AFM原子力显微镜技术及应用实验报告

上传人:细水****9 文档编号:61366087 上传时间:2022-03-11 格式:DOC 页数:11 大小:2.01MB
收藏 版权申诉 举报 下载
AFM原子力显微镜技术及应用实验报告_第1页
第1页 / 共11页
AFM原子力显微镜技术及应用实验报告_第2页
第2页 / 共11页
AFM原子力显微镜技术及应用实验报告_第3页
第3页 / 共11页
资源描述:

《AFM原子力显微镜技术及应用实验报告》由会员分享,可在线阅读,更多相关《AFM原子力显微镜技术及应用实验报告(11页珍藏版)》请在装配图网上搜索。

1、AFM原子力显微镜技术及应用实验报告 指导老师:袁求理近代物理实验报告物理班实验小组2012年12月18日引言在当今的科学技术中,如何观察、测量、分析尺寸小于可见光波长的物体,是一个重要的研究方向。 扫描隧道显微镜(STM) 使人们首次能够真正实时地观察到单个原子在物体表面的排列方式和与表面电子行为有关的物理、化学性质。 STM要求样品表面能够导电,从而使得STM只能直接观察导体和半导体的表面结构。为了克服STM 的不足之处,推出了原子力显微镜(AFM)。AFM是通过探针与被测样品之间微弱的相互作用力(原子力) 来获得物质表面形貌的信息。因此,AFM除导电样品外,还能够观测非导电样品的表面结构

2、,且不需要用导电薄膜覆盖,其应用领域将更为广阔。除物理,化学生物等领域外,AFM在为微电子,微机械学,新型材料,医学等领域有着广泛的应用,以STM和AFM为基础,衍生出一系列的扫描探针显微镜,有激光里显微镜,磁力显微镜,扫描探针显微镜主要用于对物质表面在纳米线上进行成像和分析。一、实验组员:邵孙国(10072127)、周柬辉(10072137)、陈俊峰(10072122)、任寿良(10072126)。二、实验目的:、学习和了解AFM的结构和原理。、掌握AFM的操作和调试过程,并以之来观察样品表面的形貌。、学习用计算机软件来处理原始数据图像。三、实验原理简析: 1. AFM基本原理原子力显微镜的

3、工作原理就是将探针装在一弹性微悬臂的一端,微悬臂的另一端固定,当探针在样品表面扫描时,探针与样品表面原子间的排斥力会使得微悬臂轻微变形,这样,微悬臂的轻微变形就可以作为探针和样品间排斥力的直接量度。一束激光经微悬臂的背面反射到光电检测器,可以精确测量微悬臂的微小变形,这样就实现了通过检测样品与探针之间的原子排斥力来反映样品表面形貌和其他表面结构。在原子力显微镜的系统中,可分成三个部分:力检测部分、位置检测部分、反馈系统。如图一显示。(1)力检测部分 在原子力显微镜系统中,所要检测的力是原子与原子之间的范德华力。使用微悬臂来检测原子之间力的变化量。如图2所示,微悬臂通常由一个一般100500m长

4、和大约500nm5m厚的硅片或氮化硅片制成。微悬臂顶端有一个尖锐针尖,用来检测样品针尖间的相互作用力。(2)位置检测部分 在原子力显微镜系统中,当针尖与样品之间有了作用之后,会使得悬臂摆动,所以当激光照射在微悬臂的末端时,其反射光的位置也会因为悬臂摆动而有所改变,这就造成偏移量的产生。在整个系统中是依靠激光光斑位置检测器将偏移量记录下并转换成电的信号,以供SPM控制器作信号处理。聚焦到微悬臂上面的激光反射到激光位置检测器,通过对落在检测器四个象限的光强进行计算,可以得到由于表面形貌引起的微悬臂形变量大小,从而得到样品表面的不同信息。 (3)反馈系统 在原子力显微镜系统中,将信号经由激光检测器取

