欢迎来到装配图网! | 帮助中心 装配图网zhuangpeitu.com!
装配图网
ImageVerifierCode 换一换
首页 装配图网 > 资源分类 > DOC文档下载
 

塔吊专项施工方案

  • 资源ID:80645765       资源大小:846.50KB        全文页数:29页
  • 资源格式: DOC        下载积分:10积分
快捷下载 游客一键下载
会员登录下载
微信登录下载
三方登录下载: 微信开放平台登录 支付宝登录   QQ登录   微博登录  
二维码
微信扫一扫登录
下载资源需要10积分
邮箱/手机:
温馨提示:
用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
支付方式: 支付宝    微信支付   
验证码:   换一换

 
账号:
密码:
验证码:   换一换
  忘记密码?
    
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

塔吊专项施工方案

XXXXXXXXXX工程 塔吊专项施工方案塔吊专项施工方案一、工程概况工程名称:XXX建设单位:XXX指挥部设计单位:XXX设计研究总院勘察单位:XXX勘察分院施工单位:XX建设股份有限公司XXX地块位于XXX南路东侧、桥闸路以北地块,东侧为海门河,北侧为同步施工的XXX地块。由1幢27层主楼及相应3层裙房组成。本单位承包施工段为该工程的C幢楼及1/14轴-26轴×A轴-H轴范围地下室与自行车集中停放夹层区段。框架结构。该工程±0.000为绝对高程5.250m。场地东侧地面自然测量标高为-1.250 m,南侧地面自然测量标高为0.850 m,西侧地面自然测量标高为-0.700 m。西侧即市区市政通车主道路。本地块周边为裙房,地下室板面标高为-8.600m,板厚500 mm,板下设100厚素混凝土垫层和150厚碎石垫层,基坑周边均为单桩承台,承台高度为1200 mm,承台底标高为10.05m;基坑周边地梁均为上翻梁,梁底标高与板底标高均为-9.350m;主楼位于基坑中部。地下室板面标高为-9.500m,板厚500 ,下设100厚素混凝土垫层和150厚碎石垫层;主楼板底标高为-10.250m。(一)、地质条件依据XXX勘察研究院XXX地块岩土工程勘察报告,该场地基坑开挖影响深度范围内的土层分布大致如下:(1)、1层杂填土:成份杂,主要由碎石、块石及碎砖、灰渣等建筑垃圾组成,局部有旧基础,土质松散、不均。层厚0.4-1.8m;(2)、2层粘土:灰黄色,可塑,中压缩性。层厚0.9-2.2m;(3)、3-1层淤泥质粘土:浅灰色,流塑,高压缩性。层厚0.8-2.9m;(4)、3-2层淤泥:灰色,流塑,高压缩性,含有机质。层厚4.0-12.2m;(5)、3-3层淤泥质粘土:灰色,流塑,高压缩性。层厚0.6-3.3m;(6)、3-3a层含粘性土砾砂:灰色,松散,饱和,土质不均。层厚0.6-4.2m;(7)、4-1层含角砾粘性土:灰色,松散,密度上部差。层厚1.1-2.9m;(8)、4-2层含粘性土角砾:浅灰色、灰兰色、灰黄色,一般中密,局部密实。层厚0.6-3.7m;(9)、5层全风化基岩:一般灰绿色,中下部为黄褐色,原岩为凝灰岩,一般具有原岩结构,部分风化彻底,成土状,局部上部为残坡积土。层厚0.8-8.8m;(10)、6层强风化基岩:灰色、灰褐色、灰白色,原岩为凝灰岩,碎块状构造,岩性较差,易崩解,遇水易软化。层厚0.8-11.50m;(11)、7-1层为中强风化基岩。层厚0.8-8.40m;场地地下水埋深较浅,根据勘察报告地下水埋深为地表下绝对高程2.94-3.42m,主要接受大气降水和地表水渗入补给;坑底土层3-1、3-2、3-3层土体灵敏度高,抗剪强度低,触变后强度损失大,易流变,基坑开挖时易造成坑壁失稳、坑底涌土、地面沉陷等现象。基坑开挖影响深度范围内地基土层的物理力学指标详下表:层号土层名称厚度重度(KN/m3)含水率(%)固结快剪指标渗透系数(cm/s)C(Kpa)(·)水平垂直1杂填土0.41.8(18.0)(10.0)(10.0)2粘土0.92.219.232.817.913.81.30E-81.17E-83-1淤泥质粘土0.82.917.448.510.210.24.78E-83.36E-83-2淤泥4.012.216.558.28.05.04.14E-81.17E-63-3淤泥质粘土0.63.317.447.711.010.83-3a含粘性土砾砂0.64.219.528.5(20)(25)4-1含角砾粘性土1.12.919.519.2(30)(25)4-2含粘性土角砾0.63.720.0(40)(30)5全风化基岩0.88.820.0(50)(35)6强风化基岩0.811.522.0(100)(60)7-1中强风化基岩0.88.422.0(100)(60)土层参数取自勘察报告(括号内数值为经验值)土层分布见附图塔吊桩土层示意图。