西南大学21秋《工程力学》基础平时作业一参考答案71

上传人:住在****她 文档编号:92332555 上传时间:2022-05-18 格式:DOCX 页数:23 大小:26KB
收藏 版权申诉 举报 下载
西南大学21秋《工程力学》基础平时作业一参考答案71_第1页
第1页 / 共23页
西南大学21秋《工程力学》基础平时作业一参考答案71_第2页
第2页 / 共23页
西南大学21秋《工程力学》基础平时作业一参考答案71_第3页
第3页 / 共23页
资源描述:

《西南大学21秋《工程力学》基础平时作业一参考答案71》由会员分享,可在线阅读,更多相关《西南大学21秋《工程力学》基础平时作业一参考答案71(23页珍藏版)》请在装配图网上搜索。

1、西南大学21秋工程力学基础平时作业一参考答案1. 矿井升降机的罐笼质量6000kg,以速度v=12ms下降。若吊起罐笼的钢绳突然断裂。试问欲使罐笼在s=10m矿井升降机的罐笼质量6000kg,以速度v=12ms下降。若吊起罐笼的钢绳突然断裂。试问欲使罐笼在s=10m的路程内停止,安全装置应在矿井壁与罐笼间产生多大的摩擦力?(摩擦力可视为常量)正确答案:钢绳突然断裂罐笼开始坠落时的初动能EKJ=v2罐笼停止下落时末动能Ek2=0坠落过程中重力作正功mgs摩擦力F作负功W12=mgsFs代入动能定理Ek2一Ek1=W12得0一mv2=mgs一Fs罐笼与矿井壁间的摩擦力钢绳突然断裂,罐笼开始坠落时的

2、初动能EKJ=v2,罐笼停止下落时,末动能Ek2=0,坠落过程中,重力作正功mgs,摩擦力F作负功W12=mgsFs,代入动能定理Ek2一Ek1=W12得0一mv2=mgs一Fs罐笼与矿井壁间的摩擦力2. 动力学普遍方程中应包括内力的虚功吗?动力学普遍方程中应包括内力的虚功吗?动力学普遍方程不应计入内力的虚功。3. 某一空气动力计算中,允许压强的相对误差p1.5%,对于15的空气流,其速度值在多大以下方可按不可压缩流体处某一空气动力计算中,允许压强的相对误差p1.5%,对于15的空气流,其速度值在多大以下方可按不可压缩流体处理,并求此条件下的密度变化。由,当p1.5%时 又声速 则 =Mac0

3、.245340.1783.34(m/s) 4. 设两个均匀介质的界面是个平面,这两个介质的介电常数和磁导率分别为1、2和2、0,在介质1中有一平面单色电设两个均匀介质的界面是个平面,这两个介质的介电常数和磁导率分别为1、2和2、0,在介质1中有一平面单色电磁波沿垂直于界面的方向入射,其电场的振幅为E0,频率为,求:(1) 此电磁波的反射系数R及折射系数T,证明R+T=1;(2) 在介质1中距界面为,处的总电场,1是电磁波在介质1中的波长;(3) 在介质1中距界面为,处的能流密度。(1)如图所示, 设入射波、反射波、折射波的场量及波矢分别为 E1,H1,K1;E2,H2,E3;E3,H3,K3

4、并假定电场方向垂直于入射面,由边值关系 n(E2-E1)=0,n(H2-H1)= 得 E1+E2=E3 H1-H2=H3 又由于B=0H,于是、式化简为 B1-B2=B3 解得振幅幅关系为 , 垂直入射时,反射系数 式中 ,是两种介质的折射率。 折射系数 由、式,可得 (2) 入射波可表示为 , 反射波 根据式,有 (11) 由、(11)三式,得介质1中总电场为 当 时,k1z=3,代入上式并用实数表示 (12) (3) 介质1中入射波、反射波的磁场分别为 将代入取实部,得总磁场为 (13) 此处的能流密度为 平均能流密度为 5. 一台汽油机的压缩比为9,压缩前气体的参数为90kPa、290K

5、,循环的最高温度为1800K,假定循环按定容加热理想循环一台汽油机的压缩比为9,压缩前气体的参数为90kPa、290K,循环的最高温度为1800K,假定循环按定容加热理想循环进行,燃气性质近似与空气相同。利用气体的热力性质表,求气体膨胀后的压力和循环的热效率。由题意,如图所示,状态1:P1=90kPa、T1=290K,查由空气热力性质表,得 h1=292.25kJ/kg、Pr1=1.2531、r1=231.43。 u1=h1-P11=h1-RgT1 =292.25kJ/kg-0.287kJ/(kgK)290K =209.02kJ/kg 据理想气体状态方程式 = 状态2: = 由r2查表,T2介