5、入之后,在反馈系统中会将此信号当作反馈信号,作为内部的调整信号,并驱使通常由压电陶瓷制作的扫描器做适当的移动,以保持样品与针尖保持一定的作用力。2.AFM 有三种不同的工作模式: 接触模式( contact mode) 、非接触模式(noncontact mode) 和共振模式或轻敲模式(Tapping Mode) 。(1)接触模式:从概念上来理解,接触模式是AFM最直接的成像模式。AFM 在整个扫描成像过程之中,探针针尖始终与样品表面保持亲密的接触,而相互作用力是排斥力。 扫描时,悬臂施加在针尖上的力有可能破坏试样的表面结构,因此力的大小范围在10 - 1010 - 6 N。 若样品表面柔嫩

6、而不能承受这样的力,便不宜选用接触模式对样品表面进行成像。(2)非接触模式非接触模式探测试样表面时悬臂在距离试样表面上方510 nm 的距离处振荡。 这时,样品与针尖之间的相互作用由范德华力控制,通常为10 - 12 N ,样品不会被破坏,而且针尖也不会被污染,特别适合于研究柔嫩物体的表面。 这种操作模式的不利之处在于要在室温大气环境下实现这种模式十分困难。因为样品表面不可避免地会积聚薄薄的一层水,它会在样品与针尖之间搭起一小小的毛细桥,将针尖与表面吸在一起,从而增加尖端对表面的压力。(3)敲击模式在敲击模式中,一种恒定的驱使力使探针悬臂以一定的频率振动。当针尖刚接触样品时,悬臂振幅会减少到某

7、一数值。在扫描过程中,反馈回路维持悬臂振幅在这一数值恒定,亦即作用在样品上的力恒定,通过记录压电陶瓷管的移动得到样品表面形貌图。对于接触模式,由于探针和样品间的相互作用力会引起微悬臂发生形变,也就是说微悬臂的形变作为样品和针尖相互作用力的直接度量。同上述轻敲式,反馈系统保持针尖样品作用力恒定从而得到表面形貌图。原子力显微镜是用微小探针“摸索”样品表面来获得信息,所以测得的图像是样品最表面的形貌,而没有深度信息。扫描过程中,探针在选定区域沿着样品表面逐行扫描。实验扫描的是光栅,纳米铜微粒以及纳米微粒,选用的是轻敲式。 敲击模式优点:敲击模式在一定程度上减小样品对针尖的粘滞现象,因为针尖与样品表面

8、接触时,利用其振幅来克服针尖样品间的粘附力。并且由于敲击模式作用力是垂直的,表面材料受横向摩擦力和剪切力的影响都比较小,减小扫描过程中针尖对样品的损坏。所以对于较软以及粘性较大的样品,应选用敲击模式。四、实验步骤:一、实验前准备:样品制备1)铜微粒样品制备把之前实验制备得的铜微粒纳米材料分散到溶剂中,比较稀的状态下,然后涂于解离后的云母片上,自然晾干。2)纳米微粒制备把纳米微粒材料分散到溶剂中,比较稀的状态下,然后涂于解离后的云母片上,自然晾干。3)光盘光栅制备对于光盘光栅的样品获取,采用胶纸法。先把两面胶纸粘贴在样品光盘上,在贴上样品座,在将样品座抠下来,保证表面的光滑和无杂质。调光和寻共振

9、峰1) 粗调探测头部上方俩个旋钮,让激光光斑大约打在基座上。2) 调探测头部上方某个旋钮,让光斑打在悬臂范围内。再调节另一端旋钮,同方向移动看四象限接收器上是否有3个亮斑。通常选择中间亮斑进行调节。另外调节光斑使其移动到悬臂尖端,然后回调两旋钮使得亮斑最为光亮圆润。3) 调节探测头部侧面两个旋钮,通过软件调节使光斑基本打在四象限接收器中间。4) 将“自动扫描”和“起振”选项勾上,进行扫频操作。5) 寻峰的目的主要是选择可以使悬臂达到共振状态的激振频率,使悬臂达到共振状态来实现扫描。二、实验中测量过程1)依次开启:电脑-控制机箱-高压电源-激光器。2)用粗调旋钮将样品逼近微探针至两者间距1 mm

