人大版微积分第四章函数极值与其求法

上传人:无*** 文档编号:181286848 上传时间:2023-01-11 格式:PPT 页数:26 大小:520.50KB
收藏 版权申诉 举报 下载
人大版微积分第四章函数极值与其求法_第1页
第1页 / 共26页
人大版微积分第四章函数极值与其求法_第2页
第2页 / 共26页
人大版微积分第四章函数极值与其求法_第3页
第3页 / 共26页
资源描述:

《人大版微积分第四章函数极值与其求法》由会员分享,可在线阅读,更多相关《人大版微积分第四章函数极值与其求法(26页珍藏版)》请在装配图网上搜索。

1、链接目录第一章第一章 函数函数第二章第二章 极限与连续极限与连续第三章第三章 导数与微分导数与微分第四章第四章 中值定理中值定理,导数的应用导数的应用第五章第五章 不定积分不定积分第六章第六章 定积分定积分第七章第七章 无穷级数无穷级数(不要求不要求)第八章第八章 多元函数多元函数第九章第九章复习参考书参考书1赵树嫄赵树嫄.微积分微积分.中国人民出版社中国人民出版社2同济大学同济大学.高等数学高等数学.高等教育出版社高等教育出版社第四章第四章函数的极值及其求法函数的极值及其求法函数的极值及其求法函数的极值及其求法 由单调性的判定法则,结合函数的图形可知,由单调性的判定法则,结合函数的图形可知,

2、曲线在升、降转折点处形成曲线在升、降转折点处形成“峰峰”、“谷谷”,函,函数在这些点处的函数值大于或小于两侧附近各点数在这些点处的函数值大于或小于两侧附近各点处的函数值。函数的这种性态以及这种点,无论处的函数值。函数的这种性态以及这种点,无论在理论上还是在实际应用上都具有重要的意义,在理论上还是在实际应用上都具有重要的意义,值得我们作一般性的讨论。值得我们作一般性的讨论。一、函数极值的定义一、函数极值的定义oxyab)(xfy 1x2x3x4x5x6xoxyoxy0 x0 x.)()(,)()(,;)()(,)()(,),(,),()(000000000的一个极小值的一个极小值是函数是函数就称

3、就称均成立均成立外外除了点除了点任何点任何点对于这邻域内的对于这邻域内的的一个邻域的一个邻域如果存在着点如果存在着点的一个极大值的一个极大值是函数是函数就称就称均成立均成立外外除了点除了点任何点任何点对于这邻域内的对于这邻域内的的一个邻域的一个邻域如果存在着点如果存在着点内的一个点内的一个点是是内有定义内有定义在区间在区间设函数设函数xfxfxfxfxxxxfxfxfxfxxxbaxbaxf 定义定义函数的极大值与极小值统称为极值函数的极大值与极小值统称为极值,使函数取得使函数取得极值的点称为极值点极值的点称为极值点.二、函数极值的求法二、函数极值的求法 设设)(xf在点在点0 x处具有导数处

4、具有导数,且且在在0 x处取得极值处取得极值,那末必定那末必定0)(0 xf.定理定理1(1(必要条件必要条件)定义定义.)()0)(的驻点的驻点做函数做函数叫叫的实根的实根即方程即方程使导数为零的点使导数为零的点xfxf 注意注意:.,)(是极值点是极值点但函数的驻点却不一定但函数的驻点却不一定点点的极值点必定是它的驻的极值点必定是它的驻可导函数可导函数xf例如例如,3xy ,00 xy.0不不是是极极值值点点但但 x注注这个结论又称为这个结论又称为Fermat定理定理如果一个可导函数在所论区间上没有驻点如果一个可导函数在所论区间上没有驻点 则此函数没有极值,此时导数不改变符号则此函数没有极

5、值,此时导数不改变符号不可导点也可能是极值点不可导点也可能是极值点可疑极值点:驻点、不可导点可疑极值点:驻点、不可导点 可疑极值点是否是真正的极值点,还须进一步可疑极值点是否是真正的极值点,还须进一步判明。由单调性判定法则知,若可疑极值点的左、判明。由单调性判定法则知,若可疑极值点的左、右两侧邻近,导数分别保持一定的符号,则问题右两侧邻近,导数分别保持一定的符号,则问题即可得到解决。即可得到解决。(1)(1)如果如果),(00 xxx 有有;0)(xf而而),(00 xxx,有有0)(xf,则,则)(xf在在0 x处取得极大值处取得极大值.(2)(2)如果如果),(00 xxx 有有;0)(x

6、f而而),(00 xxx 有有0)(xf,则,则)(xf在在0 x处取得极小值处取得极小值.(3)(3)如果当如果当),(00 xxx 及及),(00 xxx时时,)(xf符号相同符号相同,则则)(xf在在0 x处无极值处无极值.定理定理2(2(第一充分条件第一充分条件)xyoxyo0 x0 x (是极值点情形是极值点情形)xyoxyo0 x0 x 求极值的步骤求极值的步骤:);()1(xf 求导数求导数;0)()2(的根的根求驻点,即方程求驻点,即方程 xf;,)()3(判断极值点判断极值点在驻点左右的正负号在驻点左右的正负号检查检查xf .)4(求极值求极值(不是极值点情形不是极值点情形)

7、例例1 1解解.593)(23的的极极值值求求出出函函数数 xxxxf963)(2 xxxf,令令0)(xf.3,121 xx得得驻驻点点列表讨论列表讨论x)1,(),3()3,1(1 3)(xf )(xf 00 极大值极大值极小值极小值)3(f极小值极小值.22 )1(f极大值极大值,10)3)(1(3 xx593)(23 xxxxfMm图形如下图形如下 设设)(xf在在0 x处处具具有有二二阶阶导导数数,且且0)(0 xf,0)(0 xf,那那末末(1 1)当当0)(0 xf时时,函函数数)(xf在在0 x处处取取得得极极大大值值;(2 2)当当0)(0 xf时时,函函数数)(xf在在0