6、于680K和690K之间,所以 = 查表: u2=h2-p22=h2-RgT2 =695.43kJ/kg-0.287kJ/(kgK)681.48K=499.84kJ/kg 状态3:因2=3,所以 查表:h3=2004.34kJ/kg、r3=1.3544 u3=h3-P33=h3-RgT3 =2004.34kJ/kg-0.287kJ/(kgK)1800K=1487.74kJ/kg 状态4:4=1 由r4查表,T4介于880K和990K之间,所以 = u4=h4-p44=h4-p41 =922.33kJ/kg-275.8kPa0.9248m3/kg=667.27kJ/kg = 6. 测试装置能检测

7、输入信号的最小变化能力,称为( )。A.精度B.灵敏度C.精密度D.分辨率正确答案:D7. 向容积为V=10m3的刚性绝热真空贮罐充入=0.7,温度为30,压力为0.1MPa的湿空气,到罐内压力达0.1MPa为止。求:向容积为V=10m3的刚性绝热真空贮罐充入=0.7,温度为30,压力为0.1MPa的湿空气,到罐内压力达0.1MPa为止。求:贮罐内空气的干球温度,含湿量和露点温度。已知:干空气Rg=0.287kJ/(kgK),Cv=0.718kJ/(kgK);水蒸气Rg=0.4615kJ/(kgK),Cv=1.402kJ/(kgK)。由t1=30查饱和水和饱和水蒸气表或饱和空气表,得pa1=4

8、241Pa。 Pv1=1Ps1=0.74241Pa=2968.7Pa Pa1=pb-pv1=0.1106Pa-2968.7Pa=97031.3Pa 因(证明见本章拓展题3),故 wa1=1-wv1=1-0.0186=0.9814 cp,a=cV,a+Rg,a=0.718kJ/(kgK)+0.287kJ/(kgK)=1.005kJ/(kgK) cp,v=cV,v+Rg,v=1.402kJ/(kgK)+0.462kJ/(kgK)=1.864kJ/(kgK) cp=wacp,a+wvcp,v =0.98141.005kJ/(kgK)+0.01861.864kJ/(kgK) =1.021J/(kgK)

9、 Cv=wacv,a+wvCVv =0.98140.718kJ/(kgK)+0.01861.402kJ/(kgK) =0.731J/(kgK) 据向真空罐充气过程的能量方程h1=u2,所以 d2=d1=0.0190kg(水蒸气)/kg(干空气) 由于真空罐内压力等于充气压力,充气过程干空气和水蒸气质量不变,故 pv2=pv1=2968.7Pa查表,与之对应的饱和温度,即露点23.9。湿空气是干空气和水蒸气的混合物,在向真空罐充气过程中水蒸气和干空气的质量均不变,所以混合气体的质量成分不变,湿空气的含湿量不变。据干空气和水蒸气的质量分数求出混合气体的比定压热容和比定容热容再由充气能量方程可得干球

10、温度。 8. 学习了热力学第一、第二定律,对于节能的认识应该是 A能量守恒,节能就是少用能; B不但在数量上要节约用能学习了热力学第一、第二定律,对于节能的认识应该是A.能量守恒,节能就是少用能;B.不但在数量上要节约用能,而且要按“质”用能。B9. 作图(a)所示简支梁的内力图 利用整体平衡条件:作图(a)所示简支梁的内力图利用整体平衡条件:(1)求支座反力 X=0, XA=0 MA=0, 161+444-YB8=0, YB=10kN() MB=0,YA8-167-444=0, YA=22kN() Y=0, 22-16-44+10=0 (2)作剪力图 用截面法计算控制截面内力。控制截面有A、

11、B、C、D、E等荷载不连续点,将梁AB分成四段:AC、CD、EB段无荷载,Q图为水平线,用一个值就可确定;DE段内有分布荷载,Q图为斜直线,用两个值就可确定。 QA=QC左=YA=22kN QC右=QD=YA-P=22-16=6kN QE=QB=-YB=-10kN 作Q图 先作Q图横坐标轴AB(图(b),在横坐标轴上各相应位置标注控制截面(A、C、D、E、B),在A点和C坐点的坐标轴上面取22kN为纵坐标,得到A1点和C1点;在C右和D点的坐标轴上面取6kN为纵坐标,得到C2点和D1点;在E点和B点的坐标轴下面取10kN为纵坐标,得到E1和B1点。将各纵坐标A1C1、C2D1、D1E1、E1B

12、1连以直线,在坐标轴上面注明正号,在坐标轴下面注明负号,即得剪力图。剪力图见图(b)。 (3)作M图 用截面法计算控制截面弯矩。仍选A、B、C、D、E为控制截面,各控制截面弯矩值为: MA=0 MC=221=22kNm(下边受拉) MD=222-161=28kNm(下边受拉) ME=102=20kNm(下边受拉) MB=0 作M图 在横坐标轴上各控制截面A、C、D、E、B下方标注各相应截面弯矩的纵坐标值0、22、28、20、0,它们对应的点为A1、C1、D1、E1、B1,见图(c)。 在梁上无荷载段,即AC、CD、EB段,将A1C1、C1D1、E1B1分别连以直线,即得这些段的弯矩图。 在梁上

