在线分析仪表基础教程1

上传人:沈*** 文档编号:87512918 上传时间:2022-05-09 格式:DOC 页数:65 大小:2.31MB
收藏 版权申诉 举报 下载
在线分析仪表基础教程1_第1页
第1页 / 共65页
在线分析仪表基础教程1_第2页
第2页 / 共65页
在线分析仪表基础教程1_第3页
第3页 / 共65页
资源描述:

《在线分析仪表基础教程1》由会员分享,可在线阅读,更多相关《在线分析仪表基础教程1(65页珍藏版)》请在装配图网上搜索。

1、在线分析仪表基础教程lyx在线分析仪表目录1在线分析仪表基础知识 22红外线气体分析仪 43热导式气体分析仪 94顺磁式氧分析仪 145微量氧分析仪(燃料电池式) 256氧化锆分析仪 287微量水分仪 348总碳氢分析仪 379在线色谱分析仪 3810硫分析仪 4911工业PH计 5712工业电导率测量仪 6013 溶解氧分析仪(Disolved Oxygen ) 6314在线余氯分析仪 6515浊度计 6816氧化还原电位计(ORP 7017硅酸根分析仪 7218工业钠度计 7519 污染指数测量仪 7620在线分析仪表的取样预处理系统及掩蔽体 771在线分析仪表基础知识在线分析仪器(on-

2、line analyzers),又称过程分析仪器(process analyzers),或质量监测仪表(quality monitoring instrument ),是指直接安装在工业生产流程或其它源液体 现场。对被测介质的组成或物性参数进行自动连续测量的仪器。在线分析仪器广泛应用于工业生产的实时分析和环境质量及污染排放的连续监测。国内早期的在线仪器起步于五十年 代,应用于六十年代,脱胎于现场的就地仪表;因许多仪表受制现场人文环境和物理环境, 不便于人长期观察,而测量数据又很重要,必须取得间隙数据和不间断数据,所以就想到了现场数据信号的传输,于是便诞生了在线仪器。 在线分析仪器是从在线仪器逐

3、步分化出来的。 到如今,它依然是仪表中的一路旁支,在线分析仪器,而与实验室分析并行不悖。随着国内实验室分析仪仪器化程度的不断提高,特别是工业化应用程序较高的现代企业实验室,实验室分析实际上已经涵盖了大部分在线分析仪器,只是许多分析仪器缺少信号输出且在取样频率上无法做到在线分析仪器的即时化管理模式。也就是说:你的分析仪,只要有4,20MA输出电路板,改进你的进样模式,安装好接受终端,它就是在线分析仪。国产第一台在线分 析仪是六十年代生产的属于热工仪表的红外烟道分析仪,C02。分析仪表是对物质的成分及性质进行分析和测量的仪表。在现代工业生产过程中,必须对生产过程的原料、成品、半成品的化学成分(比如

4、水分含量、氧分含量)、密度、Ph值、电导率、等进行自动检测并参与自动控制,以达到优质高产、降低能源消耗和产品成本,确 保安全生产和保护环境的目的。1.1在线分析仪表及在线分析系统的构成分析的方法有两种类型,一种是定期采样并通过实验室测定的实验分析方法(这种方法所用到的仪表称为实验室分析仪表或离线分析仪表)。另一种是利用仪表连续测定被测物质的含量或性质的自动分析方法(这种方法所用到的仪表称为过程分析仪表或在线分析仪表)。分析仪表基于多种测量原理,在进行分析测量时,需要根据被测物质的物理或化学特性来选择适当的检测手段和仪表。按照使用场合来分,分析仪表又分为实验室分析仪表、在线分析仪表(有些书中也叫

5、过程分析仪表、自动分析仪表)。在线分析仪表都采用现场安装方式,它可以自动采样、预处 理,自动分析、信号处理以及远传,是专门用于生产过程的检测和控制,在过程控制中起着 常规仪表不可替代的重要作用。在线分析仪表(on-li ne an alyzers)又称过程分析仪表(process an alyzers),是指直接安装在工艺过程中,对物料的组成成分或物性参数进行自动连续分析的一类仪表通常在线分析仪表(一般安装在分析小屋或专门的保护装置中)和样品(有气体、液体、固体)预处理装置(一般安装在取样点附近)共同组成一个在线测量系统,以保证良好的环 境适应性和高可靠性,其典型的基本组成图如下图所示。取样装

6、置从生产设备中自动快速地提取待分析的样品,前级预处理装置对该样品进行初步冷却、除水、除尘、加热、气化、减压和过滤等处理,预处理装置对该样品进行进一步步 冷却、除水、除尘、加热、气化、减压和过滤等处理,还实现流路切换、样品分配等功能, 为分析仪仪表提供符合技术要求的样品。公用系统为整个系统提供蒸汽、冷却水、仪表空气电源等。样品经分析仪表分析处理后得到代表样品信息的电信号通过电缆远传到DCS丄取样及前=i 样品来自工艺管线1级预处理L预处理装置上位机(DCS)分析仪表 本体公用系统(包括:仪表空 气、蒸汽、冷却水、电源 等样品管线电源、信号线仪表空气、蒸汽、冷却水、管线1.2在线分析仪表的分类按测

7、定方法分:光学分析仪器、电化学分析仪器、色谱分析仪器、物性分析仪器、热分 析仪器等。按被测介质的相态分:气体分析仪和液体分析仪。其中气体分析仪表包括红外线分析 仪、热导式气体分析仪(氢表、氩表)、氧化锆、磁力机械氧分析仪、热磁式氧分析仪、磁压式氧分析仪、激光烟气分析仪、折射仪、硫比值分析仪、微量水、微量氧、CEMS烟气分析仪、烃分析仪、色谱分析仪、质谱分析仪、拉曼光谱分析仪等等。液体分析仪表主要是常见的水分析仪表包括PH计、电导仪、COD DO TOC ORP浊度计、氨氮分析仪、水中油、余氯分析仪等等。以上分类方法不是绝对的, 比如电容式微量水分仪既可以测量气体中的微量水分又可以 处理液体中的

