空间向量与立体几何知识点

上传人:优*** 文档编号:31975565 上传时间:2021-10-13 格式:DOC 页数:28 大小:631KB
收藏 版权申诉 举报 下载
空间向量与立体几何知识点_第1页
第1页 / 共28页
空间向量与立体几何知识点_第2页
第2页 / 共28页
空间向量与立体几何知识点_第3页
第3页 / 共28页
资源描述:

《空间向量与立体几何知识点》由会员分享,可在线阅读,更多相关《空间向量与立体几何知识点(28页珍藏版)》请在装配图网上搜索。

1、传播优秀Word版文档 ,希望对您有帮助,可双击去除! 立体几何空间向量知识点总结知识网络:知识点拨:1、空间向量的概念及其运算与平面向量类似,向量加、减法的平行四边形法则,三角形法则以及相关的运算律仍然成立空间向量的数量积运算、共线向量定理、共面向量定理都是平面向量在空间中的推广,空间向量基本定理则是向量由二维到三维的推广2、当、为非零向量时是数形结合的纽带之一,这是运用空间向量研究线线、线面、面面垂直的关键,通常可以与向量的运算法则、有关运算律联系来解决垂直的论证问题3、公式是应用空间向量求空间中各种角的基础,用这个公式可以求两异面直线所成的角(但要注意两异面直线所成角与两向量的夹角在取值

2、范围上的区别),再结合平面的法向量,可以求直线与平面所成的角和二面角等4、直线的方向向量与平面的法向量是用来描述空间中直线和平面的相对位置的重要概念,通过研究方向向量与法向量之间的关系,可以确定直线与直线、直线与平面、平面与平面等的位置关系以及有关的计算问题5、用空间向量判断空间中的位置关系的常用方法(1)线线平行 证明两条直线平行,只需证明两条直线的方向向量是共线向量(2)线线垂直 证明两条直线垂直,只需证明两条直线的方向向量垂直,即24 / 28(3)线面平行 用向量证明线面平行的方法主要有: 证明直线的方向向量与平面的法向量垂直; 证明可在平面内找到一个向量与直线方向向量是共线向量; 利

3、用共面向量定理,即证明可在平面内找到两不共线向量来线性表示直线的方向向量(4)线面垂直 用向量证明线面垂直的方法主要有: 证明直线方向向量与平面法向量平行; 利用线面垂直的判定定理转化为线线垂直问题(5)面面平行 证明两个平面的法向量平行(即是共线向量); 转化为线面平行、线线平行问题(6)面面垂直 证明两个平面的法向量互相垂直; 转化为线面垂直、线线垂直问题6、运用空间向量求空间角(1)求两异面直线所成角 利用公式, 但务必注意两异面直线所成角的范围是, 故实质上应有:(2)求线面角 求直线与平面所成角时,一种方法是先求出直线及射影直线的方向向量,通过数量积求出直线与平面所成角;另一种方法是

4、借助平面的法向量,先求出直线方向向量与平面法向量的夹角,即可求出直线与平面所成的角,其关系是sin| cos|(3)求二面角 用向量法求二面角也有两种方法:一种方法是利用平面角的定义,在两个面内先求出与棱垂直的两条直线对应的方向向量,然后求出这两个方向向量的夹角,由此可求出二面角的大小;另一种方法是转化为求二面角的两个面的法向量的夹角,它与二面角的大小相等或互补7、运用空间向量求空间距离 空间中的各种距离一般都可以转化为求点与点、点与线、点与面的距离(1)点与点的距离 点与点之间的距离就是这两点间线段的长度,因此也就是这两点对应向量的模(2)点与面的距离 点面距离的求解步骤是:求出该平面的一个