13、有均布荷载段的DE段,弯矩图为抛物线。抛物线应根据三个纵坐标定出。现已有D1和E1点,在D1和E1之间所缺少的一个纵坐标值,可取DE段中点F的弯矩值,也可取DE之间的Mmax值,现分别计算如下: DE段中点MF值: MF=224-163-421=32kNm(下边受拉) Mmax值: Mmax发生在的截面,设该截面为G,先利用AG隔离体平衡(图(d),计算Q=0截面(即G点)的位置。 QG=22-16-qx=0 得到MF值和Mmax值后,就可在横坐标轴上F点下面取纵坐标为32kNm,得到F1点,或在横坐标轴上G点下面取纵坐标为32.5kNm,得到G1点。将D1、F1、E1三点或D1、G1、E1三

14、点连成一抛物线,即得DE段的弯矩图。 AB梁的弯矩图见图(c)。 (4)内力图形状特征的校核 由图(a)、(b)、(c)给出的荷载图、Q图和M图分析:AC、CD、EB都是无荷载段,剪力图是水平线,弯矩图是斜直线;在P作用点C,剪力值有突变,突变值为P值,弯矩图在C两侧斜率不等,形成尖点,尖角指向同P方向;DE段有均布荷载q,剪力图是斜直线,斜率值即q值,弯矩图是二次抛物线,注意在D1和E1点直线和曲线之间为光滑过渡。 还可看出弯矩图切线斜率的数值和方向,与剪力图的剪力值和符号是一致的,M图曲线的凸向与q的指向相同。 10. 在两向应力状态下,已知其最大剪应变max=50010-6,两个相互垂直

15、方向上的正应力之和为27.5MPa,材料的弹性常在两向应力状态下,已知其最大剪应变max=50010-6,两个相互垂直方向上的正应力之和为27.5MPa,材料的弹性常数E=200GPa,v=0.25,试确定主应力的大小。极大=53.8MPa,极小=-26.3MPa11. 一元流动是 A均匀流;B速度分布按直线变化; C运动参数是一个空间坐标和时间变量的函数。一元流动是A均匀流;B速度分布按直线变化;C运动参数是一个空间坐标和时间变量的函数。C12. 如何利用状态方程和热力学一般关系求取实际气体的uh、s?如何利用状态方程和热力学一般关系求取实际气体的uh、s?提示:除对状态方程求导,代入热力学

16、一般关系式,还应利用状态参数特性选择适当的积分途径。13. 出现质量问题不可怕,可怕的是没有分析,没有预防和整改措施。( )出现质量问题不可怕,可怕的是没有分析,没有预防和整改措施。( )答案:对14. 用磁标势m解决静磁场问题的前提是( ) A该区域没有自由电流分布 B该区域应是没有自由电流分布的单连通用磁标势m解决静磁场问题的前提是()A该区域没有自由电流分布B该区域应是没有自由电流分布的单连通区域C该区域每一点满足D该区域每一点满足B15. 圆轴横截面上的扭矩为T,按强度条件算得直径为d,若该截面上的扭矩变为05T,则按强度条件可算得相圆轴横截面上的扭矩为T,按强度条件算得直径为d,若该

17、截面上的扭矩变为05T,则按强度条件可算得相应的直径为05d。( )此题为判断题(对,错)。正确答案:16. 根据重力相似准则导出流速、流量、时间、力、切应力等物理量比尺的表达式。根据重力相似准则导出流速、流量、时间、力、切应力等物理量比尺的表达式。正确答案:v=l1/2、Q=l2.5、=l1/2、r=lv=l1/2、Q=l2.5、=l1/2、r=l17. 柴油发动机连杆大头螺钉承受最大拉力Pmax=58.3kN,最小拉力Pmin=55.8kN。螺纹处内径d=11.5mm。试求平均应力m、柴油发动机连杆大头螺钉承受最大拉力Pmax=58.3kN,最小拉力Pmin=55.8kN。螺纹处内径d=1

18、1.5mm。试求平均应力m、应力幅a、循环特征R,并作-t曲线。m=549MPa,a=12MPa,R=0.9618. 扭转切应力在单元体上是成对存在,一对正一对负。( )A.对B.错参考答案:A19. 试举例说明相变过程及相平衡的基本特征。试举例说明相变过程及相平衡的基本特征。纯物质在不同的相之间的相互转化过程称为相变。相变过程中,一个相的物质逐渐减少,另一个相的物质逐渐增多。当达到动态平衡(相平衡)时,各相中的质量不再发生变化,而且各相具有相同的压力及温度。相平衡时,各相所处的平衡状态统称为饱和状态;相应的压力及温度称为饱和压力及饱和温度。饱和压力与饱和温度是一一对应的。处于饱和状态下的汽态