8、微量水分。但是习惯上把它归在气体分析仪表中。1.3在线分析仪表常用的浓度单位在线分析中气体浓度的表示方法有:摩尔分数、体积分数、质量浓度、质量分数、物质的量浓度等。在线分析仪表中最常用的是体积分数。摩尔分数一一即待测组分的物质的量与混合气体中各组分物质的量的总和之比。常用的单位是 % 10-6、10-9,即我们以前常用的 vol(摩尔百分比)、ppmmol、ppb mol。 体积分数一一即待测组分的体积与混合气体中各组分体积的总和之比。常用的单位是 % 10-6、10-9,即我们以前常用的 %vol(体积百分比)、ppmvol、ppb vol。 对于理想气体来说,摩尔分数=体积分数,因为在标准

9、状态下1 mol任何气体的体积都 是22.4升。质量浓度一一即待测组分的质量与混合气体(或夜体)的体积之比。常用的单位是 kg/m3、g/m3、mg/ml、mg/l、口 g/l 。质量分数一一即待测组分的质量与混合气体(或液体)中各组分的质量总和之比。常用的单位是 % 10-6、10-9,即我们以前常用的 % wt(质量百分比)、ppm wt、ppb wt。气体分析中,一般不单独使用质量分数表示方法,仅用于气体和液体混合物浓度之间的相互换算。气体浓度单位换算表 1 (20C、101.325KPa下,空气中)浓度单位换算后单位需乘的换算系数说明卩g/L1M气体组分的摩尔质量,gppm vol24

10、.04/M24.04 20 C,101.325KPa 下,1mol 气mg/m体分子的体积,L,24.02=22.4 X【(273.15+20 )- 273.15 】ppm wt0.83010.8301=24.04 - 28.9628.96 干空气的摩尔质量,gmg/mM/24.04ppm vol卩g/LM/24.04ppm volM/28.96mg/m1.20471.2047=1 - 0.8301ppm wt卩g/L1.2047ppm vol28.96/M注:女口 ppm wt(20 C,空气中)为ppm wt(20 C,混合气体中)时,用ML代替28.96即可,Mk为混合气体的平均摩尔质量

11、,go1.4在线分析仪表的主要性能指标 在线分析仪表的性能指标含义广泛,但大体上可以分成两类。一类性能指标与仪器的工作范围和工作条件有关。工作范围主要是指测量对象、测量范围等;工作条件包括环境条件、样品条件、供电供气要求,仪表的防爆性能和防护等级等。另一类性能指标与仪器的分析信号,即仪器的响应值有关。这类指标主要有灵敏度、检出限、重复性、准确度、分辨率、稳定性、线性范围、响应时间等。检出限(limit of detection )是指能产生一个确证在样品中存在被测物质的分析信号所需的该物质的最小含量或最小浓度,是表征和评价分仪器检测能力的基本指标。重复性(repeatability)又称重复性

12、误差。重复性误差是指仪器在操作条件不变的情况下,多次分析结果之间的偏差。精密度一一是指多次重复测定同一量时各次测定值之间彼此相符合的程度,表示测定 过程中随机误差的大小,一般用标准偏差表征。仪器的准确度(accuracy )是指在一定测量条件下,多次测定的平均值与真值相符 合的程度,表示仪器的指示值接近真值的能力。仪器的准确度有称精确度,简称精度。分辨率(resolutio n)又称分辨力或分辨能力,是指仪器能区分开最邻近示量值的能力。无急定性一一是指在规定的工作条件下,仪器保持其计量特性不变的能力。分析仪器的稳定性,主要是指分析仪器响应值随时间的变化特性。稳定性可用噪声和漂移来表征。线性范围

13、一一是指校正曲线所跨越的最大线性区间,用来表示对被测组分含量或浓度的适应性。仪器的线性范围越宽越好。线性度一一又称线性度误差或非线性误差,一般是指仪表的输出曲线与相应直线之间的 最大偏差,用该偏差与仪器量程的百分数表示。2红外线气体分析仪红外线是一种看不见的光,其波长范围为0.78 1000微米。它在红光界限以外,所以得名红外线。红外线可分为三部分,即近红外线,波长为0.751.50卩m之间;中红外线,波长为1.506.0卩m之间;远红外线,波长为 6.01000卩m之间。不可见光疑可见光馥不可见他可见光光谱线太阳光谱图波长一一在光的传播方向上,相邻两光波同相位点间的距离称为波长。波数一一波数

14、是描述红外辐射的一个参量,是指每厘米长度内所含红外波的数目。频率 单位时间内光波振动的周数。光子能量一一光波以辐射的形式发射、传播或接受的能量,用E表示,单位为J。特征吸收波长一一在近红外波段和中红外波段,红外辐射能量较小, 不能引起分子中电子能级的跃迁,而只能被样品分子吸收,引起分子振动能级的跃迁,所以红外吸收光谱也称 分子振动光谱。当某一波长红外辐射的能量恰好等于某种分子振动能级的能量之差时,才会被该种分子吸收,并产生相应的振动能级跃迁,这一波长便称为该种分子的特征吸收波长。2.1红外线气体分析 仪的基本原理其工作原理是基于某些气体对红外线的选择性吸收。红外线分析仪常用的红外线波长为212

15、卩m简单说就是将待测气体连续不断的通过一定长度和容积的容器,从容器可 以透光的两个端面的中的一个端面一侧入射一束红外光,然后在另一个端面测定红外线的辐射强度,然后依据红外线的吸收与吸光物质的浓度成正比就可知道被测气体的浓度。本项目中采用的是 ABB A02000系列仪表,配以 URAR2啦外模块。朗伯一比尔定律一一其物理意义是当一束平行单色光垂直通过某一均匀非散射的吸光物质时,其吸光度与吸光物质的浓度及吸收层厚度成正比。这就是红外线气体分析仪的测量依据。2.2红外线气体分析仪的特点1、能测量多种气体除了单原子的惰性气体和具有对称结构无极性的双原子分子气体外,CO C02 NO N02NH3等无