5、法向量; 求出从该点出发的平面的任一条斜线段对应的向量; 求出法向量与斜线段向量的数量积的绝对值再除以法向量的模,即得要求的点面距离备考建议:1、空间向量的引入,把平面向量及其运算推广到空间,运用空间向量解决有关直线、平面位置关系的问题,应体会向量方法在研究几何图形中的作用,进一步发展空间想像能力和几何直观能力2、灵活选择运用向量方法与综合方法,从不同角度解决立体几何问题3、在解决立体几何中有关平行、垂直、夹角、距离等问题时,直线的方向向量与平面的法向量有着举足轻重的地位和作用,它的特点是用代数方法解决立体几何问题,无需进行繁、难的几何作图和推理论证,起着从抽象到具体、化难为易的作用因此,应熟

6、练掌握平面法向量的求法和用法4、加强运算能力的培养,提高运算的速度和准确性第一讲 空间向量及运算一、空间向量的有关概念1、空间向量的定义 在空间中,既有大小又有方向的量叫做空间向量注意空间向量和数量的区别数量是只有大小而没有方向的量2、空间向量的表示方法 空间向量与平面向量一样,也可以用有向线段来表示,用有向线段的长度表示向量的大小,用有向线段的方向表示向量的方向若向量对应的有向线段的起点是A,终点是B,则向量可以记为,其模长为或3、零向量 长度为零的向量称为零向量,记为零向量的方向不确定,是任意的由于零向量的这一特殊性,在解题中一定要看清题目中所指向量是“零向量”还是“非零向量”4、单位向量

7、 模长为1的向量叫做单位向量单位向量是一种常用的、重要的空间向量,在以后的学习中还要经常用到5、相等向量 长度相等且方向相同的空间向量叫做相等向量若向量与向量相等,记为=.零向量与零向量相等,任意两个相等的非零向量都可以用空间中的同一条有向线段来表示,并且与有向线段的起点无关6、相反向量 长度相等但方向相反的两个向量叫做相反向量的相反向量记为二、共面向量1、定义 平行于同一平面的向量叫做共面向量2、共面向量定理 若两个向量、不共线,则向量与向量、共面的充要条件是存在实数对x、y,使得=。3、空间平面的表达式空间一点P位于平面MAB内的充要条件是存在有序实数对x、y使或对空间任一定点O,有或(其

8、中)这几个式子是M,A,B,P四点共面的充要条件三、空间向量基本定理1、定理 如果三个向量、不共面,那么对空间任一向量,存在唯一的有序实数组x、y、z,使=2、注意以下问题(1)空间任意三个不共面的向量都可以作为空间向量的一个基底(2)由于可视为与任意一个非零向量共线,与任意两个非零向量共面,所以,三个向量不共面,就隐含着它们都不是。(3)一个基底是指一个向量组,一个基向量是指基底中的某一个向量,两者是相关联的不同概念 由空间向量的基本定理知,若三个向量、不共面。那么所有空间向量所组成的集合就是,这个集合可看做是由向量、生成的,所以我们把称为空间的一个基底。、叫做基向量,空间任意三个不共面的向

9、量都可构成空间的一个基底 3、向量的坐标表示 (1)单位正交基底 如果空间的一个基底的三个基向量互相垂直,且长都为1,则这个基底叫做单位正交基底,常用表示(2)空间直角坐标系 在空间选定一点O和一个单位正交基底以点O为原点,分别以、的方向为正方向建立三条数轴:x轴、y轴、z轴,它们都叫坐标轴则建立了一个空间直角坐标系Oxyz,点O叫原点,向量、都叫坐标向量 (3)空间向量的坐标给定一个空间直角坐标系和向量,且设、为坐标向量,存在唯一有序数组(x,y,z)使,有序数组(x,y,z)叫做在空间直角坐标系Oxyz中的坐标,记为=。对坐标系中任一点A,对应一个向量,则=。在单位正交基底、中与向量对应的

10、有序实数组(x,y,z),叫做点A在此空间直角坐标系中的坐标,记为A(x,y,z).四、空间向量的运算1、空间向量的加法三角形法则(注意首尾相连)、平行四边形法则,加法的运算律:交换律 结合律 2、空间向量的减法及几何作法几何作法:在平面内任取一点O,作,则,即从的终点指向的终点的向量,这就是向量减法的几何意义3、空间向量的数乘运算 (1)定义实数与的积是一个向量,记为,它的模与方向规定如下: 当时,与同向;当时,与异向;当时注意: 关于实数与空间向量的积的理解:我们可以把的模扩大(当1时),也可以缩小( 1 时),同时,我们可以不改变向量的方向(当时),也可以改变向量的方向(当时)。 . 注