8、x处处取取得得极极小小值值.定理定理3(3(第二充分条件第二充分条件)证证)1(xxfxxfxfx )()(lim)(0000,0 异异号号,与与故故xxfxxf )()(00时时,当当0 x)()(00 xfxxf 有有,0 时时,当当0 x)()(00 xfxxf 有有,0 所以所以,函数函数)(xf在在0 x处取得极大值处取得极大值例例2 2解解.20243)(23的极值的极值求出函数求出函数 xxxxf2463)(2 xxxf,令令0)(xf.2,421 xx得得驻驻点点)2)(4(3 xx,66)(xxf )4(f,018 )4(f故故极极大大值值,60 )2(f,018 )2(f故

9、故极极小小值值.48 20243)(23 xxxxf图形如下图形如下Mm注意注意:.2,)(,0)(00仍仍用用定定理理处处不不一一定定取取极极值值在在点点时时xxfxf 例例3 3解解.)2(1)(32的极值的极值求出函数求出函数 xxf)2()2(32)(31 xxxf.)(,2不存在不存在时时当当xfx 时,时,当当2 x;0)(xf时,时,当当2 x.0)(xf.)(1)2(的的极极大大值值为为xff.)(在该点连续在该点连续但函数但函数xf注意注意:函数的不可导点函数的不可导点,也可能是函数的极值点也可能是函数的极值点.M例例4)0(12,02 aeaxxxx时时证证明明证证xeax

10、xxf 12)(2记记xeaxxf 22)(则则(不易判明符号)(不易判明符号)xexf 2)(2ln0)(xxf得得令令0)(,2ln xfx时时当当0)(,2ln xfx时时当当的的一一个个极极大大值值点点是是)(2lnxfx 而且是一个最大值点,而且是一个最大值点,)2(ln)(fxf 222ln2 a0 )(,0 xfx时时0)0()(fxfxeaxx 122即即例例5 设设f(x)连续,且连续,且f(a)是是f(x)的极值,问的极值,问f 2(a)是否是是否是 f 2(x)的极值的极值证证分两种情况讨论分两种情况讨论0)(),()(afafxf且且设设时时,有有使使当当),(,0 a

11、ax)()(22afxf 所以所以 f 2(a)是是 f 2(x)的极小值的极小值设设f(a)是是f(x)的极小值,且的极小值,且0)(af时,有时,有使当使当),(,0111 aax)()(afxf 又又f(x)在在 x=a 处连续,且处连续,且0)(af时时,有有使使当当),(,0222 aax0)(xf,min21 令令时,有时,有则当则当),(aax0)()(xfaf)()(22afxf f 2(a)是是 f 2(x)的极大值的极大值同理可讨论同理可讨论f(a)是是f(x)的极大值的情况的极大值的情况例例6 假定假定f(x)在在x=x0处具有直到处具有直到n阶的连续导数,且阶的连续导数

12、,且0)(,0)()()(0)(0)1(00 xfxfxfxfnn但但证明当证明当n为偶数时,为偶数时,f(x0)是是f(x)的极值的极值当当n为奇数时,为奇数时,f(x0)不是不是f(x)的极值的极值证证由由Taylor公式,得公式,得nnxxnfxfxf)(!)()()(0)(0 )(0之间之间与与在在xx 处处连连续续在在又又0)()(xxfn0)()(lim0)()(0 xfxfnnxx因此存在因此存在x0的一个小邻域,使在该邻域内的一个小邻域,使在该邻域内同号同号与与)()(0)()(xfxfnn同号同号与与)()(0)()(xffnn 下面来考察两种情形下面来考察两种情形n为奇数,

13、当为奇数,当x 渐增地经过渐增地经过x0时时nxx)(0 变号变号!)()(nfn 不变号不变号)()(0 xfxf 变号变号)(0 xf不是极值不是极值n为偶数,当为偶数,当x 渐增地经过渐增地经过x0时时nxx)(0 不变号不变号!)()(nfn 不变号不变号)()(0 xfxf 不变号不变号)(0 xf是极值是极值且当且当0)(0)(xfn时时)(0 xf是极小值是极小值0)(0)(xfn当当时时)(0 xf是极大值是极大值极值是函数的局部性概念极值是函数的局部性概念:极大值可能小于极小极大值可能小于极小值值,极小值可能大于极大值极小值可能大于极大值.驻点和不可导点统称为驻点和不可导点统

14、称为临界点临界点.函数的极值必在临界点取得函数的极值必在临界点取得.判别法判别法第一充分条件第一充分条件;第二充分条件第二充分条件;(注意使用条件注意使用条件)三、小结三、小结思考题思考题下命题正确吗?下命题正确吗?如如果果0 x为为)(xf的的极极小小值值点点,那那么么必必存存在在0 x的的某某邻邻域域,在在此此邻邻域域内内,)(xf在在0 x的的左左侧侧下下降降,而而在在0 x的的右右侧侧上上升升.思考题解答思考题解答不正确不正确例例 0,20),1sin2(2)(2xxxxxf当当0 x时,时,)0()(fxf)1sin2(2xx 0 于是于是0 x为为)(xf的极小值点的极小值点当当0 x时,时,当当0 x时时,,0)1sin2(2 xxx1cos在在1和和1之间振荡之间振荡因因而而)(xf在在0 x的的两两侧侧都都不不单单调调.故命题不成立故命题不成立xxxxf1cos)1sin2(2)(

展开阅读全文
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!