16、机物、CH4 C2H4等烷烃、烯烃和其他烃类及有机物都可用红外分析器进行测量;2、测量范围宽可分析气体的上限达 100%下限达几个 ppm的浓度。进行精细化处理后,还可以进行 痕量分析;3、灵敏度高具有很高的监测灵敏度,气体浓度有微小变化都能分辨出来;4、测量精度高一般都在+/-2%FS,不少产品达到+/-1%FS。与其他分析手段相比,它的精度较高且稳定 性好;5、反应快响应时间一般在10S以内6、有良好的选择性红外分析器有很高的选择性系数,因此它特别适合于对多组分混合气体中某一待分析组分的测量,而且当混合气体中一种或几种组分的浓度发生变化时,并不影响对待分析组分的测量。2.3红外分析仪基本结

17、构及主要部件红外线气体分析仪一般由气路和电路两部分组成,它的气路和电路的联系部件也是核心部分是发送器,发送器是红外分析仪的“心脏”部分,它将被测组分浓度的变化转为某种电 参数的变化,并通过相应的电路转换成电压或电流输出。发送器由光学系统和检测器两部分组成,主要构成部件有如下一些,红外辐射光源、气室和滤光元件、检测器测量原理一个是测量室,一个是参比室。两室通过切光板以一定周期同时或交替开闭光路。在测量室中导入被测气体后,具有被测气体特有波长的光被吸收,从而使透过测量室这一光路而进入红外线接收气室的光通量减少。气体浓度越高,进入到红外线接收气室的光通量就越少;而透过参比室的光通量是一定的,进入到红

18、外线接收气室的光通量也一定。因此,被测气体H11312141. 光源2. 滤光片3. 分光器4. 马达5. 切光片6. 样气入口7. 样品池8. 参比池9. 样气出口10. 检测器,左11. 检测器,右12. 微流量传感器13. 光耦合器14. 滑动触头,可调常见红外线气体发送器示意图浓度越高,透过测量室和参比室的光通量差值就越大。这个光通量差值是以一定周期振动的振幅投射到红外线接收气室的。接收气室用几微米厚的金属薄膜分隔为两半部,室内封有浓度较大的被测组分气体, 在吸收波长范围内能将射入的红外线全部吸收,从而使脉动的光通量变为温度的周期变化, 再可根据气态方程使温度的变化转换为压力的变化,然

19、后用电容式7在线分析仪表基础教程 lyx 传感器来检测,经过放大处理后指示出被测气体浓度。2.4发送器主要部件光源按光源的结构分类,可分为单光源和双光源两种。按发光体分类,主要有以下几种:合 金发光源、陶瓷光源、激光光源 切光片切光片的作用是把辐射光源的红外光变成断续的光,即对红外光进行调制。 调制的目的是使检测器产生的信号成为交流信号,便于放大器放大,同时改善检测器的响应时间特性。 气室红外分析仪中的气室包括测量气室、参比气室、和滤波气室,他们的结构基本相同,都 是圆筒形,两端都是用晶片密封。气室要求内壁光洁度高,不吸收红外线,不吸附气体,化 学性能稳定。气室的材料采用黄铜镀金、玻璃镀金或铝

20、合金,内壁表面都要求抛光。金的化 学性能极为稳定,气室的内壁永远也不氧化,所以能保持很高的反射系数。气室常用的窗口材料有:氟化锂 透射限为6.5卩m氟化钙 透射限为13卩m蓝宝石 透射限为5.5卩m 熔凝石英 透射限为4.5卩m氯化钠 透射限为25卩m参比气室和滤波气室是密封不可拆 的。测量气室有可能受到污染,采用橡胶密封,注意维护和定期更换,晶片上沾染灰尘、污 物、起毛都会引起灵敏度下降,测量误差和零点漂移增大,因此必须保持晶片的清洁,可用 檫镜纸或绸布檫拭,注意不要用手接触晶片表面。滤光片滤光片是一种光学滤波元件。它是基于各种不同的光学现象(吸收、干涉、选择性反射、 偏振等)而工作的。采用

21、滤光片可以改变测量气室的辐射能量和光谱成分,可消除或减少散射和干扰组分吸收辐射的影响,可以使具有特征吸收波长的红外辐射通过。干涉滤光片是一种带通滤光片,根据光线通过薄膜时发生干涉现象而制成。干涉滤光片可以得到较窄的通带,其透过波长可以通过镀层材料的折射率、厚度及层次等加以调整。检测器薄膜电容检测器、半导体检测器、微流量检测器。薄膜电容检测的工作原理,特点.薄膜电容检侧器又称薄膜微音器 ,由金属薄膜动极和定极组成电容器 ,当接收气室的气 体压力受红外辐射能的影响而变化时 ,推动电容动片相对于定片移动 ,把被测组分浓度变化 转变成电容量变化.特点:温度变化影响小、选择性好、灵敏度高。缺点是薄膜易受

22、机械振动的影响,调制 频率不能提高,放大器制作比较困难,体积较大等。半导体检测器的工作原理,特点半导体检测器是利用半导体光电效应的原理制成的,当红外光照射到半导体上时,它吸收光子能量使电子状态发生变化, 产生自由电子或自由孔穴, 引起电导率的变化, 即电阻值 的变化,所以又称为光电导率检测器或光敏电阻。特点:结构简单、制造容易、体积小、寿命长、响应迅速。可采用更高的调制频率,使 放大器的制作更为容易。它与窄带干涉滤光片配合使用,可以制成通用性强快速响应的红外 检测器,改变测量组分时,只需改换干涉滤光片的通过波长和仪表刻度即可。其缺点是锑化铟受温度变化影响大。微流量检测器原理、特点微流量检测器是

23、一种测量微小气体流量的新型检测器件,其传感元件是两个微型热丝电阻,和另外两个辅助电阻构成惠斯通电桥。热丝电阻通电加热至一定温度,当气体流过时, 带走部分热量使热丝冷却,电阻变化,通过电桥转变成电压信号。特点:价格便宜、光学系统体积缩小、可靠性、耐振性等性能都提高。2.5红外线气体分析仪结构类型在线分析仪表基础教程 lyx 从是否把红外光变成单色光来划分,可以分为:分光型(色散型)和不分光型(非色散 型)。分光型的优点:选择性好、灵敏度高;缺点是分光后能量小, 分光系统任一元件的微小 位移都会影响分光的波长。不分光型的优点:灵敏度高、具有叫高的信号 /噪声比和良好的稳定性。缺点是待测样 品各组分