(二)、塔吊基础布置本工程拟用ZJ5311型塔式起重机,考虑到周围建筑的限制及塔吊自身臂工作范围的影响,现将塔吊布置于C-A×C-9轴之间,43勘察点附近,以下计算均以43勘察孔作为参数依据。见附图塔吊桩定位图。(三)、塔吊基础形式塔吊基础采用C30钢筋混凝土承台,配4根800人工挖孔灌注桩,桩底到达7-1层为中强风化基岩中等风化凝灰岩。桩身采用C30混凝土,内配主筋1020,钢筋保护层50mm。螺旋筋8150/200(在承台下5000范围内为 8150)。加劲箍 122000。塔吊桩基穿过双层地下室,为高承台桩基。(四)、基础施工塔吊桩基采用人工挖孔灌注桩法成桩,施工完毕后凿除护筒下600mm范围内混凝土。桩基础深入承台100mm,具体做法见附图。桩孔灌注桩在穿过地下室底板时,底板留后浇施工洞口(5200×5200mm2),施工洞口周侧设3mm钢板止水带,具体做法如附图所示。后浇洞位置垫层采用150厚C20混凝土。后浇洞口位置待塔吊拆除后采用C40防水混凝土浇捣(底板设计为C35)。(五)、塔基沉降控制塔吊承台四围设4个沉降观测点,在主体楼层施工过程中控制观测塔吊沉降。塔基允许沉降差为6mm,垂直度偏差2(六)、塔吊基础设计依据 1.建筑地基基础设计规范(500072002) 2.混凝土结构设计规范(GB500102002) 3.建筑结构可靠度设计统一标准(GB500682001) 4.公路桥涵设计规范(JTJ02189、JTJ02285、JTJ02385、JTJ02485,JTJ02586) 5.建筑桩基技术规范JGJ9494二、承台抗倾覆验算一、确定和载荷计算图式承台自重N1=1.2×25.1×5.2×5.2×1.0=814.44KN塔吊独立高度:40.5m,实际施工按32m考虑,房屋总高度90米,增加爬升降及顶面范围空间,考虑顶升高度约束共计附着高度99米。共增加标准节:N=19.5取20节(其中标准节高度按说明书之3米取)增加的标准节及附着架总重:N2=1.2×(20×780×9.8×10-3+2×910×9.8×10-3)=204.86KN。其中标准节重780kg/节,附着910kg/副,按2副考虑。这样考虑是偏于安全的,因为423.00+204.86=627.86KN为附着状态对应说明书中表明100m高度时552KN。 特别指出:本例塔吊说明书提供的塔吊荷载取值为非工作状况的限值亦即可作为极限承载力状态下验算的最大值,一般情况下,可只计算非工作状况,况且本例说明书未提供工作状况下荷载取值。因此,可只按下表(摘录)验算: 载 荷工况H(KN)N(KN)M(KN.M)MN(KN.M)非工作状况71.00423.001575.000.0二、塔吊基础抗倾覆验算 1) 塔吊最不利位置:2) 抗倾覆验算M倾=M+Hh=1575+71×1.0=1646.00 KN.MM抗=N×=(423.00+814.44)×=3325.01KN.M安全系数k=2.020F2=-X+=-×5.374+=105.328KN>0满足要求三、高承台桩基验算(按JGJ94-94附录B计算)一.确定基本设计参数: 1)地基土水平抗力系数的比例系数m hm =2×(d+1)=2×(0.8+1)=3.6m该深度范围起算高程-5.100,由2.08m厚淤泥及1.52m厚含粘性土角砾组成。m=×0.4=9.894MN/m4其中0.4系数为长期水平荷载所成系数。 2)桩底面地基土竖向抗力系数的比例系数m0 近似取 m0=9.894MN/m43)桩身抗弯刚度EI 钢筋混凝土弹性模量比e=6.667 桩身配筋率 g=0.625 扣除保护层后桩直径值 d0=0.8-0.05×2=0.7m 桩身换算截面受拉边缘的截面模量 W0=d2+2(E-1)g d02= =0.0530m3桩身换算截面惯性矩 I0=0.0212m4桩身抗弯刚度 EI=0.85EcIo=0.85×3.0×104×0.0212=540.60MN.m24)桩的水平变形系数桩身计算 bo=0.9×(1.5d+0.5)=0.9×(1.5×0.8+0.5)=1.530m桩的水平变形系数 =0.489m-15)桩身轴向压力传布系数N取N=16)桩底面地基土竖向抗力系数C0桩入土深度h=6.78m桩底面地基土竖向抗力系数C0=m0×h=9.894×6.78=67.081MN/m3基本设计参数m(MN/m4)EI(MN.m2)(m-1)NCR(MN/m3)9.894540.600.489167.081 二.