19、、液态及固态纯物质,分别称为饱和蒸汽、饱和液体及饱和固体。值得指出,处于相同饱和状态下的各个相,它们的状态并不相同,仅是温度及压力相等而已。而且,可以在保持饱和状态不变的条件下连续地发生相变。例如,常见的等压(等温)汽化过程,加入的热量使液相不断地向汽相转化,汽、液两相的质量都在发生变化,但在相变过程中,汽、液两相的饱和状态并没有改变。显然,这种相变过程是内部可逆的过程,每个中间状态都满足相平衡的条件。20. 某点的真空压强为65000Pa,当地压强为0.1MPa,该点的绝对压强为 A65000Pa;B55000Pa;C35000Pa;D165000Pa。某点的真空压强为65000Pa,当地压

20、强为0.1MPa,该点的绝对压强为A65000Pa;B55000Pa;C35000Pa;D165000Pa。D21. 某柴油机压缩过程开始时,空气的压力为90kPa,温度为325K,压缩终了时空气的容积为原来的1/15。若采用定值比热,某柴油机压缩过程开始时,空气的压力为90kPa,温度为325K,压缩终了时空气的容积为原来的1/15。若采用定值比热,并假定压缩过程是可逆绝热的,试计算:(1)压缩终了的温度及压力(2)过程中每千克空气热力学能的变化(3)压缩每千克空气所需的功量根据定熵过程的参数关系,有 根据理想气体热力学能的性质,有 u=cv(T2s-T1)=0.716(960.1-325)

21、=454.7kJ/kg 根据热力学第一定律,对于闭口系统的定熵过程,有 w12s=u1-u2s=-454.7kJ/kg提示应分清一个压缩过程的耗功量与压气机一次压缩的耗功量的区别。 22. 气体燃料甲烷分别在定温定压与定温定容条件下燃烧,问哪种条件下放出的热量较多?若甲烷气体是分别在定压加热气体燃料甲烷分别在定温定压与定温定容条件下燃烧,问哪种条件下放出的热量较多?若甲烷气体是分别在定压加热与定容加热过程中达到相同的升温效果,问此时又是哪种过程中吸收的热量较多?23. 运动员起跑时,什么力使运动员的质心加速运动?什么力使运动员的动能增加?产生加速度的力一定作功吗?运动员起跑时,什么力使运动员的

22、质心加速运动?什么力使运动员的动能增加?产生加速度的力一定作功吗?运动员起跑时,地面对其脚掌的摩擦力使其质心加速,但摩擦力作用点不产生位移,并不做功,运动员肌肉产生的力使动能增加所以产生加速度的不一定作功。24. 采用两级压缩、级间冷却的方式获得高压空气,压力由p1升至p1,最佳的中间压力p2为_。采用两级压缩、级间冷却的方式获得高压空气,压力由p1升至p1,最佳的中间压力p2为_。两级压缩、级间冷却的最佳的中间压力25. 秋季白天秋高气爽气温较高,此时的空气为_。 A干空气 B饱和空气 C未饱和空气 D过热空气秋季白天秋高气爽气温较高,此时的空气为_。A干空气B饱和空气C未饱和空气D过热空气

23、C地球上的大气或多或少都含有水蒸气,湿空气本身并无过热之说,只有饱和与未饱和之分,空气中带有的水蒸气在过热状态(温度高于其饱和温度),则为未饱和湿空气,水蒸气达饱和状态(温度等于其饱和温度),则为饱和湿空气。26. 某两级气体压缩机进气参数为100kPa、300K,每级压力比为5,绝热效率为0.82,从中间冷却冷却器排出的气体温度是3某两级气体压缩机进气参数为100kPa、300K,每级压力比为5,绝热效率为0.82,从中间冷却冷却器排出的气体温度是330K。若空气的比热容可取定值,计算每级压气机的排气温度和生产1kg压缩空气压气机消耗的功。空气比热容取定值,Rg=287J/(kgK),cp=

24、1004J/(kgK)。由题意,如图所示,状态1:p1=100kPa、T1=300K 状态2:p2=p1=5100kPa=500kPa 状态3:p2=p2=500kPa、T3=330K 状态4:P4=p3=5500kPa=2500kPa = 生产1kg压缩空气压气机耗功 Wc=(h2-h1)+(h4-h3)=cp(T2-T1)+(T4-T3) =1.005kJ/(kgK)(513.57K-300K)+(564.94K-330K) =450.7kJ/kg本题虽然各级压力比相同,但进入高压级气缸的气体温度比进入低压级气缸温度高,所以各级消耗的功不相等。 27. 辛烷(C8H18)在95%理论空气量