24、间有重叠的吸收峰时会给测量带来干扰。从光学系统来划分,可分为双光路和单光路两种双光路 从两个相同的光源或者精确分配的一个光源,发出两路彼此平行的红外光束, 分别通过几何光路相同的分析气室、参比气室后进入检测器。单光路 从光源发出的单束红外光,只通过一个几何光路。 但是对于检测器而言, 还是接受两个不同波长的红外光束,只是在不同的时间内到达检测器而已,它是利用调治盘的旋转,将光源发出的光调制成不同波长的红外光束,轮流通过分析气室送往检测器,实现时间上的双光路。从采用的检测器类型来划分,目前主要有薄膜电容检测器、半导体检测器、微流量检测器。2.6红外线气体分析仪调校的主要内容和要求相位平衡调整调整

25、切光片轴心位置,使其处在两束红外光的对称点上。要求切光片同时遮挡或同时漏出两个光源,即所谓同步,使两个光路作用在检测器室两侧窗口上的光面积相等。光路平衡的调整 调整参比光路上的偏心遮光片,改变参比光路的光通量,使测量、参比两光路的光能量相等。零点和量程校准分别通零点气和量程气,反复校准仪表零点和量程。2.7常见故障及处理红外线气体分析仪种类很多,故障和处理方法也不尽相同,下表列出了一些常见的故障及其处理方法,供参考:红外线气体分析仪常见故障及处理方法现象原因处理方法仪表指示回零切光马达启动力矩不足 切光马达坏 电源未接通检测器电容短路检查切光马达和切光片 更换切光马达检查通电检查确认,返厂修理

26、仪表指示满度连接电缆断路双光路中的一组光源断路 参比电压单端与地短路检查电缆并修理 检查并修理光路 检查并清除仪表灵敏度下降元件老化 电压下降 前置放大器接触不良 检测器漏气光源老化光路透镜污染更换检查电源稳压清洁接插件并使接触良好 返厂修理更换发热丝擦拭透镜或抛光仪表零点连续正漂测量气室被污染或腐蚀 晶片上有尘埃 滤波气室漏气 测量气室漏气清洗或返厂修理 用擦镜纸擦拭 检查密封并重新充气 检杳密封马达和切光片啮合不好重新啮合减速齿轮9在线分析仪表基础教程lyx切光片松动检查紧固仪表指示出现摆动电路系统滤波电容坏更换滤波电容干扰稳压电源不稳定检查并修理稳压电源电路系统接地不良检查接插件光路不平

27、衡干扰:一台红外线气体分析仪预热后通入氮气时, 输出很大,这是由于切光片相位不平衡及光 路不平衡引起,因此只要调整相位调节选钮使输出达到小, 再调整光路平衡选钮使输出最小 即可。然后同零点气和量程气,反复校准仪表零点和量程。水分干扰:零点气中若有水分,红外线气体分析器标定后,会引起负误差,在近红外区域,水有连 续的特征吸收波谱,若标定用的零点气中含有水分时,将造成仪器的零位的负偏,标定后仪器示值必然比实际值偏低,从而起负误差。温度变化的干扰:红外线气体分析仪检测过程需要在恒定的温度下进行。环境温度发生变化将直接影响红外光源的稳定,影响红外辐射的强度,影响测量气室连续流动的气样密度,还将直接影响

28、检测器的正常工作。如果温度大大超过正常状态,检测器的输出阻抗下降,导致仪器不能正常 工作,甚至损坏检测器。红外分析仪内部一般有温控装置及超温保护电路,即使如此,有的 仪器示值特别是微量分析仪器,亦可观察出环境温度变化对检测的影响,在夏季环境温度较高时尤为明显。在这种情况下,需改变环境温度,设置空调是一种解决办法。大气压力波动的干扰:大气压力即使在同一个地区、同一天内也是有变化的。 若天气骤变时,变化的幅度较大。大气压力的这种变化, 对气样放空流速有直接影响。 经测量气室后直接放空的气样,会随大气压力的变化使气室中气样的密度发生变化,从而造成附加误差。3热导式气体分析仪热量传递的三种方式:热对流

29、、热辐射、热传导。热传导系数是对物质导热能力大小的 量度,热传导系数很大的物体是优良的热导体;而热传导系数小的是热的不良导体或为热绝缘体。3.1相对热传导系数气体热传导系 数的绝对值很小,而 且基本在同一数量级内,彼此相差并不十分悬殊,因此工程上通常采用“相对热传导系数”这一概念。所谓相对热传导系数是指各种气体的热传 导系数与相同条件下空气热传导系数的比值。几种气体在0C时的相对热传导系数气体名称相对热导率九/ -空气气体名称相对热导率空气空气1.000一氧化碳0.964氢7.130二氧化碳0.614氧1.015二氧化硫0.344氨0.998氨0.897氦5.91甲烷1.318硫化氢0.538

30、乙烷0.807从表中可以看出HL的导热系数特别大,是一般气体的7倍多。在测量时必须满足以下两个条件,一是待测组分的导热系数与混合气体中其他组分的导热系数相差要大,越大越灵敏;另一个是要求其他各组分的导热系数相等或十分接近。这样混合气体的导热系数随被测组分的体积含量变化而变化,因此只要测量出混合气体的导热系数便可得知被测组分的含 量。在化肥企业中常用的氢含量分析仪采用的就是这个原理。3.2热导式气体分析仪的基本原理热导式气体分析仪是一种物理类的气体分析仪表。它根据不同气体具有不同热传导能力的原理,通过测定混合气体导热系数来推算其中某些组分的含量。这种分析仪表简单可靠,适用的气体种类较多,是一种基

