挑选的脱皮豆类混合大米压缩物的液流学与营养学的质量 【中文4846字】【PDF+中文WORD】
挑选的脱皮豆类混合大米压缩物的液流学与营养学的质量 【中文4846字】【PDF+中文WORD】,中文4846字,PDF+中文WORD,挑选的脱皮豆类混合大米压缩物的液流学与营养学的质量,【中文4846字】【PDF+中文WORD】,挑选,脱皮,豆类,混合,大米,压缩,液流学,营养学,质量,中文,4846
【中文4846字】
精选的脱皮豆类混合大米压缩物的液流学与营养学的质量
S. Balasubramaian & Anjan Borah & K. K. Singh &R. T. Patil
摘要:人们通过最小成本的夹头压缩机对即食大米及其豆类(如黑豆,绿豆,小扁豆和豌豆)的基本压缩物的研究。压缩物是通过维持不变的供给率与保湿成分及其在15%的豆类混合水平下制备而成的。由压缩面粉做成的稀饭的液流学性质通过使用快速黏胶分析机进行评估。大米压缩物的最大及其最小的黏胶性是697cp.,大米混合物与15%的豌豆的黏胶性是523cp,对豆类混合物的水平增加,.黏胶的程度呈减少的趋势。其他的快速黏胶分析机的液流学参数,像在转折阶段,中间阶段及其最后阶段的黏胶性 分别是266cp-226cp.,431-297cp,452-375cp.在大米压缩物与混合15%的豆类中发现 最大价值的蛋白质,脂肪,纤维和灰末成分的存在。 大米压缩物内加上豆类成分,营养值呈现出增加的趋势。仅仅是大米压缩物的胶凝程度是在29.4%,与加上豆类混合物的胶凝度上呈现个降低的趋势,也只是大米混合15%的脱皮豆类的最小胶凝度。 所有的压缩物的感官评估价值的得分呈现出最让人接受的范围:6至8.因此,脱皮豆类的豆类混合水平获得了好的分数,并且对低成本的膨胀压缩物及其速溶粉的生产展呈现出很大的趋向。
关键词:大米,脱皮豆类,压缩物,感官质量,营养
简介
挤压烹饪是生产膨胀消除与速溶粉的有效加工法之一。,在挤压烹饪中,经过高度扭曲的原材料因此允许部分的淀粉水解。 固有的挤压系统需要跟高的金融投资,生产能力于及技术知识。,这就不适用与发展中国家。 为生产辅食,在20世纪八十年代初期,科罗拉多大学研发了的单个的夹头挤压机/干燥挤压机除了拥有高生产力,但是还需要花昂贵的成本。在发展中国家,对速溶粉生产的挤压烹饪加工还未被采用。因此,具有很小的生产力的简单机器的使用还是具有潜在的利益的。为了研究小吃与速溶粉的生产,还需要对低成本的夹头挤压机的可能性进行研究。大米,是制作无骨蛋白食物最常用的谷类之一。豆类是植物蛋白,卡路里及其他营养的主要来源。豆类的挤压烹饪增加了豆类营养的消化。
图1一低成本挤出机夹头
主视图 侧视图
图1
在产品研发期间,为对加工期间与加工之后的产品行为的理解,最高与最后的胶凝度是最重要的参数。快速粘弹普仪可以用来调查脂肪的黏胶效应与大米淀粉和米粉的氨基酸。挤压加工的紧密结构能够构建一个紧密的营养网,以便减少液化淀粉酶对淀粉颗粒的侵袭。 再者,由营养网创造的物理障碍限制了对淀粉酶的淀粉可取性,并且延误其在试管内的水解作用。 各种报告显示,胶凝的特性,浆糊的流变性能,胶体和其他的淀粉功能性质随物种和变体的变化 而变化。淀粉的凝胶性性能取决于种类,颗粒的结构,植物的起源和淀粉的比例。糯米和一般水稻在60至78℃时可凝胶化。许多因素影响了食物的偏好与接受性。许多因素是产品固有的,比如表面,味道和气味,其他外在的因素,如社会文化因素。
图2典型参数快速粘度分析仪粘度专为豆类混合饭挤压
图2 测试时间.分钟
表1粘滞性谱参数
性状缩写 描述(术语参考)
PV 峰值粘度(61-02,1999年)
T 海槽(61-02)
BD 击穿(宝和1999年夏,61-02),降低在烹饪过程中粘度在95℃
FV 在最后时刻结束糊粘度期间在50℃
把以上的点作为目标,现在的工作是研究精选出脱皮豆类混合大米压缩物的液流学和营养学的质量。
原料与方法
不同的脱皮豆类,如黑豆,绿豆,小扁豆和豌豆与精米都是从当地市场购买的。通过清理与分级,原材料放在在粗超的扎板机表面是为了制成1.65-2.36mm颗粒大小的玉米片。在0,5,10与15%混合水平的不同豆类玉米片被与大米玉米片混合。为制出挤压物,需要2KG的加湿至14%湿度的混合原料。
低成本的挤压机,它是一个小的单个螺钉自动挤压机,由7.5KW的电动马达所驱动。 它 的芯管是250mm的,直径率为6:1.,和一个4mm直径,5mm长度的圆柱体的刀模。螺钉的转动速度高,可允许高度扭曲。螺钉构型有个定螺距,螺纹深度克允许摩擦力与芯管内温度的递增。螺钉的直径是42.5mm,根部直径是32.5mm..含湿量保持在14%。挤压机的芯管墙有个螺旋槽,可以增加产品的摩擦和烹调。为确保正常的供给率,挤压机装置了一个保湿螺钉,在研究中它不会被改变。
挤压之后,压缩物是磨碎的,并把 液流学与营养学的分析列为主题。
流变学性能,挤压的粉末黏胶性能是使用第162个方法,通过粘胶分析仪 (MODEL -3 –D)的3.0版本的变温软件而得出的。样品 悬浮是通过在放有蒸馏水的铝筒里放入3g挤压的粉末准备而成的。一个程序化的加热与冷却系统在这就使用了。每种样品在加温至50℃的时候进行搅拌,剩下的加工过程中保持不变的扭曲率。温度保持在50℃,持续1分钟。
测试时间(秒) 测试时间(秒)
图3典型的快速粘混纺不同糙大米仪积挤压
图4 度糊化大米混合不同糙挤压 豆类团的水平,%
然后样品加热在95℃,持续2分30秒。,之后,样品冷却至50℃,持续2分钟。一个粘性坐标曲线的快速黏胶分析仪的绘图被用于决定最高的粘性,低谷期的粘性,衰落期的粘性以及最后的粘性。每种分析都进行过两次。
营养学的分析。不同豆类混合大米压缩物决定了营养成分,脂肪与灰末和纤维。挤压物的粘胶性的程度 被Wootton 研究。
感官评价。由11个成员主城的办培训的专家小组评估挤压物。如颜色,气味,表面处理,气味,松脆性和所有的挤压物的可接受性等感官的特性被用9点的快感标度来评价(1—4点,非常不喜欢至轻微的不喜欢,5点,即喜欢也不喜欢。6-9点喜欢至稍微喜欢。样品在经过加温至105℃,持续三分钟,后供给评价小组服用。
数据分析所报告出来的数据是10中观察的平均数,并是以MS EXCEL 2000 为准的。
结果与讨论
低成本的挤压机对挤压物表面的粘性的作用,所有的粘性参数决定着与单个的大米挤压物相比下的豆类的混合水平增长与降低。但是,绿色谷物的一般挤压物的粘性减弱不是很明显。在低谷期的粘性,豌豆最大,因此变化范围在288-297cp,是所有品种中比较低的。最后的粘性在所有的品种中都在下降,但是,降低的程度比绿豆高,从437cp变至404cp。在最高阶段的粘性的相似的观察已经被记录。 当挤压粉末悬浮液加温至以上一定的温度,水摄入颗粒内,减弱了淀粉段内的氢键,由于机械的输入,与它一致的原材料相比,反射出一个趋向下降的快速黏胶性分析仪轮廓。这种粘性在加温至95℃时会加强,在冷却时继续降低,最后图像显示:不同豆类与混合水平呈现出稳定的趋势,单在加工的最后阶段显示出稍微的上升趋向。所有研究系统的粘性温度图像都是简单的模式。
表2 营养分析不同糙豆类混合挤压大米
豆类 豆类% 蛋白质% 脂肪% 纤维% 灰分%
黑豆 0 8.6 0.86 0.19 0.56
5 9.2 0.90 0.25 0.62
10 9.8 0.96 0.27 0.78
15 10.5 1.03 0.29 0.96
绿豆 0 8.6 0.86 0.19 0.56