25、下燃烧。假定燃烧产生物是CO2,CO,H2O,N2的混合物,确定这个燃烧方程,并计算其空气辛烷(C8H18)在95%理论空气量下燃烧。假定燃烧产生物是CO2,CO,H2O,N2的混合物,确定这个燃烧方程,并计算其空气燃料比。辛烷在空气量为理论值时,燃烧反应方程为 C3H18+12.5O2+12.53.76N28CO2+9H2O+47.0N2 则在95%理论空气量下的辛烷燃烧方程可写成 C3H18+0.9512.5O2+0.9512.53.76N2 aCO2+bCO+dH2O+eN2 (1) 代中a,b,d,e为待定系数。 根据氢平衡 2d=18,则d=9 根据氮平衡 e=0.9512.53.7

26、6=44.65 根据碳平衡 a+b=8 (2) 根据氧平衡 2a+b+d=0.9512.52=23.75 (3) 联立解式(2),(3),得 a=6.75,b=1.25 将a,b,d,e代入燃烧方程(1),可得辛烷在95%理论空气的方程,即 C8H18+11.875O2+44.65N26.75CO2+1.25CO+9H2O+44.65N2 用摩尔作单位时,空气燃料比为 用质量作单位时 28. 具有“合理拱轴”的静定拱结构的内力为:( ) AM=0,Q0,N0; BM0,Q=0,N0; CM=0,Q=0,N0; DM0,Q0,N具有“合理拱轴”的静定拱结构的内力为:()AM=0,Q0,N0;BM

27、0,Q=0,N0;CM=0,Q=0,N0;DM0,Q0,N0C29. 真空中平面简谐波在传播中振幅_,球面波的振幅_真空中平面简谐波在传播中振幅_,球面波的振幅_不变$衰减30. 用矩阵位移法求解各类杆件结构时,它们的计算步骤是否相同?形成整体刚度矩阵的方法是否相同?( ) A相同;不用矩阵位移法求解各类杆件结构时,它们的计算步骤是否相同?形成整体刚度矩阵的方法是否相同?()A相同;不同B相同;相同C不同;不同D不好确定B31. 生产液氧时,要将气体压缩到100atm、-90,若氧是从初态0.1MPa、22,被压缩并冷却到上述条件。气体初始体积是2.8生产液氧时,要将气体压缩到100atm、-

28、90,若氧是从初态0.1MPa、22,被压缩并冷却到上述条件。气体初始体积是2.83m3,压缩后的体积应是多少?氧气Tcr=154.3K、Pcr=49.8atm=5.05MPa、Rg=260J/(kgK)。初态时压力较低,可作理想气体处理 终态时压力较高,采用通用压缩因子图(如图)计算 , 查图得x=0.56 32. 试证明:在无电荷空间中任一点的静电势之值等于以该点为球心的任一球面上势的平均值。试证明:在无电荷空间中任一点的静电势之值等于以该点为球心的任一球面上势的平均值。本题采用格林函数较为简捷。 取格林函数 因无电荷空间=0,故 令S为以r为球心,R为半径的球面,则上式中第一项为 而 即

29、为在球面上的平均值。 故 (S为以r为球心,R为半径的球面。) 33. 在某温度时可逆恒温地将作用在质量为m的水面上的压力由p,提高到p2,试求该过程的传热量、功,假定该温度下水的在某温度时可逆恒温地将作用在质量为m的水面上的压力由p,提高到p2,试求该过程的传热量、功,假定该温度下水的体积膨胀系数v和等温压缩系数T为常数。据定义 所以恒温时 积分得 (a) 过程可逆,故Q=Tds=mTds,而 因 , 所以 Q=mcpdT-Tvdp=-mTvdp (b) 将式(a)代入式(b),积分得 积分后得 34. 框架结构的特点包括( )A、强度高B、自重轻C、整体性好D、抗震性好正确答案:ABCD3

30、5. 自重900N的滑门吊在轨道上,若A、B两支点与轨道间的摩擦系数分别为0.2和0.3,试计算滑门刚好向右滑动时,作用于自重900N的滑门吊在轨道上,若A、B两支点与轨道间的摩擦系数分别为0.2和0.3,试计算滑门刚好向右滑动时,作用于滑门把手C处的力F。受力分析如图5-34。如果滑门处于平衡状态,由平面任意力系平衡条件 Fix=0:F-FsB-FsA=0 Fiy=0:FNA+FNB-P=0 MA (Fi)=0:FNB150-P75+F150=0 上述三个方程中含有5个未知数,属“静不定”问题。好在题目中给出“滑门刚好向右滑动”的条件,故可补充方程FsB=fBFNB,FsA=fAFNA,解得