11、意实数与向量的积的特殊情况,当时,;当,若时,有。 注意实数与向量可以求积,但是不能进行加减运算比如,无法运算。(2)实数与空间向量的积满足的运算律设、是实数,则有 (结合律) (第一分配律) (第二分配律)实数与向量的积也叫数乘向量4、共线向量 (1)共线向量定义若表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量,也叫做平行向量。若与是共线向量,则记为/。注意:零向量和空间任一向量是共线向量(2)共线向量定理对空间任意两个向量、(),/的充要条件是存在实数使(3)空间直线的向量表示式如果直线 l 是经过已知点 A 且平行于已知非零向量的直线,那么对任一点 O,点P在直线

12、 l 上的充要条件是存在实数t,满足等式,其中向量叫做直线 l 的方向向量注意:若在 l 上取,则有上式可解决三点P、A、B 共线问题的表示或判定 当时,点P为AB的中点,这是中点公式的向量表达式 若P分所成比为,则5、空间直角坐标系在空间直角坐标系中,三条坐标轴两两互相垂直,轴的方向通常这样选择:从z轴的正方向看,x轴正半轴沿逆时针方向转 900能与 y 轴的正半轴重合。让右手拇指指向 x 轴正方向食指指向 y 轴的正方向,如果中指指向 z 轴的正方向,那么称这个坐标系为右手直角坐标系。一般情况下,建立的坐标系都是右手直角坐标系在平面上画空间直角坐标系 Oxyz 时,一般使xOy=135,y

13、Oz=90。空间两点间的距离公式是平面上两点间距离公式的推广,是空间向量模长公式的推广,如果知道儿何体上任意两点的坐标我们就可直接套用设,则特别地,P1(x,y,z)到原点的距离 6、空间向量的数量积运算其中的夹角,范围是0,注意数量积的性质和运算律。 1. 性质若是非零向量,是与方向相同的单位向量,是的夹角,则(1)(2)(3)若同向,则;若反向,则;特别地:(4)若为(5) 2. 运算律(1)结合律(2)交换律(3)分配律不满足消去律和结合律即:【典型例题】 例1. 已知P是平面四边形ABCD所在平面外一点,连结PA、PB、PC、PD,点E、F、G、H分别为PAB、PBC、PCD、PDA的

14、重心。求证:E、F、G、H四点共面。证明:分别延长PE、PF、PG、PH交对边于M、N、Q、RE、F、G、H分别是所在三角形的重心M、N、Q、R为所在边的中点,顺次连结MNQR所得四边形为平行四边形,且有MNQR为平行四边形,则 由共面向量定理得E、F、G、H四点共面。 例2. 如图所示,在平行六面体中,P是CA的中点,M是CD的中点,N是CD的中点,点Q是CA上的点,且CQ:QA=4:1,用基底表示以下向量:(1);(2);(3);(4)。解:连结AC、AD(1);(2);(3)(4)点评:本例是空间向量基本定理的推论的应用此推论意在用分解定理确定点的位置,它对于以后用向量方法解几何问题很有

15、用,选定空间不共面的三个向量作基向量并用它们表示出指定的向量,是用向量解决几何问题的一项基本功 例3. 已知空间四边形OABC中,AOB=BOC=AOC,且OA=OB=OC。M、N分别是OA、BC的中点,G是MN的中点。求证:OGBC。证明:连结ON,设AOB=BOC=AOC=又设,则。又 OGBC 例4. 已知空间三点A(0,2,3),B(2,1,6),C(1,1,5)。(1)求以为邻边的平行四边形面积;(2)若,且垂直,求向量的坐标。解:(1)由题中条件可知以为邻边的平行四边形面积:(2)设由题意得解得第二讲 直线的方向向量、平面的法向量及其应用一、直线的方向向量及其应用 1、直线的方向向