5 9.7 0.90 0.24 0.74
10 10.1 0.96 0.26 0.88
15 10.9 1.02 0.28 0.98
小扁豆 0 8.6 0.86 0.19 0.56
5 9.7 0.90 0.23 0.66
10 10.1 0.96 0.25 0.76
15 11.2 1.03 0.27 0.88
豌豆 0 8.6 0.86 0.19 0.56
5 9.0 0.90 0.32 0.66
10 9.6 0.96 0.39 0.78
15 10.2 1.03 0.50 0.86
当颗粒在其最肿胀的状态时,它的粘性最大,在最高的粘性时任然保持完好的在这个阶段可坚持加热,然而,颗粒的破碎便会使得粘性降低。粘性在冷却阶段的第二次增加和衰减现象及其所观察到的淀粉成分有关。
粘性程度的影响。大米压缩物的粘性程度是%29.4.粘性变化范围是:22.4至29.4%。 豆类混合压缩物同大米压缩物相比,粘性稍低。在15%的水平时的豆类混合压缩物之间的粘性程度没有太大的差异,黑豆和绿豆的粘性却是稍低的 (22.4%和22.6%),随之在后的是豌豆(23.3%)与小扁豆((23.2%)。部分的淀粉糊化是合适的,因为在糊化准备时减少了肿胀,因此为维持在较高的浓度可允许合适的半液体稠度。也就是,高能量密度。这个也就指明 挤压烹饪已经提高了压缩物的胶凝程度。根据LIN et.al. 压缩物的脂肪成分 严重影响了淀粉胶凝度。因此,同大米一样,豆类混合的胶凝度减低是由于 营养和脂肪的增加水平。
营养价值的影响。大米,黑豆,绿豆,小扁豆及其豌豆分别是6%,8%,24%,19.7%,25.1%与19.7%的营养值。大米和豆类的混合形成了一种营养丰富的食物。豆类混合大米压缩物的营养成分范围是:8.6%至11.15%。在压缩物中,同豆类相比,大米的营养成分低。营养成分的高低取决于豆类的种类。这也许是应为豆类本身就有很高的营养成分。小扁豆混合大米压缩物呈现最高的营养成分。仅仅是由大米做成的压缩物,或是单独的豆类混合大米压缩物都呈现出低的脂肪百分数:0.86%至1.03%,而玄米是:(0.5%)和豆类:如:黑豆,绿豆,小扁豆,豌豆。在豆类之间脂肪没有很大的差别,绿豆除外,呈现出较低的价值。大米和豆类混合大米压缩物的纤维成分范围是0.19%至0.5%。 随着豆类成分的增加,压缩物的纤维成分呈现出增长的趋势:因为豆类的纤维成分比大米的高。 豌豆在水平上混合大米压缩物显示出更高的纤维价值。 灰末压缩物成分随着豆类水平的增加而增加。灰末成分范围是:0.56%至0.98%。黑豆和绿豆混合压缩物呈现出高点的灰末成分(0.96%和0.98%),小扁豆(0.88%)和豌豆(0.86%)在其后。
感官特性的影响。在所有的例子中,感官属性也明显地被豆类水平影响。 然而,同绿豆和小扁豆基本压缩物为相比,黑豆和豌豆混合压缩物在整体的范围内并没有显示出太多的变化,这也许是应为豆类的内在颜色特征。
表5 挤压由不同粗糙度混合而成的大米享乐分数
黑豆 绿豆
颜色 颜色
脆度 表面处理 脆度 表面处理
味道 味道
颜色 颜色
脆度 表面处理 脆度 表面处理
味道 味道
然而,同单单的大米压缩物相比,在没有变化整体可接受性分数,黑豆(15%),豌豆(15%)绿豆(10%)及其小扁豆(10%)的混合水平是可以接受的。
结论
带有小生产力的低成本挤压机适合加工和生产豆类混合大米膨胀小吃食物与带有低水分和低液体成分的速溶粉。在经过加工中,被部分糊化和胶化的挤压粉,可缩性的速溶粉显示了高能量密度颗粒的制备范围。压缩粉的低粘性图像与原始成分的粉,高营养及其高感官价值相比,揭示出产品发展的用处和可能性,尤其是为正餐和辅食。
参考文献
科隆纳磷,Doublier巨浪,Melcion太平绅士,德Monredon楼名士的c(1984)挤压蒸煮小麦淀粉和滚筒干燥。一,物理和大分子的修改。谷物化学61:538-544
Deliza001麦菲小时,Hedderley D类(1996)信息影响消费者评估甜和苦的解决方案。 Ĵ食品科学61:1080-1083
Fardet甲,Abecassis J号,Hoeblerç,鲍德温下午,Buleon甲,Berot S(1999年)的影响蛋白质的技术修改从面食网络对体外淀粉降解。Ĵ谷物科技30:133-145
Gopalanç,拉玛沙斯特里法国BV,Balasubramanian资深大律师(1991)营养印度食品的价值。国家营养研究所,印度医学研究理事会,海得拉巴,页47-48-95-96
哈珀杂志(1995年)的低成本挤压:非洲的可能性。该南部非洲Ĵ食品科学Nutr7:142-147
哈珀J号,扬森克(1985)预煮食品的生产中营养发展中国家的低成本挤压技术的国家。食品
冯诠释1:27-97
哈特佛罗里达州,菲舍尔黄建忠(1971)变迁探析moderno德洛斯alimentas。在:Acribia,萨拉戈萨
Hoeblerç,Karinthi一个契诺小时,冠军男,巴里巨浪(1999)生物利用度的淀粉在面包中含有丰富的淀粉酶:代谢正常人的反应和淀粉的结构。欧元Ĵ临床Nutr53:360-366
国际刑事法院(1995)快速粘贴方法使用快速粘纽波特分析仪。国际刑事法院的第162号标准草案,国际交流协会谷物科学与技术
詹金斯女士,詹金斯铝,Wolever训练管理系统,Vuksan五,饶影音,汤普森陆,若斯的RG(1994)低血糖指数:Lente碳水化合物和改变饮食频率的生理影响。上午Ĵ临床Nutr 59:706的S - 709S基尔斯利兆瓦,西卡德pj的(1989)淀粉及糖类的化学存在于食物。见:Dobbing杂志(ED)的淀粉和糖的饮食男子:一比较。斯普林格,伦敦,页1-34
金涌,Wiesenborn DP的,奥尔PH值,格兰特洛杉矶(1995年)筛选马铃薯新型淀粉用差示扫描量热性能。Ĵ食品科学60:1060-1065
赖陛下(2001年)的理化处理对水热物业预糊化米粉。食品化学72:455-463
梁训明,王译(2003)糊化和结晶性能的差异商业和孤立的大米淀粉,并补充氨基酸酸。Ĵ食品科学68:832-838
梁训明,王谟,施法郎(2002年)糊化特性差异商业和孤立添加了大米血脂和β淀粉环糊精。谷物化学79:812-818
林秒,Hseih楼吞吐他(1997年)对血脂和加工条件对淀粉糊化度挤压干宠物食品。Lebens Wiss Technol 30:754-761
Sadasivam秒,一马尼卡姆(1992)农业生物化学方法科学。威利,新德里,页20-21
说净重(2000)干挤出机。见:里亚兹百万(ED)的挤出机在食品申请。Technomic,德州,页51-62
Sajilata爵,阿密特遥感,库卡尼公关(2006)抗性淀粉,一审查。比赛牧师食品科学食品安全5:1-17
Sivaramakrishnan惠普,圣吉乙,Chattopadhyay的PK(2004年)的流变面团特性的水稻稻米制作面包。Ĵ食品工程62:37-45
索伯恩仙,品牌金城,富鼎的AS(1987)慢慢消化,吸收传统bushfoods碳水化合物:一个保护因子对糖尿病?上午Ĵ临床Nutr 45:98-106
Wiesenborn的DP,奥尔PH值,卡斯帕尔HH中Tacke银行(1994)马铃薯淀粉粘贴行为,相关的一些物理/化学性质。Ĵ食品科学59:644-648
沃顿男,Bamunuarachchi甲(1978)水结合能力商业生产的天然和改性淀粉。淀粉/斯塔克33:159-161