31、 考核会不会出现“单点”接触的情况(类似于倾翻问题),其临界条件为FNB=0。由MA(Fi)=0,有 解得 F=450N204N 这说明,在“单点”接触前,吊门已开始滑动。 36. 假如地球引力增加一倍,下列几种振动系统的固有频率有变化?(1)单摆;(2)复摆;(3)弹簧质量系统;(4)扭摆。假如地球引力增加一倍,下列几种振动系统的固有频率有变化?(1)单摆;(2)复摆;(3)弹簧质量系统;(4)扭摆。37. 氧气进行一可逆过程1-2,T-s图上为水平线,过程3-1焓的变化h与过程3-2的热力学变化u的关系是_。氧气进行一可逆过程1-2,T-s图上为水平线,过程3-1焓的变化h与过程3-2的热

32、力学变化u的关系是_。h31=u3238. 压杆弯曲变形与失稳的区别是,由于杆长度不同,其抵抗外力的性质发生根本的改变,短粗杆的弯曲是强度问题,细长杆的弯曲是稳定问题。( )A.对B.错参考答案:A39. 在不可压缩流体运动中,伯努利方程描述各种形式的机械能守恒及相互转换关系;在可压缩流体运动中能量方程描述在不可压缩流体运动中,伯努利方程描述各种形式的机械能守恒及相互转换关系;在可压缩流体运动中能量方程描述机械能与热能守恒及相互转换关系,在新引入的热力学函数中直接反映热能的最基本函数是A内能;B焓;C熵。A40. 基于磁介质观点,用热力学解释超导体临界磁场的存在基于磁介质观点,用热力学解释超导

33、体临界磁场的存在考虑处于均匀外磁场H中的无穷长超导体圆柱,H的方向与柱轴平行,按磁介质观点,柱体内的磁场也是均匀场,以E表示圆柱单位体积的内能,M为磁化强度,由热力学第一定律和第二定律: dE=dQ+0HdM, TdSdQ (1) 得 dE-TdS-0HdM0 (2) 若系统状态发生自发变化,而且在这过程中保持温度T和磁场H不变,则(2)式可写为 dG0 (3) 其中,G为圆柱单位体积的吉布斯函数: G=E-TS-0HM (4) (3)式表示,系统的自发过程朝着吉布斯函数G减小的方向进行现在设温度T和磁场H有一微小改变,导致系统状态发生一个十分微小的变化,于是由(4)式和(2)式,有 dG=-

34、SdT-0MdH (5) (5)式表示在微小变化过程中,系统的熵S和磁化强度M可视为不变,即G是温度T与磁场H的函数按磁介质观点,样品处在正常态时M=0,由(5)式,此时有 dGn=-Sn(T)dT (6) Gn和Sn分别是正常态下的吉布斯函数和熵而在理想迈纳斯态下M=-H,(5)式成为dG=-S(T,H)dT+0HdH由可积条件,G的二阶混合导数与求导次序无关,故S(T,H)=S(T)于是有 dG=-S(T)dT+0HdH (7) 记H0时超导态的吉布斯函数为GS(T,H),H=0时GS(T,0)=GS(T)对(7)式积分得 , (TTc) (8) 上式右方第二项是超导体内的磁能密度,故H=

35、0时,GS(T,0)较小设TTc时,GS(T)Gn(T),由(8)式便可解释临界磁场现象当磁场H进入超导体内且逐渐增大时,GS(T,H)也逐渐增大,H达到临界值Hc(T)时,有 (9) 当HHc,超导态便转化为正常态,被称为超导态的凝聚能对式(9)微分,并由Sn(T)=-dGn(T)/dT,SS(T)=-GS(T,H)/TH=-dGn(T)/dT,可得 ,(TTc) (10) 由临界磁场的经验公式 (11) 可知dHc(T)/dT0,故(10)式给出 SS(T)Sn(T) (12) 即超导态下系统的熵较低,故处于超导态的电子比正常态的电子更为有序 41. 当力的作用线通过矩心时,则力矩的大小为

36、( )。A、大于某一数值B、零C、无法确定D、常数参考答案:B42. 将一半径为R0未带电的导体球,置于均匀电场E0中,若该球沿垂直于E0的面分成两个相等的半球,求两半球受到的作将一半径为R0未带电的导体球,置于均匀电场E0中,若该球沿垂直于E0的面分成两个相等的半球,求两半球受到的作用力以球心为坐标原点,E0方向为z轴,且令导体电势为零,则电势满足 (RR0) 则的通解为 利用边界条件确定常数,最后得 则球面处的电场为 于是,导体表面单位面积受的静电力为 左右两半球受的力分别为 由此可见,左右两半球受的静电力大小相等,方向相反。 43. 内力为零的杆件成为虚杆,试判断下图所示桁架中零杆的个数