16、量 直线的方向向量就是指和这条直线所对应向量平行(或共线)的向量,显然一条直线的方向向量可以有无数个 2、直线方向向量的应用 利用直线的方向向量,可以确定空间中的直线和平面(1)若有直线l, 点A是直线l上一点,向量是l的方向向量,在直线l上取,则对于直线l上任意一点P,一定存在实数t,使得,这样,点A和向量不仅可以确定l的位置,还可具体表示出l上的任意点(2)空间中平面的位置可以由上两条相交直线确定,若设这两条直线交于点O,它们的方向向量分别是和,P为平面上任意一点,由平面向量基本定理可知,存在有序实数对(x,y),使得,这样,点O与方向向量、不仅可以确定平面的位置,还可以具体表示出上的任意

17、点二、平面的法向量1、所谓平面的法向量,就是指所在的直线与平面垂直的向量,显然一个平面的法向量也有无数个,它们是共线向量2、在空间中,给定一个点A和一个向量,那么以向量为法向量且经过点A的平面是唯一确定的三、直线方向向量与平面法向量在确定直线、平面位置关系中的应用1、若两直线l1、l2的方向向量分别是、,则有l1/ l2/,l1l22、若两平面、的法向量分别是、,则有/, 若直线l的方向向量是,平面的法向量是,则有l/,l/四、平面法向量的求法 若要求出一个平面的法向量的坐标,一般要建立空间直角坐标系,然后用待定系数法求解,一般步骤如下:1、设出平面的法向量为2、找出(求出)平面内的两个不共线

18、的向量的坐标3、根据法向量的定义建立关于x,y,z的方程组4、解方程组,取其中一个解,即得法向量五、用向量方法证明空间中的平行关系和垂直关系(一)用向量方法证明空间中的平行关系 空间中的平行关系主要是指:线线平行、线面平行、面面平行 1、线线平行 设直线l1、l2的方向向量分别是、,则要证明l1/ l2,只需证明/,即2、线面平行 (1)设直线l的方向向量是,平面的法向量是,则要证明,只需证明,即. (2)根据线面平行的判定定理:“如果直线(平面外)与平面内的一条直线平行,那么这条直线和这个平面平行”,要证明一条直线和一个平面平行,也可以在平面内找一个向量与已知直线的方向向量是共线向量即可(3

19、)根据共面向量定理可知,如果一个向量和两个不共线的向量是共面向量,那么这个向量与这两个不共线向量确定的平面必定平行,因此要证明一条直线和一个平面平行,只要证明这条直线的方向向量能够用平面内两个不共线向量线性表示即可3、面面平行(1)由面面平行的判定定理,要证明面面平行,只要转化为相应的线面平行、线线平行即可(2)若能求出平面、的法向量、,则要证明/,只需证明/ (二)用向量方法证明空间中的垂直关系 空间中的垂直关系主要是指:线线垂直、线面垂直、面面垂直1、线线垂直 设直线l1、l2的方向向量分别是、,则要证明l1 l2,只需证明,即 2、线面垂直(1)设直线l的方向向量是,平面的法向量是,则要

20、证l,只需证明/ (2)根据线面垂直的判定定理,转化为直线与平面内的两条相交直线垂直3、面面垂直(1)根据面面垂直的判定定理转化为证相应的线面垂直、线线垂直(2)证明两个平面的法向量互相垂直六、用向量方法求空间的角(一)两条异面直线所成的角1、定义:设a、b是两条异面直线,过空间任一点O作直线,则与所夹的锐角或直角叫做a与b所成的角2、范围:两异面直线所成角的取值范围是3、向量求法:设直线a、b的方向向量为、,其夹角为,则有4、注意:两异面直线所成的角可以通过这两条直线的方向向量的夹角来求得,但两者不完全相等,当两方向向量的夹角是钝角时,应取其补角作为两异面直线所成的角(二)直线与平面所成的角

