换热器管板与换热管焊接常见质量问题的防止

上传人:ch****o 文档编号:158840119 上传时间:2022-10-07 格式:DOC 页数:4 大小:31.01KB
收藏 版权申诉 举报 下载
换热器管板与换热管焊接常见质量问题的防止_第1页
第1页 / 共4页
换热器管板与换热管焊接常见质量问题的防止_第2页
第2页 / 共4页
换热器管板与换热管焊接常见质量问题的防止_第3页
第3页 / 共4页
资源描述:

《换热器管板与换热管焊接常见质量问题的防止》由会员分享,可在线阅读,更多相关《换热器管板与换热管焊接常见质量问题的防止(4页珍藏版)》请在装配图网上搜索。

1、换热器管板与换热管焊接常见质量问题的防止在化工生产设备中,换热器占很大比例,约占设备投资的20%40%;换热为化工最基本的单元操作,换热器完好与否对化工生产影响巨大。管壳式换热器因其结构坚固、适应性大、制造工艺成熟等优点成为主要化工换热设备。换热器由于处于受压、介质有腐蚀性、流动磨蚀,尤其是固定管板换热器,还有温差应力,管板与换热管连接处极易泄漏,导致换热器失效。目前,管板与换热管连接有3种方式:焊接、胀接、胀接加焊接。胀接有长久历史,已积累丰富经验,对管板变形等影响小,但制造工艺复杂,承受压力波动、温度变化差,在常见管壳式换热器应用已逐渐减少。胀接加焊接结构虽然克服胀接强度不够和焊接存在应力

2、腐蚀、破裂等缺点,但制造工艺更加复杂,且在制造过程中胀接和焊接过程会相互影响,难控制制作质量,成本高,仅用于特殊使用要求场合。而焊接因管板加工要求低,制造工艺简便,有较好紧密性,应用最为普遍。1、管板与换热管焊接常存在问题笔者所在单位是一家主要生产氮肥、液氨、有机胺化工产品兼有压力容器设计制造公司,有很多数量自制管壳式换热器,以前常发生换热器泄漏,尤其介质为循环水等水和有机物混合物的碳钢换热器泄漏频繁,给生产带来很大损失。经现场察看及与制造部门共同分析,主要原因是由于制造时容易忽视一些细节,管板与换热管焊接存在常见质量问题,其次水和有机物混合物有较强腐蚀也是促进因素。1.1焊接长度不符合规定制

3、造时管板加工坡口常偏小,例如普通换热管19x2、25x2国标规定I3须不小于2mm,32x2.5以上不小于25mm,当壁厚增加还须适当增大。而实际却达不到。另外普通换热管19x2、25x2伸出长度l1不小于15mm,压力高工况时伸出长度l2加长为25mm;32x25换热管伸出长度不小于25mm,压力高工况时伸出长度l2加强长达30mm。而实际由于组装、下料控制不好等因素,甚至有些焊工焊接习惯原因,也经常达不到所要求尺寸。这样焊接长度必然小于规定要求,其承载能力下降,GB151计算采用拉脱应力q=ta/dl虽在设计合格,在实际却可能超标。1.2 焊接前处理方法不好导致焊接质量差在制造过程中常见碳

4、钢换热管管头清理不净或管头清理后较长时间未组装又生锈;管板加工后长时间放置生锈或涂油防锈,组装后均难清理,从而导致焊肉中杂质多。1.3 焊接方法不当导致质量差采用手工电弧焊时,引弧和熄弧直接在连接的角焊缝上,管板垂直位置焊接,焊缝一次成形,都较易导致夹渣和气孔。2、分析和措施换热管和管板焊接接头受载较特殊,除了受管程和壳程压力差外,还有管板变形,特别固定管板换热器还有温差应力、角焊接头本身具有应力集中,存在焊接热应力,虽有自限性,但管板为密集开孔,焊接热影响大,应力集中点多,微裂纹产生可能性大。制造时虽有一段时间超压试验检漏,但在实际使用中,承受管程和壳程升卸压等压力波动和温度不同变化,焊接产