10、。3)再用细调旋钮使样品逼近微探针:顺时针旋细调旋钮,直至光斑突然向PSD移动。4)缓慢地逆时针调节细调旋钮并观察机箱上反馈读数:Z反馈信号约稳定在150至 250之间(不单调增减即可),就可以开始扫描样品。5)读数基本稳定后,打开扫描软件,开始扫描。6)扫描完毕后,逆时针转动细调旋钮退样品,细调要退到底。再逆时针转动粗调旋钮退样品,直至下方平台伸出1厘米左右。7)实验完毕,依次关闭:激光器-高压电源-控制机箱。8)处理图像,得到尺寸。五、实验结果:(1)铜微粒的表面形貌铜微粒测量结果如下:铜微粒大小 小颗粒半径r= 6nm 颗粒堆半径R=11nm扫描范围 X:10003 nm; Y:1000

11、3nm图像大小 X:238 pixel; Y:238 pixel测量计算图:3D图:(2)纳米微粒的表面形貌纳米微粒测量结果如下:纳米微粒大小 纳米微粒半径:r=7扫描范围 X:10003 nm; Y:10003nm图像大小 X:238 pixel; Y:238 pixel测量计算图:3D图:(3)光盘光栅的表面形貌光盘光栅测量结果如下:光盘光栅大小 间距l=23*2=46nm扫描范围 X:10003 nm; Y:10003nm图像大小 X:238 pixel; Y:238 pixel测量计算图:3D图:六、实验分析:(1)AFM探测到的原子力的由哪两种主要成分组成?一种是吸引力即范德瓦耳斯力

12、;另外一种是电子云重叠而引起的排斥相互作用。(2)怎样使用AFM,才能较好地保护探针?仔细调节接触距离,粗调时,不要让指针压迫样品,保持1mm,扫描过程中保证探针不产生破坏性形变。(3)原子力显微镜有哪些应用?原子力显微镜可以用于研究金属和半导体的表面形貌、表面重构、表面电子态及动态过程,超导体表面结构和电子态层状材料中的电荷密度等。另外原子力显微镜在摩擦学中的有许多应用,如纳米摩擦、纳米润滑、纳米磨损、纳米摩擦化学反应和机电纳米表面加工等。在生物上,原子显微镜可以用来研究生物宏观分子,甚至活的生物组织。观察细胞等等。(4)与传统的光学显微镜、电子显微镜相比,扫描探针显微镜的分辨本领主要受什么

13、因素限制?传统的光学显微镜和电子显微镜存在衍射极限,即只能分辨光波长或电子波长以上线度的结构。而扫描探针显微镜的分辨本领主要取决于:探针针尖的尺寸;微悬臂的弹性系数,弹性系数越低,AFM越灵敏;悬臂的长度和激光光线的长度之比;探测器PSD对光斑位置的灵敏度。对于分辨率一定的图像,扫描范围越小,获得的表面形貌越精细。(5)要对悬臂的弯曲量进行精确测量,除了在AFM中使用光杠杆这个方法外,还有哪些方法可以达到相同数量级的测量精度?可采用电学方法:隧道电流法根据隧道电流对电极间距离非常敏感的原理,将SIM用的针尖置于微悬臂的背面作为探测器,通过针尖与微悬臂间产生的隧道电流的变化就可以检测由于原子间相

14、互作用力令微悬臂产生的形变。电容法通过测量微悬臂与一参考电极间的电容变化来检测微悬臂产生的形变。小组学习近代物理实验课程的心得体会成员一:邵孙国近代物理实验教学是大学生实践教学中的重要环节,它对于培养大学生的实践能力和创新能力有着不可替代的作用。近代实验教学模式多样、内容新颖、方法灵活,有时代特征。学生按照实验教材上的步骤去做,用心去预习之后才能完成实验。在一定程度上提高了学生的主动性与积极性,激发了我们独立思考的兴趣和激情。这学期做的实验有微弱振动的双光栅测量、超声光栅测声速实验、变温霍尔效应、巨磁阻效应实验、铁磁材料居里温度的测量、全息照相、纳米微粒制备、AFM原子力显微镜技术及应用。在这