21、1、定义:直线和平面所成的角,是指直线与它在这个平面内的射影所成的角2、范围:直线和平面所成角的取值范围是3、向量求法:设直线l的方向向量为,平面的法向量为,直线与平面所成的角为,与的夹角为,则有(三)二面角1、二面角的取值范围:2、二面角的向量求法(1)若AB、CD分别是二面角的两个面内与棱l垂直的异面直线,则二面角的大小就是向量与的夹角(如图(a)所示)(2)设、是二面角的两个角、的法向量,则向量与的夹角(或其补角)就是二面角的平面角的大小(如图(b)所示)七、用向量的方法求空间的距离(一)点面距离的求法如图(a)所示,BO平面,垂足为O,则点B到平面的距离就是线段BO的长度若AB是平面的

22、任一条斜线段,则在RtBOA中,cosABO=。如果令平面的法向量为,考虑到法向量的方向,可以得到B点到平面的距离为。 因此要求一个点到平面的距离,可以分以下几步完成: 1、求出该平面的一个法向量 2、找出从该点出发的平面的任一条斜线段对应的向量 3、求出法向量与斜线段向量的数量积的绝对值再除以法向量的模,即可求出点到平面的距离 由于可以视为平面的单位法向量,所以点到平面的距离实质就是平面的单位法向量与从该点出发的斜线段向量的数量积的绝对值,即另外,等积法也是点到面距离的常用求法(二)线面距、面面距均可转化为点面距离用求点面距的方法进行求解。(三)两异面直线距离的求法如图(b)所示,设l1、l

23、2是两条异面直线,是l1与l2的公垂线段AB的方向向量,又C、D分别是l1、l2上的任意两点,则l1与l2的距离是。【典型例题】 例1. 设分别是直线l1、l2的方向向量,根据下列条件判断l1与l2的位置关系。(1)=(2,3,1),=(6,9,3);(2)=(5,0,2),=(0,4,0);(3)=(2,1,4),=(6,3,3)解:(1),=(6,9,3),l1/l2(2)=(5,0,2),=(0,4,0),l1l2(3)(2,1,4,),=(6,3,3)不共线,也不垂直l1与l2的位置关系是相交或异面 例2. 设分别是平面、的法向量,根据下列条件判断、的位置关系:(1)=(1,1,2),

24、=(3,2,);(2)=(0,3,0),=(0,5,0);(3)=(2,3,4),=(4,2,1)。解:(1)=(1,1,2),=(3,2,) (2)=(0,3,0),=(0,5,0)(3)=(2,3,4),=(4,2,1)既不共线、也不垂直,与相交点评:应熟练掌握利用向量共线、垂直的条件。 例3. 已知点A(3,0,0),B(0,4,0),C(0,0,5),求平面ABC的一个单位法向量。解:由于A(3,0,0),B(0,4,0),C(0,0,5),=(3,4,0),=(3,0,5)设平面ABC的法向量为(x,y,z)则有即取z=1,得,于是=(),又平面的单位法向量是例4. 若直线l的方向向

25、量是=(1,2,2),平面的法向量是=(1,3,0),试求直线l与平面所成角的余弦值。分析:如图所示,直线l与平面所成的角就是直线l与它在平面内的射影所成的角,即ABO,而在RtABO中,ABO=BAO,又BAO可以看作是直线l与平面的垂线所成的锐角,这样BAO就与直线l的方向向量a与平面的法向量n的夹角建立了联系,故可借助向量的运算求出BAO,从而求出ABO,得到直线与平面所成的角。解:=(1,2,2,),=(1,3,0),若设直线l与平面所成的角是则有因此,即直线l与平面所成角的余弦值等于。例5. 如图(a)所示,在正方体中,M、N分别是、的中点。求证:(1)MN/平面;(2)平面。(1)