37、,下列答案中哪个正确?( )A.一个B.两个C.三个D.四个参考答案:A44. 对伯努利方程:,进行无量纲化,无量纲形式的方程中应出观哪些特征数? ARe;BFr;CEu;DSr。对伯努利方程:,进行无量纲化,无量纲形式的方程中应出观哪些特征数?ARe;BFr;CEu;DSr。C45. 空间汇交力系的平衡方程为三个投影式:图。( )A.对B.错参考答案:A46. 在面积相同的情况下,空心圆轴与实心圆轴相比,空心圆轴好。( )A.对B.错参考答案:A47. 大容器中的空气经渐缩喷管流向外界空间。容器中空气压强为P0=200kN/m2,温度T0=300K,喷管出口截面Ae=50cm2,空大容器中的

38、空气经渐缩喷管流向外界空间。容器中空气压强为P0=200kN/m2,温度T0=300K,喷管出口截面Ae=50cm2,空间压强分别为Pb=0、100、150kN/m2。试求质量流量。Pb=0、100kN/m2时,Qm=2.334kg/s; Pb=150kN/m2时,Qm=2.059kg/s。 临界压力Pk=0.5283、P0=105.7kN/m2、Pb=0、100kN/m2时,出口均为临界状态pe=pk;Pb=150kN/m2时,出口未达临界状态,Pe=pb。 48. 在Q=0处,弯矩必取Mmax。( )在Q=0处,弯矩必取Mmax。()错误49. 当被测压差较小时,为使压差计读数较大,以减小

39、测量中人为因素造成的相对误遭,也常采用倾斜式压差计,其结构如当被测压差较小时,为使压差计读数较大,以减小测量中人为因素造成的相对误遭,也常采用倾斜式压差计,其结构如图所示。试求若被测流体压力P1=1.014105Pa(绝压),P2端通大气,大气压为1.013105Pa,管的倾斜角a=10,指示液为酒精溶液,其密度0=810kg/m3,则读数R为多少厘米?若将右管垂直放置,读数又为多少厘米?(1)由静力学原理可知:P1-P2=0gR pogRsina 将P1=1.014105Pa,P2=1.013105Pa,0=810kg/m3,=10代入得: (2)若管垂直放置,则读数 可见,倾斜角为10时,

40、读数放大了7.3/1.3=5.6倍。 50. 证明沿z轴方向传播的平面电磁波可用矢势A(,)表示,其中,A垂直于z轴方向。证明沿z轴方向传播的平面电磁波可用矢势A(,)表示,其中,A垂直于z轴方向。证明 利用上题中得到的自由空间矢势A的方程 解得平面波解为 由于平面波沿z轴方向传播,故K=kez,则式可写为 根据洛伦兹规范 得 由已知条件A=Aez,故=0 因此 ,由于,再考虑沿z方向传播的电磁波矢势A解析表达式,找出与A的关系便可证明。 易犯错误 不能抓住平面电磁波的特点,未应用沿z轴传播这一特定条件。 引申拓展 求解此类题目时,将E、B用A、表示出来,在已知条件下分析A、解析式及其之间的关

41、系即可。 51. 三个质量相同的质点,从距地面相同的高度上,以相同的初速度,一个向上抛出,一个水平抛出,一个向下抛出,则三质三个质量相同的质点,从距地面相同的高度上,以相同的初速度,一个向上抛出,一个水平抛出,一个向下抛出,则三质点落地时的速度相等()。对52. 将p1=0.1MPa、t1=250的空气冷却到t2=80。求单位质量空气放出热量中的有效能为多少?(设环境温度为27)将p1=0.1MPa、t1=250的空气冷却到t2=80。求单位质量空气放出热量中的有效能为多少?(设环境温度为27) 单位质量空气释放的热量中的有效能为52.26kJ/kg 53. 已知空气温度为0,气流速度为250

42、m/s,气流的滞止声速为 A 250m/s;B 300m/s;C 350m/s;D 400m/s。已知空气温度为0,气流速度为250m/s,气流的滞止声速为A 250m/s;B 300m/s;C 350m/s;D 400m/s。C54. 长管作用水头H保持不变,出口由自由出流改为淹没出流后,管路流量 A减小;B不变;C增大;D不一定。长管作用水头H保持不变,出口由自由出流改为淹没出流后,管路流量A减小;B不变;C增大;D不一定。B55. 从皮帕德方程在局域近似下得到的出发,证明相应的皮帕德有效穿透深度为 其中L为伦敦穿透深度从皮帕德方程在局域近似下得到的出发,证明相应的皮帕德有效穿透深度为其中

43、L为伦敦穿透深度对于满足条件,的第二类超导体,皮帕德方程的局域近似为 (1) 其中 (2) 对(1)式求旋度,得 (3) 由静磁场方程B=0JS,B=0,有 (4) 由(3)、(4)两式,得方程 (5) 这方程与伦敦局域理论得到的方程(3.34)有相同形式,其中 (6) 由于,故 56. 明渠中发生M2型、H2型、A2型水面曲线时,其佛汝德数Fr_。 ( )A小于1B等于1C大于1D无法明渠中发生M2型、H2型、A2型水面曲线时,其佛汝德数Fr_。 ( )A小于1B等于1C大于1D无法确定正确答案:A57. 已知:无环量平面势流圆柱(半径为a)绕流的流函数为 求:验证流函数满足拉普拉斯方程。已

