外文翻译--施工质量分布对步行机器人步态稳定性的影响(中英文)

上传人:红** 文档编号:89120604 上传时间:2022-05-12 格式:DOC 页数:13 大小:721.50KB
收藏 版权申诉 举报 下载
外文翻译--施工质量分布对步行机器人步态稳定性的影响(中英文)_第1页
第1页 / 共13页
外文翻译--施工质量分布对步行机器人步态稳定性的影响(中英文)_第2页
第2页 / 共13页
外文翻译--施工质量分布对步行机器人步态稳定性的影响(中英文)_第3页
第3页 / 共13页
资源描述:

《外文翻译--施工质量分布对步行机器人步态稳定性的影响(中英文)》由会员分享,可在线阅读,更多相关《外文翻译--施工质量分布对步行机器人步态稳定性的影响(中英文)(13页珍藏版)》请在装配图网上搜索。

1、本科生毕业设计 (论文)外 文 翻 译原 文 标 题Influence of construction mass distribution on the walking robots gait stability Synthesis 译 文 标 题施工质量分布对步行机器人步态稳定性的影响作者所在系别机电工程学院作者所在专业机械设计制造及其自动化作者所在班级作 者 姓 名作 者 学 号指导教师姓名指导教师职称完 成 时 间年月译文标题 施工质量分布对步行机器人步态稳定性的影响原文标题Influence of construction mass distribution on the walkin

2、g robots gait stability 作 者H.W.Muller译 名哈维穆勒国 籍美国原文出处Journal of Mechanism Design,1981,Vol.103.No.1-4译文:摘要:本研究的目的是找出步行机的施工参数与其稳定性之间的联系。此外,本文展示了重要的质量分布对于正确设计的步态生成算法。这项研究是基于在Matlab Simulink开发的六边形双压电机器人的仿真模型。分析了机器人的腿和躯干之间的可变百分比质量分布。基于结果,我们可以得出结论,行走机器人的腿和躯干的重量之间的比例对大多数步行参数,如步幅长度和速度,稳定姿势的机器,控制方法和移动性有很大影响。

3、 它对质心位置也有巨大的影响,这是行走机器人的静态和动态稳定性的关键问题。 因此,在整个设计和编程过程中应考虑步行机器人的质量分布。关键词:六边形双压机器人; 昆虫; 质量分布; 质心; 步态稳定性1. 介绍由身体的重量分布百分比限定的质心位置影响所设计的机器的多个参数。 首先,它负责确保其在工作期间和静止时的稳定性。 它还对运动学参数和动态参数具有主要影响,尤其包括运动中产生的惯性效应。 这使得重量分布分析成为设计过程的重要部分,特别是在设计机器人,操纵器和处理设备时。关于机器人的质心位置的研究起源于人和动物的运动的生物力学分析。 这样的生物模型可以成功地用于机器工程。 当代机器人的主要部分

4、基于上述生物模型。 其中最重要的群体是步行机器人,其移动类似于大多数动物使用步态循环组成的步骤1。在当前对质心(c.o.m.)位置的研究中,重点在于确保机器人的静态稳定性。 当c.o.m.时机器人被认为是静态稳定的。 投影落在支撑多边形内。 支撑多边形由所有接触点定义,在多支腿机器人的情况下是支撑阶段中机器人腿的尖端1-3。 在双腿(双足)机器人的情况下,动态稳定性是分析的因素,并且当作用在质心上的力矩在运动期间平衡时,机器人被认为是动态稳定的。在大多数研究中,作者考虑c.o.m. 相对于机器人姿势的位置4。 在大多数情况下忽略由机器人设计限定的结构特性的影响。 它主要被认为是关于双足机器人的

5、研究,其重量分布是身体平衡的关键问题5。 本研究的重点是重量分布对步行机的静态稳定性的影响,基于六边形双晶机器人。 第2节提供了分析设计的简要描述,包括原型的重量百分比分布。 第3节描述了本研究中使用的研究方法,第4节给出了他们获得的结果2. 六边形双压机器人 六边形双晶机器人可以从六到四腿构型(或相反方向)变换,而不需要改变。 由此,机器人可以在崎岖的地形中以相对高的速度移动,同时在站立和行走期间保持其操纵功能。 机器人主体(图1)由三个主干段组成:前段KP,中间段KM和后段KT。 每个段配备有一对三连杆腿,命名为NL2,NP2,NL3,NP3(仅运动)和NP1和NL1(运动和操纵能力)。