单位力作用于桩身地面处,桩身在该处产生的变位1)单位力H0下水平位移HH h=y=0.489×4.65=2.27385m(其中y取桩顶以下至地下室基础垫层高度,安全储备lx=0.45m,因此y=4.20+0.45=4.65m)根据JGJ94-94附录B表B-5(参考表B-3附准)HH=× =×2.12386=0.03360m/MN(查表B-6得=2.12386)2)单位力H0下转角 HH=×=×6.5603=0.01207MN-13)单位力M0下水平位移HM HM=HH=0.01207 MN-14)单位力M0转角MM HM=×=×1.6787=0.00635 MN-1. m-1单位力作用于桩身地面处,桩身在该处产生的变位HH(m/MN)MH(MN-1)HM(MN-1)MM(MN-1. m-1)0.03360.012070.012070.00635三.求单位力作用于桩顶时,桩顶产生的变位1)单位力Hi下水平位移HHHH =+MMl02+2MH l0+HH=+0.00635×4.652+2×0.01207×4.65+0.0336=0.3451m/MN2)单位力Hi下转角MHMH =+MMl0+MH=+0.00635×4.65+0.0108=0.0603 m-13)单位力Mi下的水平位移HMHM =MH =0.0603m-14)单位力Mi下,转角MMMM = +MM=+0.00635=0.0150 MN-1单位力作用于桩顶处,桩身在该处产生的变位HH(m/MN)MH(m-1)HM(m-1)MM(MN-1)0.34510.06030.06030.0150四.求桩顶发生单位变位时,桩顶引起的内力 1)发生单位竖向位移时,桩顶引起的内力NNNN=32.734MN/m2)发生单位水平位移时,桩顶引起的水平力HHHH=9.7377MN/m3)发生单位水平位移时,桩顶引起的弯矩MHMH=39.1454 MN4)发生单位转角时,桩顶引起的水平力HM=MH=39.1454MN5)发生单位转角时,桩顶引起的弯矩MM=224.0313 MN.m桩顶发生单位变位时,桩顶引起的内力NN (MN/m)HH(MN/m)MH(MN)HM (MN)MM (MN.m)32.7349.737739.145439.1454224.0313五.求承台发生单位变位时,所有桩顶引起的反力和位移(1)单位竖直位移时引起的竖向反力vvvv=n×NN=4×32.734=130.936MN/m(2)单位水平位移时引起的水平反力=n×HH=4×9.7377=38.9508MN/m(3)单位水平位移时引起的反弯矩=- n×MH=-4×39.1454=-156.5816 MN(4)单位单位转角时引起的水平反力=-156.5816 MN(5)单位转角时引起的反弯矩= nMM+NNkixi2=4×224.0313+32.734×(1×2.6872 ) ×2=1365.64 MN.m承台发生单位变位时,所有桩顶引起的反力和位移vv(MN/m)(MN/m)(MN)(MN)(MN.m)130.93638.9508-156.5816-156.58161365.64六.求承台变位1)竖向位移V2=0.00945(非工作状况)2)水平位移2=0.0122m (非工作状况)3)转角2= =0.00536 (非工作状况)承台变位变位V(m)(m)(rad)非工作状况0.09450.01220.0025七.求任一基桩桩顶内力1)竖向力N2=(v+)+nn =(0.00945+0.0025×2.687) ×32.734 (非工作状况) =0.52923MN2)水平力 H2=0.01775MN3)弯矩 M1=MM-MH =0.00536×144.014-0.0261×23.852 (非工作状况)=0.1494MN.m基桩桩顶内力内力N(MN)H(MN)M(MN.m)非工作状况0.529230.017750.0825八.