伍顿男,威敦研发,芒克氮(1971年)为快速的方法估计加工食品中淀粉糊化。食品Technol澳大利亚23:612-615
Zobel高频(1984)糊化淀粉及力学性能淀粉糊。见:惠斯勒RL,BeMiller剑南,帕斯卡尔英法(EDS)等淀粉:化学与技术,第二版。学术,伦敦,页285-309
ORIGINAL ARTICLERheological and nutritional quality of selected dehulledlegumes blended rice extrudatesS.Balasubramanian&Anjan Borah&K.K.Singh&R.T.PatilRevised:3 November 2010/Accepted:18 December 2010#Association of Food Scientists&Technologists(India)2011Abstract Rheological and nutritional quality of ready-to-eat rice(Oryza sativa)-legume viz.black gram(Vignamungo),green gram(Vigna radiata),lentil(Lens culinaris)and peas(Pisum sativum)based extrudates were studiedusing low cost collet extruder.Extrudates were preparedkeeping constant feed rate(25 kg/h)and moisture content(14%wb)at 0,5,10 and 15%legume incorporation levels.Rheological properties of porridge made of extrudate flourwere evaluated using Rapid Visco Analyser(RVA).Maximum and minimum peak viscosity for rice extrudatesalone and rice extrudates blended with 15%peas were 697cp and 523 cp,respectively.There was a decreasing trend indegree of gelatinization with increase in legume incorpora-tion level.Other RVA rheological parameters like troughbreak down and final viscosity were in the range of 266-226 cp,431-297 cp and 452-375 cp respectively.Maximumvalues of protein,fat,fibre and ash contents were found inrice extrudates at 15%legumes blend levels.There was anincreasing trend in nutrient contents with legume content inrice extrudates.Degree of gelatinization for rice aloneextrudate was 29.4%and showed a decrease in gelatiniza-tion with increase in legumes extrudate and was minimum(22.4%)for rice blended with 15%dehulled green gram.Sensory evaluation scores for all extrudates showed themost acceptable range of 6 to 8.Thus,legume blend level(up to 15%)of dehulled legumes fetched good scores andshowed promising trend for the production of low costexpanded extrudates and its instant flour.Keywords Rice.Dehulled legumes.Extrudates.Sensoryquality.NutritionIntroductionExtrusion cooking is one of the useful processes for theproduction of expanded snacks and instant flours.Duringextrusion cooking,raw materials undergo high shear,thus allowing partial starch hydrolysis(Colonna et al.1984).The existing extrusion systems involve higherfinancial investment,production capacity and technicalknowledge and are not suitable for developing countries.Single collet extruders/dry extruders that were developedfor complementary foods production during early 1980sby the University of Colorado(Harper 1995,Harper andJansen 1985,Said 2000)are too costly besides highproduction capacity(about Rs 2.5 million and 1 t/h).Adoption of extrusion cooking processing for instant flourproduction in developing countries has not still picked up.Thus,application of simple machine having small pro-duction capacity is therefore of great potential interest.The possibilities of a low cost collet extruder(about 2535 kg/h)need to be studied for the production of snackfoods and instant flours.Rice(Oryza sativa),is one of themost frequently used cereals for making gluten-free foodproducts(Sivaramakrishnan et al.2004).Legumes are aprime source of plant proteins,calories and