31、本的分析仪表。热导式气体分析仪的应用范围很广,除通常 用来分析氢气、氨气、二氧化碳、二氧化硫和低浓度可燃性气体含量外,还可作为色谱分析 仪中的检测器用以分析其他成分。本项目中采用的重庆川仪九厂的PA200- ROD热导式气体分析仪。由于气体的热传导系数 很小,它的变化量更小,所以很难用直接方法准确地测量出来。 工业上多采用间接的方法,即通过热导检测器(又称热导池),实际应用中常把气体热 传导系数数的变化转换为电阻的变化,再用电桥来测定。如下图所示样气入样气出电池电阻丝绝缘子热导池原理图11在线分析仪表基础教程lyx张紧悬吊在上图是热导池的示图,把一根电阻率较大的而且温度系数也较大的电阻丝,一个

32、导热性能良好的圆筒形金属壳体的中心,在壳体的两端有气体进出口,圆筒内充满待测 气体,电阻丝上通以恒定的电流加热。由于电阻丝通过的电流是恒定的,电阻上单位时间内所产生的热量也是定值。当待测样品气体以缓慢的速度通过池室时,电阻丝上的热量将会由(这中气体以热传导的方式传给池壁。当气体的传热速率与电流在电阻丝上的发热率相等时 状态称为热平衡,电阻丝的温度就会稳定在某一个数值上,这个平衡温度决定了电阻丝的阻值。如果混合气体中待测组分的浓度发生变化,混合气体的热导率也随之变化,气体的导热 速率和电阻丝的平衡温度也将随之变化,最终导致电阻丝的阻值产生相应变化,从而实现了 气体热导率与电阻丝阻值之间变化量的转

33、换。热导式气体分析仪的热敏元件主要有半导体敏感元件和金属电阻丝两类。半导体敏感 元件体积小、热惯性小,电阻温度系数大,所以灵敏度高,时间滞后小。在铂线圈上烧结珠形 金属氧化物作为敏感元件,再在内电阻、发热量均相等的同样铂线圈上绕结对气体无反应的 材料作为补偿用元件。这两种元件作为两臂构成电桥电路,即是测量回路。半导体金属氧化物敏感元件吸附被测气体时,电导率和热导率即发生变化,元件的散热状态也随之变化。元件温度变化使铂线圈的电阻变化,电桥遂有一不平衡电压输出,据此可检测气体的浓度。-0ii在线分析仪表基础教程lyxii在线分析仪表基础教程lyx电桥原理图ii在线分析仪表基础教程lyx常用测量桥路

34、图一#在线分析仪表基础教程lyx常用测量桥路图二测量臂是样品气流通的热导池,参比臂是封装参比气的热导池。参比臂的作用如下: 测量臂通过对流和辐射作用散失的热量与参比臂相差无几,两者相互抵消,则热丝阻值变化主要取决于热传导,即气体热导能力的变化。 当环境温度变化引起热导池臂温度变化时,参比臂与测量臂同向变化,相互抵消,有利于削弱环境温度变化对测量结果的影响。改变参比气浓度,电桥检测的下限浓度也随之改变,便于改变仪器的测量范围。3.4热导式气体分析仪的调整和维护注意事项热导式气体分析仪调校时应注意的问题:1)分析期必定期校准。2)分析期必须预热至稳定。3)桥压和桥流要达到规定值。3)标准气中的背景

35、气热导率要与实际被发行气体的背景气热导率相同,否则要修正。4)标准气流速要等于工作时被测气体流速。5)要准确校准时,需多校几点热导式气体分析仪对零点气和量程气的要求:1) 零点气待测组分浓度等于或略高于量程下限值,而且其背景气组分应与工艺中背景 气组分性质相同或接近。2) 量程气待测组分浓度等于满量程的90%或接近工艺控制指标浓度,而且其背景气组分应与工艺中背景气组分性质相同或接近。热导式气体分析仪热丝电流大小对测量的影响:增大热丝电流可以提高热导式分析器的灵敏度。但是电流加大后,热丝温度亦升高,从而增加了辐射热损失,降低了精度。同时电流加大将减少热丝寿命、增大噪声、降低可靠性。所以热丝电流选

36、多 大,是需要综合考虑的。热导式气体分析仪“显示仪表示值不稳”的处理方法:具体的原因是检测器温控系统感温元件故障。处理方法是在感温元件与池体插孔的缝隙中填满并塞紧铝箔,以提高测温元件的感温灵敏度。4顺磁式氧分析仪顺磁式氧分析仪是根据氧气的体积磁化率比一般气体高得多,在磁场中具有极高的顺磁特性的原理制成的一种测量气体中含氧量的分析仪器。顺磁式氧分析仪, 也可叫做磁效应式氧分析仪、或磁式氧分析仪, 我们通常通称为磁氧分析仪。它一般分为磁机械式、磁压力式和氧热磁对流式分析仪三种。任何物质,在外界磁场的作用下,都会被磁化,呈现出一定的磁特性。物质在外磁场中 被磁化,其本身会产生一个附加磁场,附加磁场与

37、外磁场方向相同,该物质被吸引,表现为 顺磁性;方向相反,该物质被排斥,表现为逆磁性。气体介质处于磁场也会被磁化,而且根 据气体的不同也分别表现出顺磁性或逆磁性。如Q、NO NO等是顺磁性气体,H2、N2、CQ、CH等是逆磁性气体。体积磁化率一一任何物质,在外界磁场的作用下,都会被磁化,不同 物质受磁化的程度不同,可以用磁化强度M来表示:M= kH式中M磁化强度;H 外磁场强度;K物质的体积磁化率;K的物理意义是指在单位磁场作用下,单位体积的物质的磁化强度。磁化率为正(k 0)称为顺磁性物质,它们在外磁场中被吸引;kv0贝U称为逆磁性物质,它在外磁场中被排斥;k值愈大,则受吸引和排斥的力愈大。

38、常见气体的体积磁化率(0 C)气体名称化学符号体积磁化率-6KX 10(C.G.S.M.)氧O+ 146一氧化碳NO+53空气-+30.8二氧化碳NO+9氧化亚氮NO+3乙烯C Ht+3乙炔GH+ 1甲烷CH-1从上表可以看出,氧是顺磁性物质,其体积磁化率要比其他气体的体积磁化率大的多。顺磁式氧分析器:根据氧气的体积磁化率比一般气体高得多,在磁场中具有极高的顺磁特性的原理制成的一种测量气体中含氧量的分析仪器。本项目中采用了重庆川仪九厂的PA200-CJ磁力机械式气体分析仪。4.1磁力机械式气体分析仪的工作原理在一个封闭的气室中, 装有两对不均匀的磁极, 它们的磁场强度梯度正好相反。两个空心球(

