X104时的对流传热系数。结果表明,管内壁对流 换热取决于转速和气流最:高速旋转时,转速为影响流换热系数的主要因素,热帛:传递率仅 取决于旋转雷诺数:低速旋转时,努塞尔数为旋转和轴向雷诺数的函数。Chiu等人3】设计了矩形管绕与其平行的水平轴均

31、速旋转模型,进而对该模型下的对流 辐射换热进行了数值模拟,通过DuFort-Frankel数值格式求得动量和能量方程的耦合解,并 验证对流与辐射换热的相互关系。通过坐标离散的方法进一步求解积分微分辐射换热方程, 其解由众多控制参数表示。研究结果表明:旋转作用对方形管的影响要高于矩形管;轴向努 塞尔数Ng以辐射换热部分占优,且离心-浮力效应趋于减小;在入II处旋转对Ng的影响受 到限制,但在通道外部存在辐射换热效应。另外,轴向努塞尔数Ns随对流辐射比参数肌 的减小而增人。Song等人研究了轴向转速为4000rpm (故大离心加速度为270 g)稳定旋转时热管的 传热特性,其传热率升至0.7kW#

32、实验以水为介质,流体载荷占总容积的596-30%变化范闱 内,对圆柱形和内部为锥形的热管进行了实验。通过转速、流动载荷以及热管的几何特征来 硏究其传热特性。与圆柱形管冷凝器相比,锥形管冷凝器人人增强了传热效率。实验结果与 先前模型对比表明,在高速旋转卜的传热机制中,热管蒸发器内液膜的自然対流换热占主导 地位。Khan33研究了转速为3000rpm的超导电机内液态氨的传热和流动个稳定性,分析了旋转 状态卜由口流泵驱动的U型管内氨气两相流的流型。传热元件为铜制圆盘,竖百安装在径 向距离0.41m处。研究表明,在层流和紊流之间,流体相分布受縻擦因子和速度梯度的影 响,从而导致流动不稳定。换句话说,流

33、动不稳定发生在加速、减速或加热过程中。刘艺涛34对动我作用卜水平和直角弯管内两相流动进行了数值模拟,动我作用即在离散 方程中增加一个力的源项,结果表明:动载作用会引起管内两相流型的变化,液相会往过载 方向拥挤。管内两相流体会在局部出现加速(或减速)、弯头部位会出现回流、涡流等现彖。 动载会影响管内流动的压力分布和流阻人小,过载方向与流动方向相反时,管内压力增人, 梯度增大,流阻急剧增大:过载方向与流动方向相同时,管内压力减小,梯度可能为正也町 能为负,视过我的大小而定,流阻会降低。过我会削西沸腾换热。张金红、阎昌琪等人丈采用实验的方法研究了摇摆对水平管内气液两相流流型的影响. 结果表明,肖水半

34、管处于倾斜向匕或倾斜向卜状态时,管内流型分别月些近似于非摇摆的稳 态倾斜上升或倾斜卜降管内流型,并IL流型转变要经历个发展的过程,发展快慢与气相和液 相流速大小有关;而在高液相或高气相流速时,摇摆状态卜与非摇摆稳定状态下的两相流流 型相近,主要有泡状流、间歇流(弹状流和准弹状流)和环状流。栾锋、阎昌琪等人针对两相流系统处于摇摆状态时(如海洋上行驶的船舰以及飞行的航 天器等)的流型变化进行了实验研究,结果表明摇摆改变了两相流各流型的转换界限,与非 摇摆状态相比,若水的折算速度相同,摇摆状态下两相流的泡状流和搅浑流边界所对应(体 的折算速度要小一些,而环状流边界所对应气体的折算速度要高一些。总结以

35、上研究成果代表了国内外两相流机理的研究现状,但从航空发动机涡轮叶片换热以及 机载蒸发制冷循环来看,过我对其系统中两相流沸腾传热机理的影响还有待进一步研究。但 由于其固有的复杂性、多样性以及现阶段测量手段的局限性,对其传热机理,流动特性,质 最、动最和能最传递模型还没有较为肯定的结论。因此,动载作用卜沸腾两相流传热机理还 需从人量实验数据中归纳总结出來。引用文献1刘燕数值管内气液固多柑流动沸腾过程的流体动力学研究h?+学位论文河北:河北 工业大学 2010年6月LlISHIhlA Two-fluid model and hydrodynamic consututive relations. Nu

36、clear Engineeiing And D esign, 1984,82(2): 107-1263G FHewittQ N Robertson Studies ofTvzo-Phase Flow Patterns by Simultaneous X-ray and Flash Photography.Rept AERE-M2159 UKAE A. Harwell9694P Saha,N Zuber An analytical Study of tlie thennally induced two-phase flow instabilities mcludmg the effect of

37、themial non-equihbnumInt. J.Heat Mass Transfer, 197&21 415-4265李青低温动力机械的研制一热机研制的系统动力学方法华中理工大学廨士论文,1996 6陈家琅石油气液两相管流.北京:石油工业出版社,19897Hagedoni AR, B row nKE Expeninental Study of Pressure Gradients Occurring During Continuous Two Phase F lovz in Small- Diameter Veitical Conduits J Pet Tech, 1965, (4)