6、作为一个特殊的特点,机器人配备了一个可扩展的重量,可以控制c.o.m. 运动期间的位置6。图 1.六边形双压机器人示意图,显示了原型的重量分布百分比KP-前主干节段,KM-中间主干节段,KT-后主干节段,1P-单轴接头,2P-双轴接头,WM-可扩展配重组件, NP1(NL1) - 右(左)前肢与操纵和运动功能,NP2(NL2) - 右(左)肢具有运动功能,NP3(NL3) - 右(左)后肢具有运动功能。分析的行走机器人的原型组件的重量在表1中给出。可以在此基础上计算总体重的百分比。 腿 - 躯干重量比为38.8至61.2。 躯干部分以及连接到它们的肢体的重量以总体重的百分比表示为24.4/ 3

7、8.8/ 36.8(KP / KM / KT)表1.六边形双压机器人的段的重量3. 研究方法 本文报告的研究是使用在软件程序Matlab Simulink中开发的仿真模型进行的。 仿真模型是在六元四元双机器人的数学模型的基础上开发的,是先前研究的派生分析。 选择来量化机器人的静态稳定性的参数是纵向稳定裕度(LSM)。 它被定义为距离c.o.m的最小距离。 投影和支撑多边形边缘平行于机器的c.o.m速度矢量测量7。在该研究下进行了两个分析。 第一个是调查肢体的重量相对于机器人的总重量和机器人的静态稳定性之间的关系。 针对所分析的六边形双压电机器人的三个选定姿势检查五个肢体重量比。 比率从30到7

8、0相差10。 为了执行分析的目的,必须假定身体段之间具有恒定的比率。 选择最接近实际结构的比率,前部分占总重量的20,剩余重量在中间和后部分之间平均分配(每个40)。 注意,在这些分析中,段的重量不包括附接到它们的肢体的重量。第二项研究的目的是检查机器人部分中几个重量分布对其静态稳定性的影响。 选择五个重量分布模式,质心位于躯干前段(40/ 30/ 30),双轴关节(40/ 40/ 20),躯干中段 (20/ 40/ 40)和躯干后段(20/ 30/ 50)上的平均值(30/ 40/ 30)。 以与研究No.1相同的方式进行分析,即通过读取用于相同的三个机器人姿势和每个预定义的重量分布配置的模

9、拟模型中的质心位置,随后确定 在站立阶段的纵向稳定裕度。 在这些分析中,假定所有模拟200克单腿重量包括肢体重量。 假定的体重为3000g。考虑三种特征姿势,如图1所示。 姿势No.1(图2a)表示机器人在三脚架步态中行走,其中三个腿(NL1,NP2,NL3)处于向前摆动(转移)阶段,而其余的腿(NP1,NL2,NP3) 相。 在姿势No.2(图2b)中,失去静态稳定性的最大风险。 在该姿势中,右腿的后腿和中腿处于站立期,而其他腿处于摇摆阶段。 在两种姿势中,六边形双态机器人处于六足(即主要)配置。 姿势No.3表示其中机器人支撑在腿NP2,NP3和NL3上的替代配置(四路)。 在四通道结构中

10、,躯干的前段向上倾斜90度的角度。图2.表示六边形双压机器人的分析姿态的象形图:a)六足机配置中的三角架步态,b)六足机构配置中的最低稳定性情况,c)四足配置。4. 研究结果 在站立阶段期间肢体的重量相对于机器人的总重量和机器人的稳定性之间的关系在图1的图表中呈现。从曲线可以看出,对于三脚架步态,肢体的重量相对于机器人的总重量的变化对LSM值几乎没有影响。躯干和四肢之间的平均重量分布提供了最大的稳定性。对于姿势2和姿势3,LSM值随着肢体相对于躯干重量的增加的重量而减小。它是一个或多或少的线性关系。姿势2中的肢体的低重量将姿势稳定性的损失改变为极限稳定性条件。因此,对于小肢体权重,广义坐标配置