othernutrients.Extrusion cooking of legumes increases thedigestibility of legume protein.In product development,peak and final viscosities are important parameters,tohave an understanding of product behaviour during andS.Balasubramanian(*):K.K.Singh:R.T.PatilCentral Institute of Post Harvest Engineering and Technology,PAU Campus,Ludhiana 141 004 Punjab,Indiae-mail:A.BorahTezpur University,Tezpur 784 028 Assam,IndiaJ Food Sci TechnolDOI 10.1007/s13197-010-0206-yafter processing.Rapid viscoanalyser can be used toinvestigate the pasting effects of lipids and amino acidson rice starch and flour(Liang et al.2002,Liang and King2003).The compact structure resulting from extrusionprocess can lead to a dense protein network reducing theavailability of starch granules to attack by alpha-amylase(Fardet et al.1999).Moreover,the physical barrier createdby the protein network limits the accessibility of starch toamylase and delays in vitro starch hydrolysis(Hoebler etal.1999).Various reports suggested that pasting character-istics(Wiesenborn et al.1994,Lai 2001),rheologicalproperties of paste and gels(Wiesenborn et al.1994,Kimet al.1995)and other functional properties(Wotton andBamunuarachchi 1978,Zobel 1984)of starches vary withspecies and variants.Gelatinization properties of starchesdepend on the type,granular structure,botanical originand amylose/amylopectin ratio(Sajilata et al.2006).Waxyand normal rice gelatinize between 60 and 78C(Thorburn et al.1987,Jenkins et al.1994).Many factorsaffect preference and acceptability of foods.Some factorsare intrinsic to the product,such as appearance,taste andflavour;other factors are extrinsic,such as social andFig.2 Parameters of the typicalrapid visco analyzer viscosityprofile for legumes blended riceextrudatesFig.1 Low cost collet extruderJ Food Sci Technolcultural factors(Deliza et al.1996).Keeping above pointsin view,the present work was undertaken to studyrheological and nutritional quality of selected dehulledlegumes blended rice extrudates.Materials and methodsDifferent dehulled legumes viz.black gram(Vigna mungo),green gram(Vigna radiata),lentil(Lens culinaris)and peas(Pisum sativum)and polished rice were purchased fromlocal market.After cleaning and grading,the raw materialswere coarse ground in plate mill to make grits in theparticle size range of 1.652.36 mm.Different legume gritswere blended at 0,5,10 and 15%levels with rice grits.Formaking extrudates,about 2 kg of blended materialsconditioned to 14%(wb)moisture were used.Low cost collet extruder It is a simple single screwautogenous extruder,driven by a 7.5 kW electric motor.The barrel length is 250 mm with a length to diameter ratioof 6:1 and has a central cylindrical die of 4 mm diam and5 mm length.The rotating speed of the screw is high(500 rpm)to allow high shear.The screw configuration hasconstant pitch and flight depth to allow a progressiveincrease in friction forces and temperature inside the barrel.The screw diam is 42.5 mm and the root diam is 32.5 mm(Fig.1).The moisture content was kept at 14%.Theextruder barrel wall has helical grooves to enhance frictionand cooking of the product.To ensure a regular