39、俗称哑铃)置于两对磁极的间隙中,用弹性金属带固定在壳体上,这样,哑铃只能以 金属带为轴转到而不能上下移动。在哑铃与金属带交点处装一平面反射镜。被测样气由入口进入气室后,它就充满了气室。两个空心球被样气所包围,被测样气的氧含量不同其体积磁 化率k值也不同,球体所受到的作用力就不同。如果哑铃了的两个空心球体积相同,体积磁17在线分析仪表基础教程 lyx 化值相等,两个球体受到的力大小相等、方向相反,对于中心支撑点金属带而言,它受到的 是一个力偶的作用, 这个力偶促使哑铃以金属带为轴心偏转,在哑铃做角位移的同时, 金属带会产生一个抵抗哑铃偏转的复位力矩,与转动力矩相平衡,被测样气中的氧含量不同,旋转

40、力矩和恢复力矩的平衡位置不同,也就是哑铃的偏转角度不同,这样,哑铃偏转角度的大小,就反映了被测气体中氧含量的多少。转动力矩反射镜磁力机械式氧分析仪测量部件示意图对哑铃球偏转角度的测量,大多是采用下图所示的光电系统来完成的。由光源发出的光投射在平面反射镜上,反射镜再把光束反射到两个光电元件(如硅光电池、硒光电池)上。 在被测样气不含氧时, 空心球处于磁场的中间位置,此时,平面反射镜将光源发出的光束均衡地反射在两光电元件上, 两个光电元件接收的光能相等。 一般两个光电采用差动方式连接, 因此,光电组件输出为零,仪器最终输出也为零。当被测样气中有氧存在时,氧分子受磁场吸引, 沿磁场强度梯度方向形成氧

41、分压差,其大小随氧含量不同而异, 该压力差驱动空心球移出磁场中心位置,于是,哑铃球偏转了一个角度,反射镜随之偏转,反射出的光束也随之偏移,这时,两个光电元件接收到的光能量出 现差值,光电组件有毫伏电压信号输出。被测气体中氧含量越高,光电组件输出信号越大。 该信号经反馈放大器放大作为仪器检测输出。为了改善仪器的输出特性,空心球上环绕一匝金属线圈。该金属线圈在电路上接收输出电流的反馈,对哑铃产生一个附加复位力矩,从而使哑铃的偏转角度大大减小#在线分析仪表基础教程lyx光源 透镜组丄0202 0%19在线分析仪表基础教程lyx#在线分析仪表基础教程lyx磁力机械式氧分析仪光学测量系统原理图4.2磁力

42、机械式氧分析仪的主要特点和使用注意事项1、主要特点:与热磁式分析仪相比,磁力机械式氧分析仪有如下特点: 它是对氧的顺磁性直接测量的分析仪,在测量中,不受被测气体导热性变化、密度变化等影响。 在0,100%02范围内线性刻度、测量精度较高,测量误差可低至土 0.1%02 灵敏度高,除了用于常量的测量以外,还可用于微量氧(02?)的测量。2、注意事项: 磁力机械式氧分析仪基于对磁化率的直接测量, 像氧氮等一些强磁性气体会对测量带 来严重干扰,所以应将这些干扰组分除掉。 此外,一些较强逆磁性气体也会引起较大的测量 误差。如氙气,若样品中含有较多的这类气体,也应予以清除或对测量结果采取修正措施。 氧气

43、的体积磁化率是压力、温度的函数,样气压力、温度的变化以及环境温度的变化,都会对测量结果带来影响。因此,必须稳定样气的压力,使其符合调校仪器时的压力值。环境温度和整个检修部件,均应工作在设计的温度范围内,一般来说,各种型号的磁力机械式氧分析仪均带有温度控制系统,以维持检测部件在恒温条件下工作。 无论是短时间的剧烈振动,轻微的持续振动,都会削弱磁性材料的磁场强度,因此,该类仪器多将检测器等敏感部件安装在防振装置中。当然,仪器安装位置也应避开振源并采取适当的防振措施。 另外,任何电气线路不允许穿过这些敏感部分, 以防电磁干扰和振动干 扰。4.3磁力机械式氧分析仪的检修检修内容: 更换光源; 更换检测

44、器; 检查仪表的气密性。 检查仪表的绝缘电阻; 测量交流纹波电压; 测试计算反馈增益;调零方法一般的分析器都是以电的形式调节零位,而磁力机械式氧分析仪却是以机械方式调节零点,称为机械调零。其实质是保证气样不含氧时硅光电池对左右两块的光照面积相等,仪器输出为零,为此,测量池可以转动到一个合适的位置固定之,使反射光束以恰当的角度照射在光电池上,这可称为粗调。另外通过机械调节螺钉改变光电池的位置,仔细调整,称之为 细调。在装拆测量池和更换专用光源灯泡,仪器长期运行、测量过程中组分的变化、环境的变化等情况下需进行调零操作。4.4磁压力式氧分析仪 测量原理:根据被测气体在磁场作用下压力的变化量来测量氧含

45、的仪器,我们叫做磁压力式氧分析仪。被测气体进入磁场后, 在磁场作用下气体的压力将发生变化, 致使气体在磁场内和无磁 场空间存在着压力差:请看下面的公式: P=1/2Uobfk巳,压差;U。,,真空磁导率;H,磁场强度;k,被测气体的体积磁化率;由上式中可以看出,压差 p与磁场强度H的平方及被测气体的体积磁化率k的差值也同样存在正比关系: P=1/2UoA(km-kr)km,被测气体的体积磁化率;kr,参比气体的体积磁化率;由上式中可以知道,当分析室结构和参比气体确定后,U0、H、kr均为已知量,km与P有着严格的线性关系。因此可以得出:K m klclk1,被测混合气体中氧的体积磁化率;c1,