11、对c.o.m的变化几乎没有影响。位置。在姿势编号3中提升躯干产生较高的LSM值。 65的值被认为是肢体的极限重量,在该极限重量下机器人不能再在替代QUADRUPED配置中操作。图3.相对于机器人的总重量的肢体的重量对于三种不同姿势的LSM值。图1中的条形图。 下面的图4表示六边形双晶机器人的段之间的重量分布对其静态稳定性的影响。 虚线表示稳定性极限。 从图中可以看出,在这种情况下,三脚架步态特征总是具有大的稳定性余量。 对于剩余的姿势,只有当c.o.m. 位于单轴接头或行李箱的后部。对于完好的功能性,步行机器人应当能够以四腿构型操作,其要求主干段KP / KM / KT之间的设计比接近20/

12、40/ 40或20/ 30/ 50 。图4.躯干部分相对于机器人的总重量的重量与三种不同姿势的LSM值的重量。所分析的六边形双压电机器人的静态稳定姿势在图6的图中示出。 图5和图6。 点表示与地面接触的腿的尖端的位置,并且圆圈表示转移阶段中的腿。 点坐标是根据手足动物的正向运动学计算的。 质心位置用十字标记,并且其坐标从仿真模型中计算出来。 这种表示方法使得能够及时验证静态稳定性。图5.相对于以六足配置(姿势No.1)在三脚架步态中行走的机器人的支撑多边形示出的质心位置,躯干部分的重量比为20/ 40/ 40。图。6.相对于机器人的支撑多边形显示的质心位置为四足构型(姿势3),躯干部分的20/

13、 30/ 50重量比。5. 结论 该论文已经证明重量分布配置对静态稳定性以及因此速度,步幅长度,机器人的控制方法和移动性的显着影响。可以通过使用模拟模型对已经在工程阶段的步行机器人执行这样的分析。注意,尽管在常规六足机的情况下可以忽略重量的分布,但在六边形双压电机器人的情况下它是最重要的。由于组件的重量设计不正确,机器人可能无法使用替代姿势。在分析的六边形双晶机器人的原型的情况下,表示为相对于机器人的总重量的分量权重的权重分布接近于使用四极配置的关键值。通过验证所选择的配置,这是本研究的主题,我们只能定义可以找到有效重量分布的范围。为了找到这个参数,将需要在预定范围内执行更复杂的分析。因此,这

14、种分析可以包括在满足初步计算的作用的工程过程中,在下一步设计的结构特征被定义之后,需要进行检查检查。原文:Abstract The goal of this research is to find connections between construction parameters of walking machine and its stability. Further this paper shows how important mass distribution is for properly designed gait generation algorithms. This rese

15、arch was made based on the simulation model of a hexa-quad bimorphic robot developed in Matlab Simulink. The analyses were made for variable percent mass distribution between the legs and trunk of the robot. Based on the results we can conclude that the ratio between the weight of legs and trunk of

16、the walking robot has a great influence on most of the walking parameters like stride length and speed, stable postures of machine, method of control and mobility. It has also a huge influence on the centre-of-mass position, which is the key issue of static and dynamic stability of walking robots. T

17、herefore, mass distribution of walking robots should be considered throughout the design and programming process.Keywords: hexa-quad bimorphic robot; hexapod; mass distribution; centre of mass; gait stability;1.Introduction The centre-of-mass position defined by the percentage weight distribution of

18、 the body influences a number of parameters of the designed machine. First and foremost it is responsible for ensuring its stability both during work and when at rest. It has also a major effect on the kinematic and dynamic parameters, including, inter alia, inertial effects arising in motion. This

19、makes the weight distribution analysis an important part of the design process,especially when designing robots, manipulators and handling equipment. The studies on the robots centre-of-mass position originate from biomechanical analyses of the movement of humans and animals. Such biological models

20、can be successfully used in machine engineering. A major portion of contemporary robots are based on the above-mentioned biological models. The most important group among them are walking robots which move similarly to most animals using gait cycle consisting of steps 1. In the current studies on th

21、e centre-of-mass (c.o.m.) position the focus is on ensuring static stability of the robot. A robot is considered statically stable when the c.o.m. projection falls within the support polygon. The support polygon is defined by all the contact points, which in the case of multi-legged robots are the t

22、ips of the robot legs in the support phase 13. In the case of two-legged (biped) robots the dynamic stability is the analysed factor and the robot is considered dynamically stable when the moments acting on the centre of mass are balanced during motion. In most studies the authors consider the c.o.m

23、. position in relation to the robots posture 4. The effect of the structural characteristics defined by the robot design is ignored in most cases. It is considered primarily in the studies concerning biped robots for which the distribution of weight is the key issue for body balance 5. The focus of