feedingrate,the extruder is equipped with a motorised feedingscrew,but it was kept constant(25 kg/h)for this study.After extrusion,extrudates were ground(particle size 0.85 mm)and subjected for rheological and nutritionalanalysis.Rheological properties Pasting properties of extrudatepowders were determined using a Rapid Visco Analyser(RVA)Model 3-D(Newport Scientific Pvt.Ltd,Australia)with Thermocline software(3.0 version)by the Method No.162(ICC 1995).Sample suspension was prepared byplacing extrudate powder(3 g)in an aluminium canistercontaining(30 g)distilled water.A programmed heatingand cooling cycle was used.Each sample was stirred(960 rpm,10 s)while heated at 50C,and then constantshear rate(160 rpm)was maintained for the rest of theprocess.Temperature was held at 50C up to 1 min.Thenthe samples were heated(5095C,3 min 42 s)and held atTable 1 Parameters of viscosity profileTraitsabbreviationDescription(reference of terminology)PVPeak viscosity(61-02,Bao and Xia 1999)TTrough(61-02)BDBreakdown(Bao and Xia 1999,61-02),decreasein viscosity during cooking at 95CFVFinal paste viscosity at the end of final holdingperiod at 50C61-02 is the ICC(1995)methods010020030040050060070080002004006008001000Time(sec)Viscosity,cpvGreen gram010020030040050060070080002004006008001000Time(sec)Viscosity,cp010020030040050060070080002004006008001000Time(sec)Viscosity,cp0%5%10%15%Pea010020030040050060070080002004006008001000Time(sec)Viscosity,cpLentilFig.3 Typical rapid visco analyzer plot for different dehulled blended rice extrudatesJ Food Sci Technol95C for 2 min 30 s.Subsequently samples were cooleddown(95-50C,3 min 48 s)and then held at 50C for2 min.A RVA plot of viscosity(cP)versus time(s)wasused to determine peak viscosity(PV),trough(T),breakdown viscosity(BD)and final viscosity(FV)(Fig.2,Table 1).Each analysis was done in duplicate.Nutritional analysis Protein content(Kjeldahl method),fatand ash(Hart and Fischer 1971),and fibre(Sadasivam andManickam 1992)for different legumes blended riceextrudates were determined.Degree of gelatinization ofextrudates was done according to Wootton et al.(1971).Sensory evaluation A semi-trained panel consisting of 11members evaluated the extrudates.The sensory attributessuch as color,flavour,surface finish,taste,crispiness andover all acceptability of extrudates were evaluated using a9-point Hedonic scale(14 dislike extremely to slightly,5-neither like nor dislike,69 like to slightly extremely).Samples were served to panelists immediately after condi-tioning the extrudates(105C,3 min).Statistical analysis The data reported are mean of tenobservations and subjected to MS EXCEL 2000.Results and discussionEffect of low cost collet extruder on viscosity profile ofextrudates All viscosity parameters determined decreasedwith increased legume levels in blend as compared to riceextrudates alone(Fig.3).But the decrease was not muchpronounced in green gram based extrudate.The breakdownviscosity was maximum in peas whereas it varied in therange of 288297 cp and was lower in all the cases.Thefinal viscosity declined in all cases but the decrease wasmuch higher in green gram where it varied from 437 to 404cp.Similar