46、被测混合气体中氧的体积分数; 上面两式合并,得出下式: P=1/2UoH2(k1c1-kr)这样,被测气体氧的体积分数cl与压差 p有线性关系。这就是磁压分析仪的测量原理。在磁压力式氧分析仪中, 测量室中被测气体的压力变化量被传递到磁场外部的检测器中, 转换为电信号。目前使用的检测器主要有薄膜电容检测器和微流量检测器两种。为了便于信号的检测和调制放大,采用一定频率的通断电流,对磁铁线圈反复激励,使之产生交替变化 的磁场,则检测器测得的信号就变成了交流波动信号了。4.5磁压力式氧分析仪的工作原理氧气有顺磁性。OXYMAT型氧分析仪正是利用了这一原理来测量Q浓度的。在不均匀21OXYMAT 6 磁

47、压式氧分析仪基本结构图在线分析仪表基础教程 lyx 磁场中,氧分子由于其顺磁性, 会朝磁场增强方向移动。当不同氧气浓度的二种气体在同一磁场相遇时,他们之间就会产生一个压力差。样品气经5进入测量腔6。参比气经入口 1和两个参比气通道 3 (左3和右3)进入测 量腔。微流传感器中有两个被加热到120C的镍格栅电阻,和两个辅助电阻组成惠斯通电桥,变化的气流导致镍格栅的阻值发生变化,使电桥产生偏移。参比气可以在镍格栅中通过,所以左右两个参比气通道是相通的。测量开始前,两路参比气压力相等, p = 0 ,所以测量电桥无信号输出。当电磁铁8通电励磁时,在其周围形成一个磁场, 样气中的氧分子被吸引, 朝磁场

48、强度较大 的右侧运动,产生一定的气阻,并推动参比气右 3逆时针流动,通过微流传感器 4,并产生 输出信号。当电磁铁8断电去磁时,磁场消失,右 3参比通道气阻消失,气路通,参比气顺时针流动, 反向经4流向测量室,输出信号恢复。采用一定频率的通断电流,对电磁铁反复励磁和消磁,便可以在测量桥路中得到交流波动信号。信号强度与样气中氧含量成正比。还可以这样理解:受交替变化的磁场影响,A、B两点样气的压力差也交替变化,微量传感器两边的压差 p也随之变化,参比气反复流过传感器,便在测量电桥中产生交流波动信 号,信号强度与参比气压力变化量成正比。而这个压力变化量,又与通道阻力大小成正比, 通道阻力大小又与磁场

49、强度强弱成正比,磁场强弱与样气中的氧含量成正比。一句话:p与样气中的氧含量成正比。微流传感器位于参比气路中, 不直接接触样品气, 所以样气的导热、 比热容和样气的内部摩 擦对测量结果都不会产生影响。 同时,也避免了样气的腐蚀,使传感器的抗腐蚀性能大大提 高。由于测量地点可能存在振动,并由此造成测量误差(噪声),所以仪器额外增加了一个振动传感器10,该传感器无气体流通,其信号可用来测量结果进行补偿。1参比气入口2限流器3. 参比气通道4用于测量的微流量传感器5. 样气入口6. 样气室7. 磁场区8. 通电线圈9. 电磁铁电源10. 样气和参比气出口11. 参臂(一般充氮气,使阻值稳定)西门子OX

50、YMAT磁压力式氧分析仪原理图4.6磁压力式氧分析仪的校准23在线分析仪表基础教程lyx校准方法和参比气的选择磁压力式氧分析仪的校准方法和一般氧分析仪不同,仪器运行和校准需通入参比气体。 根据测量范围不同,磁压力式氧分析仪分别采用N2、O2和空气作参比气。 当测量范围为0,X%02(测量下限为0%02时,用氮作参比气; 当测量范围为 X,100%02(测量上限为100%02时,用氧作参比气; 当测量范围为 20.95%02附近时(如:20,30%02时,用空气作参比气磁压力式分析仪参比气选择表量程介严参考点参比气0,1%020%02N20,30%020%02N220,30%0220.95%02

51、空气20,23%0220.95%02空气97,100%02100%02024.7热磁对流式氧分析仪结构类型:热磁对流式氧分析仪根据其对流形式的不同,可分为内对流式和外对流式两种。两检测器的结构不同,但检测机理均基于热磁对流产生的热效应。内对流式和外对流式主要区别有: 热敏元件与被气体之间的热交换方式不同;内对流式检测器的热敏元件与被测气体之间是隔绝的,它们通过薄壁石英玻璃管进行热交换;而外对流式检测的热敏元件与被测气体之间是直接接触换热。 热磁对流的位置不同;内对流式检测器,热磁对流在热敏元件(中间通道管)内部进行;而外对流式检测器,热磁对流在热敏元件外部进行; 内对流式检测器结构简单, 便于

52、制造和调整。其热敏元件不 与样气直接接触,因此不会与样气发生任何化学反应, 也不会受到样气的玷污和侵蚀, 但热 量传递会受影响,增加了测量滞后时间,灵敏度相对较低。外对流式检测器则与此相反, 由于被测气体与热敏元件直接接触换热,所以测量滞后小、灵敏度较高。输出线性好。另外,它采用双桥结构,能有效地补偿环境温度、电源电压、样 气压力、检测器不水平等因素给测量带来的影响,但其结构比较复杂,不便于制造和调整。4.8内对流式热磁氧分析仪热磁对流一个T型薄壁石英管,在其水平方向(X方向)的管道外壁均匀地绕以加热丝;在水平通道的左端拐角处放置一对小磁极,以形成一恒定的外磁场。在这种设置下,磁场强度曲线和温

53、度场曲线就很清楚了。1 T型薄壁石英管;2加热丝;3磁铁;热磁对流示意图通过示意图,我们可以看到,磁场强度沿X方向按一定的磁场强度梯度衰减,H(X)是变化的。对于水平通道而言,处于不均匀磁场之中,通道左端磁场强度最强,越往右,磁场 强度越弱,而温度场基本上是均匀的。它们之间的相对位置关系是:在磁场强度最大值区域开始建立均匀的温度场。当有顺磁性气体在垂直管道沿Y方向自下而上运动到水平管道入口时,由于受到磁场的吸引而进入水平管道。在其处于磁场强度最大区域的同时,也就置身于加热丝的加热区。 在加热区,顺磁性气体与加热丝进行热交换而使自身温度升高,其体积磁化率随之急剧下降, 受磁场的吸引也随之减弱。而