24、this study is the influence of the weight distribution on the static stability of the walking machine on the basis of a hexa-quad bimorphic robot. Section 2 provides a brief description of the analysed design including the percentage weight distribution of the prototype. Section 3 describes the rese

25、arch methods used in this study and Section 4presents the results obtained with them.2. Hexa-quad bimorphic robot The hexa-quad bimorphic robot can transform from six- to four-legged configuration (or the other way round) without needing change over. Owing to this, the robot can move with a relative

26、ly high speed in rough terrain, while maintaining its manipulation functionality during standing and walking. The robot body (Fig. 1) is composed of three trunk segments: front segment KP, middle segment KM and rear segment KT. Each segment is equipped with a pair of three-link legs designated NL2,

27、NP2, NL3, NP3 (locomotion only) and NP1 and NL1 (locomotion and manipulation capability). As a special feature the robot is equipped with an extendable weight enabling control of the c.o.m. position during locomotion 6.Fig. 1. Schematic of hexa-quad bimorphic robot showing the prototypes percentage

28、weight distribution KP front trunk segment, KM middle trunk segment, KT rear trunk segment, 1P single axis joint, 2P biaxial joint, WM extendable weight assembly, NP1(NL1) right (left) front limb with manipulation and locomotion function, NP2(NL2) right (left) limb with locomotion function, NP3(NL3)

29、 right (left) rear limb with locomotion function. The weights of the prototype assemblies of the analysed walking robot are given in Table 1. The percentages of the total body weight can be calculated on this basis. The leg-to-trunk weight ratio ranges from 38.8% to 61.2%. The weights of the trunk s

30、egments together with the limbs attached to them expressed as a percentage of the total body weight are 24.4%/38.8%/36.8% (KP/KM/KT).Table 1. Weights of the segments of hexa-quad bimorphic robot3. Research methods The research reported in this article was carried out using simulation model developed

31、 in the software program Matlab Simulink. The simulation model was developed on the basis of the mathematical model of hexa-quad bimorphic robot, derived analytically for previous studies. The parameter chosen to quantify the static stability of the robot was the longitudinal stability margin (LSM).

32、 It is defined as the smallest distance from the c.o.m. projection and the support polygon edge measured parallel to the c.o.m velocity vector of the machine 7. Two analyses were carried out under the research. The first of them was to investigate the relationship between the weight of limbs relativ

33、e to the total weight of the robot and the robots static stability. Five limb-to-weight ratios were checked for three chosen postures of the analysed hexa-quad bimorphic robot. The ratios differed by 10% from 30% to 70%. For the purpose of carrying out the analyses it is necessary to assume a consta

34、nt ratio between the body segments. The ratio closest to the actual construction was chosen with the front segment making up 20% of the total weight with the remaining weight split equally between the middle and rear segments (40% each). Note that in theseanalyses the weights of segments do not incl

35、ude the weights of limbs attached to them. The objective of the second study was to examine the effect of a few weight distributions among the robot segments on its static stability. Five weight distribution patterns were chosen with the centre of mass positioned on the front segment of the trunk (4

36、0%/30%/30%), on biaxial joint (40%/40%/20%), on middle segment of the trunk (30%/40%/30%), on the single axis joint (20%/40%/40%) and on the rear segment of the trunk (20%/30%/50%). The analysis was carried out in the same way as in study No. 1, namely by reading the centre-of-mass position in the s

37、imulation model for the same three robot postures and each of the pre-defined weight distribution configurations followed by determination of the longitudinal stability margin during stance phase. In these analyses the limb weight was included assuming for all simulations 200 g weight of a single le

38、g. The assumed body weight was 3000 g. Three characteristic postures were considered, as presented in Fig. 2. Posture No. 1 (Fig. 2a) presents the robot walking in a tripod gait with three legs (NL1, NP2, NL3) in forward swing (transfer) phase and the remaining legs (NP1, NL2, NP3) in the stance pha

39、se. In Posture No. 2 (Fig. 2b) there is the greatest risk of losing static stability. In that posture the rear legs and the middle leg on the right-hand side are in the stance phase and the other legs are in the sway phase. In both postures the hexa-quad bimorphic robot is in hexapod (i.e. primary)