observations were recorded for peak viscosityalso.When extrudates powder suspensions were heatedabove a certain temperature,water penetrated into thegranules and weakened the hydrogen bonds in starchsegments and reflected a degradative RVA profile ascompared to its corresponding raw material due tomechanical input.The viscosity increased during heatingat constant temperature(95C),continued to decreaseduring cooling and the profile finalized with a plateau fordifferent legumes and incorporation levels,but showed aslightly increasing trend at the end of the process.All theviscosity-temperature profiles of the studied systemsshowed a similar pattern.The maximum viscosity was151719212325272931051015Legumes incorporations levels,%Degree of gelatinization%Black gramGreen gramLentilPeasFig.4 Degree of gelatinization of different dehulled blended riceextrudatesLegumesLegumes,%Protein,%Fat,%Fibre,%Ash,%Black gram08.60.860.190.5659.20.900.250.62109.80.960.270.781510.51.030.290.96Green gram08.60.860.190.5659.70.900.240.741010.10.960.260.881510.91.020.280.98Lentil08.60.860.190.5659.70.900.230.661010.10.960.250.761511.21.030.270.88Peas08.60.860.190.5659.00.900.320.66109.60.960.390.781510.21.030.500.86Table 2 Nutritional analysis ofdifferent dehulled legumesblended rice extrudatesJ Food Sci Technolattained when the granules were in their most swollen state,still intact resulting in peak viscosity and this continuedheating of paste at this point,however,caused the granuleto rupture and accompanied by the fall in viscosity(Kearsley and Sicard 1989).The secondary increase inviscosity(setback)during the cooling phase which isassociated with the retrogradation phenomenon and relatedto amylose content was observed.Effect on degree of gelatinization Degree of gelatinizationfor rice extrudate was 29.4%.The degree of gelatinizationranged from 22.4 to 29.4%(Fig.4).The legumes blendedextrudates showed a lower degree of gelatinization com-pared to rice extrudates.Although there was no markeddifference in degree of gelatinization among the legumesblended extrudates,the black gram and green gram showedlower values(22.4%and 22.6%)followed by peas(23.3%)and lentil(23.2%)at 15%.Partial starch dextrinisation isdesirable because it reduces swelling during gruel prepara-tion,thus allowing an appropriate semi-fluid consistency tobe maintained at a higher concentration,i.e.higher energydensity.This signified that the extrusion cooking hasincreased the degree of gelatinization of the extrudates.According to Lin et al.(1997)fat content of extrudates wasshown to interfere significantly with starch gelatinization.Thus,decrease in gelatinization with legumes additioncould be due to the increased level of protein and fat ascompared to rice.Effect on nutritional value The rice(raw milled),blackgram,green gram,lentil and peas consist of 6.8,24,19.7,25.1 and 19.7%protein(Gopalan et al.1991).Thecombination of rice with legume forms a protein rich food.The legumes blended rice extrudates showed a proteincontent ranging from 8.6 to 11.15%(Table 2).Among theextrudates,rice extrudates showed low protein content ascompared to legumes blended extrudates.The