38、475 4848Orkiszew ski J Predict ion Two phase Pressure Drop s in Vertical Pipe. J Pet Tech, 1967, (6) 829- 8389Aziz K Govier G W .FogarasiLl Pressure Drop in W ells Producing O 11 and Gas J C dn Pet Tech, 1972,(7- 9) : 34 48lOBeggsHD.B nil J P A Study ofTwo Phase F low in Inclined Pipes. J Pet Tech,

39、1973, (5): 607- 61711 Hasan A R, Kabir C S A Study of Multiphase Flow Behavior in Vertical Oil W ells Part I- Theoretical Treatment Paper SPE 15138 P resented at the 1986 California Regional Meeting, Oakland, CA t 1986 4 2.12 A S Kaya Mechanistic Modeling ofTwo-Phase F low in Deviated Wells SPE Prod

40、uct ion & Facilities August 2001 154 16513 Allan Rydahl Application of Transient Multiphase Compositional T racking for Pipelme Flow Analysis SPE, 77502, 2002.14EI - Sayed A Osman Aitificial Neural Network Models For identifying F low Regimes and Predicting Liquid Hold up in Horizontal Multiphase F

41、low SPE86910200315 H Shi et al D nft - F lux Modeling of Multiphase Flow in Wellbors. SPE, 84H& 200316吴宁,张琪,嬢中庆,赵景生,陈超.水平井筒气液两相变质量流动流型转变的研究.石油 学报,2001, 22(5): 79- 84.17吴宁,张琪.周生田,赵庆辉.水平井筒变质量分散泡状流压降模型中国学术期刊文摘, 2000,6(11): 113-113418吴宁,宿淑春,葛铁辉,宋国比水平变质量气液两相环空雾状流压降的分析模型河南 石油,2001, 15(2): 35 3719吴宁,张琪,周生田

42、,李明忠水平井筒变质量分层流压降模型中国学术期刊文摘,2001, 7(1): 105- 107.20吴宁,李晓明,张琪.水平井筒变质量间歇流压降的理论与试验研究.石油钻采工艺,2004, 26 (1) : 43-46ZlPetteien J , Flow vaporization of COZ in micro-channel tubes, Experunental Thennaland Fluid Science, 2004, 28 (2-3): lll121o22Yu W i France D M Wambsganss M W , et al Two-phase pressure drop

43、.boilmgheattiansfer,and mtical heat flux to water in a small-diameter hoiizontal tube. International Joumal of Multiphase Flow, 2002, 28 (6): 927-941 o23甘云华,徐进良,周继军,等,微尺度相变传热的关键问题,力学进展,2004. 34 (3): 399-407o出赵鹏匕毕勒成,杨朝初,等,微小圆通道内流动沸腾换热特性的研究,匚程热物理学报, 2005, 26 (5): 802-804o250hta H , Kawasaki K , Okada

44、S , et al., On the heat transfer mechanisms innncrogi*avity nucleate boiling. 1999 , 24 (10): 13257330。“Johannes Straub, Microscale boiluig heat transfer under Og and 1 g condition International Joumal of Thermal Sciences 2000 39 (4): 490-497oh赵建福,林海,解京昌,等,微重力条件下气/液两相流压降实验研究,应用基础与工程科 学学报,2001, 9 (4)

45、: 373380。Yue Ma Chung J N , An expenmental study of cntical heat flux(CHF)inmicrogiavity forced-convection boiling. International Journal of Multiphase Flow, 2001,27( 10): 17531767。Stefan aus der Wiesche, Heat transfer fi-om a rotating disk in a parallel air crossflow, Intemational Joumal of Thermal

46、 Sciences, 2007, 46(8): 745754。Segliu-Ouali S., Sauiy D , Harmand S., et al , Convec:ive heat transfer inside arotating cylinder with an axial air flow. International Joumal of Thermal Sciences 2006 45 (12): 11641178。31 Chiu HanChieh, Jang Jer-Huan Yan Wei-Mon Combined mixed convection andradiation

47、heat transfer in rectangular ducts rotating about a parallel axis, Internationa 1Jouma 1 Heat and Mass Transfer, 2007, 50 (21-22): 4229M242刃Song F , Ewing D , Ching C.Y , Experunental mvestigation on tlie heat transfercharactenstics of axial rotating heat pipes International Journal of Heat and Mass

48、 Transfer. 2004 47 (22): 4721-4731o33Klian W.I Heat transfer and flow instability in a supeiconducting machine rotatuigat 3000 rpm. Cryogenics. 1984 24 (1 ):34刘艺涛,动載作用下水平和直角弯管内两相流动的数值模拟,硕士学位论文,南京,南 京航空航天大学.2005。35张金红,阎昌琪,方红宇,等,摇摆对水平管内气液两相流流型的影响,核科学与工程, 2007, 27 (3): 206-212o36栾锋,阎昌琪,曹夏听,摇摆对竖直管内(-水两相流流型的影响分析,工程热物理学报, 2007, 28 (Supl): 217-220o

展开阅读全文
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!