26、证法一:如图(b)所示,以D为原点,DA、DC、所在直线分别为x轴、y轴、z轴建立空间直角坐标系,设正方体的棱长为1,则可求得M(0,1,),N(,1,1,),D(0,0,0),(1,0,1),B(1,1,0),于是=(,0,)。设平面的法向量是(x,y,z)则,得取x=1,得,=(1,1,1)又=(,0,)(1,1,1)=0,MN/平面证法二:,证法三: 即线性表示,故是共面向量/平面A1BD,即MN/平面A1BD。(2)证明:由(1)求得平面的法向量为=(1,1,1)同理可求平面B1D1C的法向量=(1,1,1)平面A1BD/平面B1D1C 例6. 如图,在正方体中,O为AC与BD的交点,

27、G为CC1的中点。求证:A1O平面GBD。证明:设,则而 同理,又,面GBD。例7. (2004年天津)如图(a)所示,在四棱锥PABCD中,底面ABCD是正方形,侧棱PD底面ABCD,PD=DC,E是PC的中点。(1)证明:PA/平面EDB;(2)求EB与底面ABCD所成角的正切值。(1)证明:如图(b)所示建立空间直角坐标系,D为坐标原点设DC=a,连结AC,AC交BD于G,连结EG依题意得A(a,0,0),P(0,0,a),E(0,)底面ABCD是正方形G是此正方形的中心故点G的坐标为(,0)=(a,0,a),=(,0,),这表明PA/EG而EG平面EDB,且PA平面EDBPA/平面ED

28、B(2)解:依题意得B(a,a,0),C(0,a,0)如图(b)取DC的中点F(0,0),连结EF、BF=(0,0, ),=(a,0),=(0,a,0),FEFB,FEDC。tanEBFEB与底面ABCD所成角的正切值为 例8. 正方体中,E、F分别是、的中点,求:(1)异面直线AE与CF所成角的余弦值;(2)二面角CAEF的余弦值的大小。解:不妨设正方体棱长为2,分别取DA、DC、所在直线为x轴、y轴、z轴建立如图所示空间直角坐标系,则A(2,0,0),C(0,2,0),E(1,0,2),F(1,1,2)(1)由=(1,0,2),=(1,1,2),得,=104=3又,所求值为(2)=(0,1

29、,0)=(1,0,2)(0,1,0)=0AEEF,过C作CMAE于M则二面角CAEF的大小等于M在AE上,则=(m,0,2m),=(2,2,0)(m,0,2m)=(m2,2,2m)MCAE=(m2,2,2m)(1,0,2)=0,=(0,1,0)(,2,)=020=2又二面角CAEF的余弦值的大小为 例9. 已知正方形ABCD的边长为4,E、F分别是AB、AD的中点,H是EF与AC的交点,CG面ABCD,且CG=2。求BD到面EFG的距离。分析:因BD/平面EFG,故O到面EFG与BD到面EFG距离相等,证明OM垂直于面EFG即可。解:如图所示,分别以CD、CB、CG所在直线为x、y、z轴建立空

30、间直角坐标系。易证BD/面EFG,设=O,EF面CGH,O到面EFG的距离等于BD到面EFG的距离,过O作OMHG于M,易证OM面EFG,可知OM为所求距离。另易知H(3,3,0),G(0,0,2),O(2,2,0)。设,=(3,3,2)则又,即BD到平面EFG的距离等于【励志故事】习惯父子俩住山上,每天都要赶牛车下山卖柴。老父较有经验,坐镇驾车,山路崎岖,弯道特多,儿子眼神较好,总是在要转弯时提醒道:“爹,转弯啦!” 有一次父亲因病没有下山,儿子一人驾车。到了弯道,牛怎么也不肯转弯,儿子用尽各种方法,下车又推又拉,用青草诱之,牛一动不动。到底是怎么回事?儿子百思不得其解。最后只有一个办法了,他左右看看无人,贴近牛的耳朵大声叫道:“爹,转弯啦!”牛应声而动。牛用条件反射的方式活着,而人则以习惯生活。一个成功的人晓得如何培养好的习惯来代替坏的习惯,当好的习惯积累多了,自然会有一个好的人生。 温馨提示:最好仔细阅读后才下载使用,万分感谢!

展开阅读全文
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!