54、在其后面处于冷态顺磁性气体,在其磁场作用下继续被吸引到水平通道磁场强度最大的区域,就会对先前已经受热的顺磁性气体产生向右方向的推力,使其向右运动而脱离磁场强度最大区域。后进入磁场的顺磁性气体同样被热丝加热,体积磁化率下降,其后,又被后面冷态的顺磁性气体向右推动,脱离磁场。如此 过程连续不断地进行下去,在水平管道就会有气体自左向右地流动,这种气体的流动就称为热磁对流,或称为磁风。内对流式热磁氧分析仪的工作原理:其检测器是一个中间有道通的环形气室,外面均匀地绕有电阻丝。电阻丝通过电流后, 既起到加热作用,又起到测量温度变化的感温作用。电阻丝从中间一分为二,作为两个相邻的桥臂电阻r1/r2与与固定电

55、阻 R1/R2组成测量电桥。在中间通道的左端设置一对小磁极, 以形成恒定的不均匀磁场。内对流式热磁氧分析仪的工作原理如图所示,待测气体从底部入口进入环形气室后,沿两侧流向上端出口。 如果被测混合气体中没有气体岀口气体入口1 225在线分析仪表基础教程lyx#在线分析仪表基础教程lyx热磁式检测器示意图(环形水平通道)顺磁气体存在,这是中间通道内没有气体通过,电阻丝 r1、r2没有热量损失,电阻丝 右的,所以不可能由右端进入中间通道。由于流过恒定电流而保持一定的阻值。当被测气体中含有氧气时,左侧支流中的氧受到磁场吸引而进入中间通道, 从而形成热磁对流, 环形气室右侧支流的氧因远离磁场强度区域,然

56、后由通道右侧排出,受不到磁场的吸引,随右侧支流流向上端出口。 加之磁风的方向是自左向由于热磁对流的结果,左半边电阻丝r1的热量有一部分被气流带走而产热量损失。流经右半边电阻丝r2的气体已经是受热气体,所以r2没有或略有热量损失。 这样就造成电阻丝r1和r2因温度不同产生的阻值差异,从而导致测量电桥失去平衡,有输出信号产生。被 测气体中氧含量越高,磁风的流速就越大,r1和r2的阻值相差就越大。测量电桥的输出信号就越大。由此可见,测量电桥输出信号的大小就反映了被测气体中氧含量多少。环形垂直通道检测器环形垂直检测器与环形水平通道检测器的结构是一样的,只是将环形气室的中间通道沿顺时针方向旋转了 90C

57、。这样做的目的是为了提高分析仪的测量上限。中间通道为垂直状 态后,在通道中除有自上而下的的热磁对流作用力FM外,还有热气体上升而产生的由下而上自然对流作用力 Fr,两个作用力的方向正好相反。在被测气体没有氧气存在时,中间通 道没有热磁对流,只有自下而上的自然对流,此上升气流先流经桥臂电阻r2,使r2产生热量损失,而r1没有热量损失。为了使仪器刻度始点为零,此时应将电桥调至平衡,测量电 桥输出信号为零。随着被浊气体氧含 量的增加,中间通道就有了自上而下的热磁对流产生, 此时的热磁对流会削弱自然对流。随着热磁电流的逐渐加强,自然对流的作用会越来越小, 电阻丝r2的热量损失也越来越小,其阻值逐渐加大

58、,测量电桥失去平衡而有信号输出。氧 含量越高,输出信号越大。当氧含量由0达到某一值时:FM=Fr,热磁对流完全抵消自然对流,此时,中间通道内没有气体流动,检测器输出特性曲线出现拐点,曲线斜率最大,检测 器的灵敏度达到最大值。当氧含量继续增加,FM Fr,热磁对流大于自然对流,这时,中间通道内的气流方向改为由上而下,之后的情况与水平通道相似。由此可见,在环形垂直通道检测器的中间通道中,由于自然的存在,削弱了热磁对流, 以至在氧含量很高的情况下,中间通道内的磁风流速不是很大,从而扩展了仪器测量上限值。气体出口实验证明:这种检测器,在氧含量100%勺情况下,仍能保持较高的灵敏度。气体入口热磁式检测器

59、示意图 (环形垂直通道)环形水平通道和垂直通道检测器在测量范围上的区别如下:1.对于环形水平通道,其测量上限不能超过40%02这是因为,当氧含量增大时,磁风也增大,水平通道中的气体流速同样也增大,气体来不及与r1进行充分的热交换就已到达r2,造成r2的热量损失。随着氧含量增加, r1、r2的热量损失逐渐接近,两者间电阻的差27在线分析仪表基础教程 lyx 值就会越来越小。当氧含量达到50%寸,检测器的灵敏度就会慢慢接近0。2.对于环形垂直通道检测器,其检测上限可达到100%02但是对低含量氧进行测量时,其检测灵敏度很低, 甚至不能测量,这是因为热磁对流受到自然对流干扰较大引起的。仪器选型时,要

60、多加注意。两种检测器的安装注意事项:内对流式热磁氧分析仪安装时,必须保证检测器处于水平位置,否则,会引起较大的测量误差。其原因是:检测室稍有倾斜,就可能改变检测器内的热磁对流和自然对流的相互关 系,热磁对流矢量和自然对流矢量形成的夹角不同,检测器的输出值也会发生变化。安装后要注意检查分析仪的水平度:一般热磁式氧分析仪都装有水准仪,检查水准仪的气泡是否处在标记中间,如有偏移,则调节水平螺钉,使水准仪的气泡正好处在标记中间。 4.9外对流式热磁氧分析仪 工作原理:检测器由测量气室和参比气室组成, 两个气室在结构上完全一样。其中,在测量气室的 底部装有一对磁极, 以形成非均匀磁场, 在参比气室中不设置磁场。 在两个气室的底部装有 既用来加热,又用来测量的热敏元件,两热敏元件的

展开阅读全文
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!