15、一个学期的实验里,我明白了近代物理实验,是一门综合性和技术性很强的试验课程。它主要由近代物理学发展中,起过重要作用的著名实验,以及体现科学实验中,不可缺少的现代实验技术的实验组成。使我受到著名物理学家的物理学家,物理思想和探索精神的熏陶,激发了我的探索和创新精神。成员二:周柬辉为期一学期的大学物理实验就要画上一个圆满的句号了,回顾这一学期的学习,感觉十分的充实,这个学期总共做了7个探究性试验以及一个自主试验。包括了微弱振动的双光栅测量,超声光栅测声速实验,变温霍尔效应,巨磁阻效应实验,铁磁材料居里温度的测量,全息照相,纳米微粒制备,以及自主实验AFM原子力显微镜技术及应用。在本学期的实验课中,

16、我学到了很多在平时的学习中学习不到的东西。基本每次实验都达到了实验目的要求。每次上实验课,老师都给我们认真的讲解实验原理,轮到我们自己动手的时候,老师还常常给予我们帮助,我真心地感谢他们对我们的付出。本学期的实验涉及面很广,光学、电磁学、力学都有。而且,每次实验都向我们展示了一些很新奇的技术和仪器,让我带着好奇和渴望做完了每一次实验。成员三:陈俊峰为期一学期的大学物理实验就要画上一个圆满的句号了,回顾这一学期的学习,感觉十分的充实,这个学期总共做了7个探究性试验以及一个自主试验。包括了微弱振动的双光栅测量,超声光栅测声速实验,变温霍尔效应,巨磁阻效应实验,铁磁材料居里温度的测量,全息照相,纳米

17、微粒制备,以及自主实验AFM原子力显微镜技术及应用。物理学从本质上说就是一门实验的科学,它以严格的实验事实为基础,也不断的受到实验的检验,本学期的近代物理实验,向我们展示了在物理学的发展中,人类积累的大量的实验方法以及创造出的各种精密巧妙的仪器设备,让我们开阔了视野,增长了见识,在喟叹先人的聪明才智之余,更激发了我们对未知领域的求知与探索。近代物理实验是我们进入大学后受到的又一次系统的实验方法与实验技能的培训,通过对实验现象的观察、分析和对物理量的测量,使我们进一步加深了对物理学原理的理解,培养与提高了我们的科学实验能力以及科学实验素养。特别是对于我们这样一批理科的学生,仅有扎实的科学理论知识

18、是远远不够的,科学实验是科学理论的源泉,是自然科学的根本,也是工程技术的基础。一个合格的工程技术人员除了要具备较为深广的理论知识,更要具有较强的实践经验,近代物理实验为我们提供了这样的一个平台,为我们动手能力的培养奠定了坚实的基础。近代物理实验使我们认识到了一整套科学缜密的实验方法,对于我开发我们的智力,培养我们分析解决实际问题的能力,有着十分重要的意义,对于我们科学的逻辑思维的形成有着积极的现实意义。成员四:任寿良根据课程的安排我首次接触了8个近代物理实验,包括量子性质的塞曼效应,有关于原子和电子碰撞的夫兰克-赫兹实验,在原子物理方面还有氢原子光谱的研究等等。虽然仅仅8个但我从中学到了很多,

19、也是自己在大学实验学习形式的一次飞跃,从大一的听老师讲解和指导、大二的依赖到大三近代物理实验的独立探究。我觉得一部分老师的教学方式非常好。他们鼓励我们要自己解决问题,尽量不要依靠老师。一旦我们遇到困难但没人帮助的时候,我们只有靠自己去摸索,在摸索的过程当中我们学会了课堂上老师不可能教的技巧,比如如何搜索文献,如何查找英文学术单词,如何建立一个总体上的思路等等。虽然采用这样的方式做出成果比别人慢,但是收获更多。回想起来,为什么我的实验报告一直拿不来高分,为什么我实验内容完成的总是比人家少我一大部分时间都在不停的为自己的马虎大意买单。但是我想,我收获的肯定比没有犯过错误的人多。低级的错误犯过了,以后再犯的可能性就小了很多;高级的错误犯过了,自己懂的知识就比原来多了很多。我是在这些课程是体验到了物理学习的快乐,并不仅仅局限于课本理论上的知识,加深了理论上的理解,更加帮助于去理解生活中的规律。实验的选择也很有趣,有些实验看上去觉得没什么,只有真正去做才能感受到其中的快乐。

展开阅读全文
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!