求地面处桩身截面上的内力 1)水平力H0 H02= Hi=0.01775MN (非工作状况) 2)弯矩M0M01=M+Hl0=0.0825+0.01775×4.65=0.1650MN.m(非工作状况)基桩桩顶内力内力H0 (MN)M0 (MN.m)非工作状况0.017750.1650九.求桩身最大弯矩及内力位置C12=4.5456(非工作状况)由=0.489×6.78=3.31542 查表得: h=y= 0.6-4.821+×(5.403-4.821)-3.141+×(3.597-3.141)-1×(0.6-0.5) 4.4546-3.141+×(3.597-3.141)= 0.542 (非作工作状况)桩身最大弯矩位置Y2MAX=1.108(非工作状况)查表得:C112=1.059+ =1.082 (非工作状况)桩身最大弯矩Mmax2=M0CH=0.1650×1.082=0.1785MN.m (非工作状况)十. 桩身控制界面内力 桩身控制截面内力内力工况M(MN.m)N(MN)V (MN)非工作状况0.17850.7450.01775N2=rAh+N+.X=0.025×0.25××0.82×1.108+0.529+=0.745MN(其中r为容重)四、桩基础承载力验算一.单桩承载力验算Qk=+s.frc.hr+p.frc.Ap(建筑桩基技术规范第5.2.11.1-4计算)=×0.8×(5×2.08+30×2.8×0.8+55×1.4×0.7+0.0325×0.5×15.66×103) ×0.9+0.25××0.82×2.8×103×0.4095=2003.75KN(frc为岩石饱和单轴抗压强度标准值按地质勘探报告第十一页表3取15.66×103Mpas、p按表5.2.11插入法计算为s=0.0325、p=0.455 ×0.9=0.4095,施工工艺系数0.9)取rsp=1.67则Q=1212.58 kN因为Nmax=745kN<Q满足要求r0N=0.9×0.745=0.6705MNR=spQk/rsp =1.0×2025.01/1.67=1212.58KN由于r0N<R(建筑桩基技术规范第5.2.15-1)满足要求负摩阻力引起下拉荷载载效应(建筑桩基技术规范第5.2.15.2)r0 (N+1.27Qgn)Qgn=n(建筑桩基技术规范第5.2.16.5)n=saxsay/d(+)(建筑桩基技术规范第5.2.16.6)=n i=riZi(建筑桩基技术规范第5.2.16.1-2)则=0.15×1.65×+0.25×1.92×(1.4+2.08)=1.928KN/m2n=3.82/×0.8× =4.60>1取n=1Qgn=1××0.8×1.928=4.846KN r0 N+1.27Qgn =0.9×0.745+1.27×0.0048=0.675MN1.6R=1.6×spQ/rsp=1.6×1.2126=1.940MN由于 r0 (N+1.27Qgn)<1.6R满足要求二.桩身承载力验算1) 桩身轴向力验算 r0 N=0.9×0.745=0.6705MNc.fcA=0.8×14.3×0.25×3.14×0.82=5.75MNr0 N=0.6705< fcA=5.75MN满足要求2)桩身水平力验算r0 H=0.9×0.01775=0.01598MNhd2(1+) (JGJ94-94第4.1.1.2)=40×10-3×0.82×(1+)=0.0343MNr0 H=0.01598MN<hd2(1+)=0.0343MN满足要求3)桩身承载力验算(1) 桩身计算长度(以表5 5.3-2取)lc=0.7(lc+)=0.7×(4.65+)=8.98m(2)桩身稳定性验算=11.226查表得:=0.935 0.9( fcA+ fyAs) (GB50010-2002第7.3.1)=0.9×0.93×(14.3×0.25××0.82+300×0.00314)=6.805MNNmax=0.745MN<0.9( fcA+ fyAs)=6.805MN满足要求(2) 桩身正截面承载力验算(GB50010-2002第7.3.8-27.3.10-3) 非工作状况 m=20.979s=×100%=0.625%n=0.098=1+0.75ms 0.5=1+0.75×20.979×0.625%-0.5=0.3398t=1.25-2=1.25-2×0.3398=0.570+= +=0.368+0.036=0.404MNe0=0.242ea=0.026>0.02取ea=0.02mei= e0+ ea=0.242+0.02=0.262m 