5、生的气孔、夹渣、微裂纹在类似疲劳载荷作用下,会迅速扩展,造成泄漏,特别当焊缝厚度薄时,承受能力更为不足。我公司曾有一台固定管板换热器在使用一个月后停车检修,修补试漏合格开车又泄漏,连续多次,不断有新的换热器和管板焊接接头漏点出现。针对上述情况,我们采用合理的加工工艺和时间安排:首先,管板加工时间紧接在换热器组装前,孔加工坡口尺寸到位;换热管打磨管头后立即及时组装,并检查伸出长度,不合格者调整更换;将换热器吊立,(可在车间地面挖建深井,便于换热器放置),管板水平放置,对U型管束可支撑其管板,尽量使管板接近水平。在焊前用钢丝刷清理,压缩空气吹净等方法使见金属光泽。在焊接过程中,采用合理焊接工艺和速

6、度,使每根焊条焊完整个管的焊缝后在四孔中间三角区引弧和熄弧;对于碳钢换热器采用双道焊接:先将管板和换热管先焊接一道,然后,用钢丝刷等清理干净,根据现场情况采用试压检查或着色等方法检查,有经验也可直接肉眼检查。对漏点和裂纹要打磨掉后补焊。所有完成后再焊接一道。通过双道焊接,焊接接头尺寸达到设计要求;通过中间检查,有效地消除了焊接缺陷,从而保证换热器和管板焊接接头质量。对于一些耐蚀性能好的不锈钢材质且采用氩弧焊等来保证焊缝质量的换热器,则可视情况采用一道或二道焊接,但也采用合理焊接工艺和速度来充分保证焊接接头尺寸。经过上述措施后,有效提高换热器和管板焊接接头的质量,近几年来我公司制造的管壳式换热器

7、在使用中没有出现管板泄漏事故,节省了维修费用,减少生产损失。管壳式换热器尤其固定管板式换热器中管板和换热管焊接接头受载复杂,焊接缺陷极易诱发扩展,兼有的化工介质又易腐蚀;管壳式换热器本身在制造中工序多,要求高,有些方面常被忽视,容易产生缺陷,在次数少的超压检验难发现,应在制造中采用正确方法,保证焊接质量。尤其对于一些使用环境差、要求高的换热器,特别碳钢材质换热器,采用特殊的制造工艺,如双道焊接,中间检查等,可以大大提高换热器质量,满足苛刻使用要求。管壳式换热器泄漏原因分析及改进设计思路摘要:分析管壳式换热器的泄漏现象,提出折流板与铜管之间存在微小间隙,在压缩空气的冲刷下,两者之间频繁的碰撞和摩

8、擦,导致铜管壁破裂泄漏。文章还提出了在铜管与管板之间增加耐磨的聚四氟乙烯套管,来保护换热铜管的设计思路。关键词:管壳式换热器;泄漏;分析;改进设计中图分类号:TK172 文献标识码:B1 故障现象压缩空气是卷烟生产企业的必要动力之一,淮阴卷烟厂动力中心站房内安装使用压空设备是4台水冷式BOGE SO340无油螺杆空压机。设备于2001年投用,状态一直比较平稳,但近期却多次发生冷却器内漏的情况。其中一台冷却器漏水,由于发现不及时,导致冷却水进入了压缩机腔体,造成级转子抱死的严重情况,由于故障出现的较有规律性,因此对其进行了相关的调查和分析,并提出了一些改进建议,供同行借鉴。2 泄漏原因调查(1)