proteincontent increased depending upon legume type.This maybe attributed to their inherent higher content of proteins inthe legumes.The lentil blended(15%)with rice extrudateshowed highest protein content.Extrudates made of ricealone and legumes blended rice extrudate showed a lowerfat percentage ranging from 0.86 to 1.03%as compared toraw rice(0.5%)and legumes viz.,black gram(1.4%),greengram(1.2%)lentil(0.7%)and peas(1.1%).There was nosignificant difference(p0.5)in fat content betweenlegumes except green gram,which showed a lower value(1.03).Fibre content of rice and legumes blended riceextrudate ranged from 0.19 to 0.50%.The fibre content ofextrudates showed an increasing trend with increase inlegume content because of the higher fibre content oflegumes than rice.Pea blended rice extrudates at higherlevel of blend showed higher fiber values.The ash contentof extrudates increased with increase of legumes levels.Ash content ranged from 0.56 to 0.98%.Black gram andgreen gram blended extrudates showed higher ash content(0.96%and 0.98%)followed by lentil(0.88%)and pea(0.86%).Effect on sensory attributes Sensory score was significantlyaffected by the blend levels in all the cases(Fig.5).However,black gram and pea blended extrudates did notshow much variation among overall acceptability ascompared to green gram and lentil based extrudates.Thecolour was affected by the blend levels of lentil and pea,which may be attributed to the inherent colour character-Black gram13579ColorFlavourSurface finishTasteCrispinessOver allacceptability Green gram13579ColorFlavourSurface finishTasteCrispinessOver allacceptabilityLentil13579ColorFlavourSurface finishTasteCrispinessOver allacceptabilityPeas13579ColorFlavourSurface finishTasteCrispinessOver allacceptability0%5%10%15%Fig.5 Hedonic scores of extru-dates made of different dehulledblended rice extrudatesJ Food Sci Technolistics of the legumes.However,the blend levels of blackgram(15%),peas(15%),green gram(10%)and lentil(10%)were found acceptable without altering the overallacceptability score as compared with rice extrudate alone.ConclusionThe low cost colletextruders with a small production capacitywill be suitable to process and produce legume blended riceexpanded snack foods and instant flour with low moisturecontent(14%,wb)and low lipid content.Extrudate flourswhich are partially dextrinised and gelatinized during thetreatment,yielding instant flour showed the scope forpreparation of higher energy density gruels.The lowerviscosity profile of extrudate flour as compared to its rawcomposite flour and higher nutritional and sensory valuesexpressed the usefulness and possibility of product develop-ment,especially for diet and weaning foods.ReferencesColonna P,Doublier JL,Melcion JP,De Monredon F,Mercier C(1984)Extrusion cooking and drum drying of wheat starch.I.Physical andmacromolecular modifications.Cereal Chem 61:538544Deliza R,Macfie H,Hedderley D(1996)Information affectsconsumer assessment of sweet and bitter solutions.J Food Sci61:10801083Fardet A,Abecassis J,Hoebler C,Baldwin PM,Buleon A,Berot S(1999)Influence of technological modifications of the proteinnetwork from pasta