取=1取1= = =1.269ei=1.269×0.274=0.348mNei=0.745×0.348=0.260MN.m Nei=0.260 MN.m<满足要求(3)桩身斜截面承载力验算(GB50010-2002第7.5.12)非工作状况下取30.3=0.3×14.3×0.503=2.158>0.709MN取N=0.709=0.2819+0.099+0.050=0.3700MNV=0.01775MN<桩身斜载面承载力满足要求 五、塔吊承台基础验算一、角桩对承台的冲切验算(GB50007-2002第8.5.17-57) 1、桩截面换算:b=0.8d=0.8×800=640mm 2、冲切力:Fl=N桩反力- 3、角桩冲跨比: 4、角桩冲切系数: 5、受冲切承载力截面高度影响系数:以插入法求得hp=0.983 6、承台抗冲切力) =2×0.501×(0.3+)×0.983×1.43×0.85 =0.826MN Fl=0.542<F抗0.826MN满足要求二、塔吊基础对承台的冲切验算(GB50007-2002第8.5.17-14) 1、冲跨比 2、冲跨系数 3、抗冲切力 =2×0.751×(1.6+6.103) ×2×0.983×1.43×0.85=9.702MN4、冲切力(以附着最大荷重对应状态考虑)Fl=N塔吊+N标准节=0.628×1.2=0.754MN Fl=0.754MN<F抗9.702 MN满足要求三、斜截面承载力验算(GB50007-2002第8.5.18-12) 1、剪跨比 2、剪切系数 3、受剪切承载力截面高度影响系数 4、斜截面抗剪承载力 V抗=hsftbh0=0.985×0.959×1.43×5.2×0.85=5.970MNV<2Nmax=2×0.745=1.49MN V<2Nmax=1.49< V抗=5.970MN满足要求四、正截面承载力验算 1、控制内力Mimax<2Nmaxi=2×0.745×(0.4+0.7)=1.639MN.m 2、抗弯承载力 根据塔吊说明书要求配置上下纵横各配置2720则:M抗=fyAsrsh0=300×27×0.25××202×0.9×0.85×10-6=1.947MN.m M=1.639MN.m <M抗=1.947MN.m满足要求五、正常使用极限状态验算(一)、裂缝控制验算:使用环境按一类考虑,按荷载效应的标准组合计算的弯矩Mk=2×Nmax.Xi=1.314裂缝限值wlim=0.3mm (根据GB50010-2002 3.3.4条确定)GB50010-2002 8.1.2条:Wmax=acr 式中:acr构件受力特征系数取2.1 裂缝间受拉钢筋应变不均匀系数:(有效要求混凝土截面面积取桩距,纵向受拉钢筋按桩距内根距确定)=1.1-0.65 =1.1-0.65=1.1-0.65×其中满足配筋强度要求则=1.1-0.65×C最外层纵向受控制钢筋外进缘至受拉区底边的距离:C=100mm>65mm,则取c=65mmEs钢筋弹性模量 Es=2.0×105N/mm2 则: =0.340mm>wlim=0.300mm为此,提高钢筋强度等级或减少间距,本例拟采用20150双层双向可满足裂缝控制要求(计算略)(二)、受弯构件挠度验算(GB50010-2002 8.2.25)条短期刚度Bs=式中:钢筋弹性模量 =受拉区纵向非预应力钢筋截面面积(同裂缝验算数值) (同裂缝验算数值) 弹性模量比纵向受拉钢筋配筋率受压翼缘截面面积与腹板有效截面面积的比值则考虑荷载长期效应组合对挠度影响系数Q的计算。压配筋率等于拉配筋率:Q=1.6长期刚度Bl:其中:按荷载效应的标准组合计算的弯矩,=1.314MN.m按荷载效应的准永久组合计算的弯矩,= 1.282MN.m则: =1.3401015挠度 = =1.47mm<f= 满足要求六、关于-10.150m后增止水板的设计:底板区格为矩型双向板底板受冲切所需要的厚度:ho=0.21m,其中P=9.8KN/m3×6m=58.8 KN/m2,取ln1= ln2=3.8m,地下水位为地下室回填土后的承压土水头压力,本例中水位在高程3米,经抽排后估计为1米位置,所以测算高度为6米。由于未考虑板自身荷载的影响,因此本例取板厚度为250,ho=220,底板受冲切承载力:Fl=(3.8-×2)2×58.8=749.4kN0.7bhpftmmho=0.7×1×1.43×3570×4×230=3.2877×106kN则由于Fl<0.7bhpftmm所以满足要求。