9、冷却器的基本结构及有关参数BOGE SO340无油螺杆空压机为两级压缩,配置的冷却器为两回程管壳式换热器(结构见图1),冷却水走管程,压缩空气走壳程,换热器主要部件为紫铜管,管径8 mm,壁厚1 mm,共计232根换热管。 冷却器中冷却水进口温度在2532之间(冬夏季有所差异),出口温度小于38 ,压缩空气出口温度在180195之间,I级压缩出口压力在2 bar左右,级出口压力在7075 bar之间。(2)故障调查通过对发生泄漏的4台换热器进行检漏,发现泄漏点多分布在换热器上部,即靠近压缩空气进口侧位置(如图1所示),共计有5处漏点,其中1位置处有2根管有漏点,2位置处有2根管有漏点,3位置处

10、有1根管有漏点。进一步检查发现,漏点基本都分布在折流板与铜管接触的地方,5处漏点中有3处为局部穿孔泄漏,2处为局部裂纹泄漏,用手对换热铜管施加外力,发现上部的铜管有轻微的松动,铜管与折流板之间有擦痕,下部的铜管无此现象。3 泄漏原因分析(1)发生泄漏的部位多发生在冷却器的上部,此处是压缩空气出口与换热器接触的位置。由于压缩空气的出口温度(180195)较高,因此换热器上部的铜管外壁温度也最高,机组长期运行特别是重载运行的时候,容易造成铜管受热,机械强度下降。但管壳式换热器的结构形式决定了这种情况是难以克服的。具体机械强度的影响有多大,难以准确判断,这里只能作定性分析。笔者认为对于本案例,这只是

11、导致泄漏的一个次要原因。(2)管壳式换热器在加工工艺中,换热铜管被穿过两头的管板和中间的折流板,然后用机械涨管的方法将铜管与管板固定。折流板和铜管之间为了穿管方便,一般折流板的孔洞都会留有公差配合,这就使得折流板与铜管之间存在一定的间隙(见图2),也就是说折流板和铜管之间实际上是松动的。当空压机重载运行时,被压缩的高温(180195)高速(查设备手册,压缩空气出口速度在106 ms)空气进入换热器后持续的冲刷铜管,由于铜管两端是固定的,压缩空气的冲击力作用在铜管上,导致铜管受力扰动变形;当空压机空载运行时,空气进口阀门关闭,没有压缩空气进入冷却器,铜管的受力消失,铜管恢复原状;当空压机频繁加卸

12、载时,铜管就会交替出现受力变形和恢复原状的变化过程,这就会引起铜管与折流板之间的不停的碰撞和摩擦。长时间的刚性碰撞和摩擦导致与折流板接触部位的铜管壁逐渐变薄,从而导致局部穿孔或裂缝,使泄漏现象产生。因此折流板与铜管之间碰撞、摩擦是造成换热管局部泄漏的主要原因。4改进设计思路通过上面分析,我们知道折流板与铜管接触的地方是受力比较集中的地方,其刚性的碰撞和摩擦是导致泄漏的主要原因,因此解决泄漏问题的关键是降低或避免折流板和铜管之间的刚性接触。根据上述思路,本文提出在换热铜管与折流板接触的地方增加一层耐摩擦的保护套管的设计思路,一方面可以将折流板与铜管隔离开来(见图3),减少了金属之间的直接接触,另外由于保护套管为塑性材料,也可以减少铜管和折流板之间的间隙,从而实现保护换热铜管的目的。在加工工艺上,宜对折流板的孔洞做倒角钝化处理,以减少其棱边对保护套管的摩擦。在套管材料的选择上,可以考虑用聚四氟乙烯材料,因为其满足了以下一些条件:(I)具有足够的强度和耐磨性,能够满足正常使用的需要;(2)能够耐受高温,在冷却水断水的极限情况下,铜管壁温度可能达到200oC,而聚四氟乙烯材料可以在250oC以下温度时保证强度和性能不下降;(3)成型性好,加工方便。综匕所述,采用套管保护的方法在技术上是可行的,可作为管壳式换热器的一种改进设计方法加以参考

展开阅读全文
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!