on in vitro Starch Degradation.J Cereal Sci30:133145Gopalan C,Rama Sastry BV,Balasubramanian SC(1991)Nutritivevalue of Indian foods.National Institute of Nutrition,IndianCouncil of Medical Research,Hyderabad,pp 47-4895-96Harper J(1995)Low-cost extrusion:possibilities for Africa.TheSouth-African J Food Sci Nutr 7:142147Harper J,Jansen G(1985)Production of nutritious precooked foods indeveloping countries by low-cost extrusion technology.FoodRev Int 1:2797Hart FL,Fischer HJ(1971)Anlisis moderno de los alimentas.In:Acribia,Zaragoza,p 249Hoebler C,Karinthi A,Chiron H,Champ M,Barry JL(1999)Bioavailability of starch in bread rich in amylase:metabolicresponses in healthy subjects and starch structure.Eur J Clin Nutr53:360366ICC(1995)Rapid pasting method using the Newport rapid viscoanalyser.ICC-Draft Standard No.162,International Associationfor Cereal Science and TechnologyJenkins DJA,Jenkins AL,Wolever TMS,Vuksan V,Rao AV,Thompson LU,Josse RG(1994)Low glycemic index:Lentecarbohydrates and physiological effects of altered food frequen-cy.Am J Clin Nutr 59:706S709SKearsley MW,Sicard PJ(1989)The chemistry of starches and sugarspresent in food.In:Dobbing J(ed)Dietary starches and sugars inman:a comparison.Springer,London,pp 134Kim SY,Wiesenborn DP,Orr PH,Grant LA(1995)Screening potatostarch for novel properties using differential scanning calorime-try.J Food Sci 60:10601065Lai HM(2001)Effects of hydrothermal treatment on the physico-chemical properties of pregelatinized rice flour.Food Chem72:455463Liang XM,King JM(2003)Pasting and crystalline property differ-ences of commercial and isolated rice starch and added aminoacids.J Food Sci 68:832838Liang XM,King JM,Shih FF(2002)Pasting property differences ofcommercial and isolated rice starch with added lipids and-cyclodextrin.Cereal Chem 79:812818Lin S,Hseih F,Huff HE(1997)Effect of lipids and processingconditions on degree of starch gelatinization of extruded dry petfood.Lebens Wiss Technol 30:754761Sadasivam S,Manickam A(1992)Biochemical methods for agricul-tural sciences.Wiley,New Delhi,pp 2021Said NW(2000)Dry extruders.In:Riaz MN(ed)Extruders in foodapplications.Technomic,Texas,pp 5162Sajilata MG,Singhal RS,Kulkarni PR(2006)Resistant starch-areview.Comp Rev Food Sci Food Safety 5:117Sivaramakrishnan HP,Senge B,Chattopadhyay PK(2004)Rheolog-ical properties of rice dough for making rice bread.J Food Eng62:3745Thorburn AW,Brand JC,Truswell AS(1987)Slowly digested andabsorbed carbohydrate in traditional bushfoods:a protectivefactor against diabetes?Am J Clin Nutr 45:98106Wiesenborn DP,Orr PH,Casper HH,Tacke BK(1994)Potato starchpaste behaviour as related to some physical/chemical properties.JFood Sci 59:644648Wotton M,Bamunuarachchi A(1978)Water binding capacity ofcommercial produced native and modified starches.Starch/Starke33:159161Wootton M,Weedon D,Munk N(1971)A rapid method for theestimation of starch gelatinization in processed foods.FoodTechnol Australia 23:612615Zobel HF(1984)Gelatinization of starch and mechanical properties ofstarch pastes.In:Whistler RL,BeMiller JN,Paschall EF(eds)Starch:chemistry and technology,2nd edn.Academic,London,pp 285309J Food Sci Technol
收藏