40、configuration. Posture No. 3 represents the alternative configuration (quadruped) in which the robot is supported on legs NP2, NP3 and NL3. In the quadruped configuration the front segment of the trunk is tilted up by an angle of 90 degrees.Fig. 2. Pictograms representing the analysed postures of he

41、xa-quad bimorphic robot: a) tripod gait in hexapod configuration, b) the lowest stability situation in hexapod configuration, c) quadruped configuration.4. Results of research The relationship between the weight of limbs relative to the total weight of the robot and the robots stability during the s

42、tance phase is presented in the graphs in Fig. 3. From the curves it can be seen that for the tripod gait a change in the weight of limbs relative to the total weight of the robot has little effect on the LSM value. Equal distribution of weight between the trunk and limbs offered the greatest stabil

43、ity. For Posture No. 2 and Posture No. 3 the LSM value decreases with the increasing weight of limbs in relation to the trunk weight. It is a more or less linear relationship. Low weight of limbs in Posture No. 2 changes the loss of postural stability to the limit stability condition. Hence, for sma

44、ll limb weights the generalized coordinates configuration has little effect on the change of c.o.m. position. Raising the trunk in Posture No. 3 produced higher LSM values. The value of 65% is considered the limit weight of limbs at which the robot can no longer operate in the alternative QUADRUPED

45、configuration.Fig. 3. Weight of limbs relative to the total weight of the robot vs. LSM value for three different postures. The bar chart in Fig. 4 below represents the influence of the weight distribution between the segments of hexaquad bimorphic robot on its static stability. The dashed line repr

46、esents the stability limit. As it can be figured out from the graph, also in this case the tripod gait features always a large stability margin. For the remaining postures stability can be achieved only when the c.o.m. is located on the single-axis joint or on the rear segment of the trunk. For unco

47、mpromised functionality the walking robot should be able to operate in four-legged configuration which requires the design ratio between the trunk segments KP/KM/KT to be close to 20%/40%/40% or 20%/30%/50%.Fig. 4. Weights of trunk segments relative to the total weight of the robot vs. LSM value for

48、 three different postures. The statically-stable postures of the analysed hexa-quad bimorphic robot are illustrated in the graphs in Fig. 5 and Fig. 6. The dots represent the positions of the tips of legs in contact with the ground and the circles represent the legs in the transfer phase. The point

49、co-ordinates were calculated on the basis of pedipulator forward kinematics. The centre-of-mass position is marked with a cross and its co-ordinates were figured out from the simulation model. This method of representation enables prompt verification of static stability.Fig. 5. Centre-of-mass positi

50、on shown against the support polygon of a robot walking in tripod gait in hexapod configuration (Posture No. 1),20%/40%/40% weight ratio of the trunk segments.Fig. 6. Centre-of-mass position shown against the support polygon of a robot in quadruped configuration (Posture No. 3), 20%/30%/50% weightra

51、tio of the trunk segments.5. Conclusions The paper has demonstrated a significant influence of the weight distribution configuration on the static stability and, in consequence, also the speed, the stride length, the method of control and mobility of the robot. Such analyses can be carried out for w

52、alking robots already at the engineering stage by using simulation models. Note that while the distribution of weight can be ignored in the case of conventional hexapods it is of primary importance in the case of the hexa-quad bimorphic robots. With incorrectly designed weights of components it may

53、be impossible for the robot to use the alternative posture. In the case of the analysed prototype of hexa-quad bimorphic robot the weight distribution expressed as the components weights relative to the total weight of the robot is close to the value critical for using the quadruped configuration. B

54、y verification of the chosen configurations, which was the subject of this research, we can only define the range in which effective weight distribution can be found. In order to find this parameter more complex analyses would need to be carried out in the pre-determined range. Therefore, such analy

55、ses can be included in process of engineering fulfilling the role of preliminary calculations, which need to be followed by check examinations after structural features have been defined in the next step of design.指 导 教 师 评 语 外文翻译成绩:指导教师签字: 年 月 日注:1. 指导教师对译文进行评阅时应注意以下几个方面:翻译的外文文献与毕业设计(论文)的主题是否高度相关,并作为外文参考文献列入毕业设计(论文)的参考文献;翻译的外文文献字数是否达到规定数量(3 000字以上);译文语言是否准确、通顺、具有参考价值。2. 外文原文应以附件的方式置于译文之后。- 12 -

展开阅读全文
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!