44、知:无环量平面势流圆柱(半径为a)绕流的流函数为求:验证流函数满足拉普拉斯方程。拉普拉斯方程的柱坐标形式为 (a) (b) (c) 将(b)式、(c)式代入(a)式,(a)式成立。 58. 地下开挖体得变形和破坏,除于岩体内得初始应力状态和洞形有关外,主要取决( )。A、围岩的岩性B、围地下开挖体得变形和破坏,除于岩体内得初始应力状态和洞形有关外,主要取决( )。A、围岩的岩性B、围岩的结构C、围岩的岩性及结构D、围岩的大小正确答案:C59. 试用外界分析法的能量方程及熵方程来推导高乌-史多台拉(Gouy-Stodola)公式 I=T0SP试用外界分析法的能量方程及熵方程来推导高乌-史多台拉(

45、Gouy-Stodola)公式I=T0SP根据损的定义,有 (a) 其中 =(E1-E2)+T0(S2-S1)+Efi-Efe+ (b) 根据孤立系统能量方程 Eisol=E+ETR+EWR+EMR+E0=0 其中 EWR=-WWR=Wu E0=Q0-p0V0=Q0+p0V EWR+E0=Wu+p0V+Q0=W+Q0 E=(E2-E1),ETR=QTR 将上述结论代入孤立系统能量方程,可得出 -W=(E2-E1)+QTR+Efe-Efi+Q0(c) 将式(b)及(c)代入式(a),可得出 =T0S+SMR+SWR+STR+S0=T0SPtot 60. 由自于工程实际情况不同,有时需要对湿空气喷

46、入一定的水分,即所谓加湿过程,这种加湿过程可采用如下一些方法:由自于工程实际情况不同,有时需要对湿空气喷入一定的水分,即所谓加湿过程,这种加湿过程可采用如下一些方法:(1)干球温度不变的定干球温度加湿方法;(2)相对湿度不变的定相对湿度加湿方法;(3)绝热条件下的绝热加湿方法。分别按各种调湿过程将湿空气调节为要求的湿空气。已知:t1=12,p1=100kPa,1=25%,d2=510-3kg/kg(干空气),湿空气进入房间的体积流量qV=60m3/min,加湿水温为12。试确定:按定干球温度加湿过程 参见图7-11,由已知的t1=12%,1=25%在图上可以定出调湿前湿空气的状态点1。由t2=

47、t1和d2=510-3kg/kg(干空气)可确定调湿后的湿空气状态点2,则1-2为定干球温度的调湿过程。查得2=55%。 当水喷入湿空气后,湿空气的含湿量增加,干球温度要下降,为保持干球温度不变,则必须同时加入热量。 据稳定流动能量方程 其中,qm,a由下式求得 则 由h-d图上读得 v1=0.821m3/kg(干空气),d1=0.0023kg/kg(干空气) h1=17.7kJ/kg(干空气),h2=25.0kJ/kg(干空气) 另外按12查饱和水蒸气表,饱和水的焓h=50.37kJ/kg 于是 根据质量守恒,加湿后加入的水 qm,w=qm,a(d2-d1) =72.91kg/min(510

48、-3-0.0023)kg/kg(干空气) =0.1969kg/min 故 =72.91kg/min(25.0-17.7)kJ/kg(干空气)-0.1969kg/min50.37kJ/kg =522.3kJ/min 即所要求的3个量分别为2=55%,t2=12,=522.3kJ/min$按定相对湿度加湿过程 由2=1和d2确定调湿后的湿空气状态2,定相对湿度的调湿过程用7-11图中的1-2表示。 从h-d图上读得 t2=25.0,h2=38.0kJ/kg(干空气) 此时,qm,a,qm,w和h与定干球温度加湿过程相同,即 qm,a=72.91kg/min,qm,w=0.1969kg/min h=50.37kJ/min 则热流量 Q=qm,a(h2-h1)-qm,wh =72.91kJ/min(38.0-17.7)kJ/kg(干空气)-0.1969kg/min50.37kJ/min =1470.2kJ/min 即所要求的3个量分别为 2=24%,t2=25.0, =1470.2kJ/min$按绝热加湿过程 因绝热加湿过程基本上是一定焓过程,所以由h2=h1和d2确定调湿后的湿空气状态2,则绝热调湿过程线用7-11图中的1-2表示。 从h-d图上读得 t2=4.5, 2=95% 又因是绝热过程,则=0。

展开阅读全文
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!