底板斜截面受剪承载力:VS=×58.8=187.35kN0.7bhpft(ln1-2ho)ho=0.7×1×1.43×(3800-2×230)×230=0.769×106kN经过以上计算,现取150,部分由其底垫层承担可满足要求。七、关于顶升塔吊附墙架的复核计算一、主要计算软件:SM Solver 1.5版本 主要参考:GB5009-2001结构荷载规范、钢结构设计规范(GB50017-2003)、施工手册(第四版)二、计算参数:工作风压按250N/,基本风压按350N/,三、各个状态下受力计算如下;1、工作状态下X-X轴各内力图:受力简图(m,KN/m,KN.m)剪力图(KN)弯矩图(KN.M)2、工作状态下Y-Y轴各内力图:受力简图(m,KN,KN.m)弯矩图(KN.M)剪力图(KN)3、非起重状态下对角线轴顺分方向各内力图受力简图(m,KN/m,KN.m)剪力图(KN)弯矩图(KN.M)4、非起重状态下对角线轴逆风方向各内力图弯矩图(KN.M)剪力图(KN)5、工作状况下杆件1及8受力计算:弯矩图(KN.M)剪力图(KN)轴力图(KN)6、工作状况下杆件5及7受力计算:弯矩图(KN.M)剪力图(KN)轴力图(KN)7、非工作状况下顺风向时杆件5及7受力计算:轴力图(KN)8、非工作状况下逆风向时杆件1及8受力计算:轴力图(KN)9、经过以上计算,得到各最顶部附墙杆的计算截面的轴力最大值(编号见受力分析图):杆件1:F1=139.95KN, 杆件5:F5=293.45KN, 杆件7:F7=114.34KN,杆件8:F8=126.43KN,撑杆调整螺丝按F68Q345钢主柄长度1000,撑杆为F168计算长度扣减:选取杆件1作长臂验算其轴心抗压稳定性:1.606K1=0.103查表得:m2=2.213m1=1.378因此,l0X=l0y=1000×1.378×1.136=1565.408l=<l=150N/mm2l92.137×72.374查表C-1得j=0.823=46.82<250 N/mm2满足要求!选取杆件5作短臂验算其轴心抗压稳定性:4.097K1=0.040查表得:m2=5.823m1=1.421因此,l0X=l0y=1000×1.421×1.256=1784.78l=<l=150l105.00×82.48查表C-1得j=0.767=105.35<250 N/mm2满足要求!10、撑脚锚栓设计 1、基础设计参数: 弯矩 M: 0 KN.M 轴力 N: 408.57KN(为简化按293.45+115.12 KN) 底板长 L: 700 mm 底板宽 B: 300 mm 锚栓至边距离 d: 650 mm 混凝土等级: C25 2、选用锚栓: 锚栓大小 : M24 单侧锚栓颗数 : 3 颗 锚栓材质 : Q345 3、计算结果: 最大压应力 max=N/(B×L)+6×M/(B×L2)= 1.94N/mm2 最小压应力 min=N/(B×L)-6×M/(B×L2)= 1.94 N/mm2 压应力分布长度e=max/(max+|min|)×L= 350 mm 压应力合力至锚栓距离 x=d-e/3= 533.33 mm 压应力合力至轴心压力距离 a=L/2-e/3= 233.33 mm 锚栓所受最大拉力 Nt=(M-N×a)/x=-178.74 KN 4、验算结果: 锚栓所受最大拉力 Nt = -178.74KN < 3Ntk= 3* 63.5= 190.5 KN Ok! 底板边缘混凝土最大压应力 max = 1.94 < fcc= 12.5 满足要求! 总结: 经过上述的简化计算,表明了塔吊附墙架不需要进行加强加固!本方案在执行过程中应重点控制以下内容:1、 强调技术交底;2、 人孔挖孔灌注桩非原则上可参考经批准的XXX公司编制的人孔挖孔灌注桩专项施工方案,并应符合建筑桩基技术规范JGJ9494、满足施工工艺的安全性、可靠性。3、 塔吊安装按本项目部编制的塔吊装拆方案进行,附墙架的位置按实际租赁装拆单位结合工期进度与现场条件可作合理调整。4、 地下室底板在桩基区域内的后浇部分应提高一级混凝土强度等级并掺入适量补偿收缩外加剂。完附图从下页开始编制人2006年11月18日29

注意事项

本文(塔吊专项施工方案)为本站会员(无***)主动上传,装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知装配图网(点击联系客服),我们立即给予删除!

温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!