归纳柯西不等式地典型应用

上传人:沈*** 文档编号:83459261 上传时间:2022-05-01 格式:DOC 页数:14 大小:714KB
收藏 版权申诉 举报 下载
归纳柯西不等式地典型应用_第1页
第1页 / 共14页
归纳柯西不等式地典型应用_第2页
第2页 / 共14页
归纳柯西不等式地典型应用_第3页
第3页 / 共14页
资源描述:

《归纳柯西不等式地典型应用》由会员分享,可在线阅读,更多相关《归纳柯西不等式地典型应用(14页珍藏版)》请在装配图网上搜索。

1、word归纳柯西不等式的典型应用【摘要】:柯西不等式是一个非常重要的不等式,本文用五种不同的方法证明了柯西不等式,介绍了如何利用柯西不等式技巧性解题,在证明不等式或等式,解方程,解三角形相关问题,求函数最值等问题的应用方面给出几个典型例子。最后用其证明了点到直线的距离公式,更好的解释了柯西不等式。【关键词】:柯西不等式 ;证明;应用【引言】:本人通过教师在中教法课上学习柯西不等式时,教师给出了一些有关的例题并讲解,由于柯西不等式是一个非常重要的不等式,如果巧妙利用它,在高考可以节省很多宝贵时间,而且得分率高。因此,本文介绍归纳了柯西不等式的典型应用,经过收集与整理资料,得到四类的典型题。【正文

2、】:对任意的实数其中等号当且仅当时成立,其中变式:2. 柯西不等式的证明:证明柯西不等式的方法总共有6 种,下面我们将给出常用的2种证明柯西不等式的方法:1配方法:作差:因为所以,即即当且仅当即时等号成立。2用数学归纳法证明 i当时,有,不等式成立。当时,。因为,故有当且仅当,即时等号成立。ii假设时不等式成立。即当且仅当时等号成立。那么当时,当且仅当时等号成立,即时等号成立。于是时不等式成立。由iii可得对于任意的自然数,柯西不等式成立。3. 柯西不等式在解题中的应用利用柯西不等式来证明恒等式,主要是利用其取等号的充分必要条件来达到目的,或者是利用柯西不等式进展夹逼的方法得证。例3.1.1

3、求证:。证明:由柯西不等式,得由如此可知上式取等号,当且仅当时于是 。很多重要的不等式都可以由柯西不等式导出,而利用柯西不等式的技巧有很多。如常数的巧拆、结构的巧变、巧设数组等,下面略举一、二说明怎样利用柯西不等式证明不等式。为互不相等的正整数,求证:对于任意的正整数,有不等式。证明:由柯西不等式:于是。又因为为互不相等的正整数,故其中最小的数不小于,次小的数不小于,最大的不小于,这样就有。所以有。因为而所以有。例3.2.2:设a,b,c为正数且不相等到,求证:证明:我们利用9与2这两个常数进展巧拆,9=,这样就给我们利用柯西不等式提供了条件。明:2因为a,b,c各不相等, 等号不可能成立,从

4、而原不等式成立。因此,有些问题本身不具备运用柯西不等式的条件,但是我们只要改变一下多项式的形态结构,认清其内在的结构特征,就可以达到利用柯西不等式解题的目的。下面略举一例加以说明。柯西不等式中有三个因式 , ,而一般题目中只有一个或两个因式,为了运用柯西不等式,我们需要设法嵌入一个因式嵌入的因式之和往往是定值,这也是利用柯西不等式的技巧之一。又柯西不等式中诸量 , 具有广泛的选择余地,任意两个元素 , 或 , 的交换,可以得到不同的不等式,因此在证题时根据需要重新安排各量的位置,这种形式上的变更往往会给解题带来意想不到的方便。这种变换也是运用柯西不等式的一种技巧,下面我们简单举例说明怎样利用上

5、述技巧运用柯西不等式来证明条件不等式。例3.3.1 设,且,求证:解:由 如此 由且应用柯西不等式 即 故 例3.3.2 ,,求证:分析:如果对不等式左端用柯西不等式,就得不到所要证明的结论。假如把第二个小括号内的前后项对调一下,情况就不同了。 证明: 。用柯西不等式解无理方程,是先把方程的含有无理式的运用柯西不等式化为不等式,然后结合原方程把不等式又化成等式,在判定为等式后再利用柯西不等式取等号的特性,得到与原方程同解的且比原方程简单的无理方程,进而得到简单的整式方程,从而求得原方程的解。解:原方程组可化为运用柯西不等式得, 即,两式相乘,得当且仅当时取等号。故原方程组的解为。例3.4.2解

6、方程组:设3,解方程解:即 36 362令,如此 72即 等号成立 如此有 故 柯西不等式也可以广泛应用于求函数的极值或最值。事实上,由可得,如将上式左边当作一个函数,而右边值确定时,如此可知的最大值与最小值分别是与,且取最大值与最小值的充要条件是。反过来,如果把柯西不等式右边的一个因式或两个的积当作函数,而其他的因式时,如此可求出此函数的最小值。下面略举例加以说明怎样利用柯西不等式来求解一些极值问题。例3.5.1:求函数的极值,其中是常数。解:由柯西不等式: 故有。 当且仅当时,即时,函数有极小值,极大值。例3.5.2 为常数,当时,求函数的最大值与最小值。 解:由柯西不等式: 故。 当且仅

7、当,即为常数时等号成立。 将代入得 如此,即当时,分别为所求的最大与最小值。三角问题包括三角不等式,三角方程。三角极值等到,对于一些三角问题,我们为了给运用柯西不等式创造条件,经常引进一些待定的参数,其值确实定由题设或者由等号成立的充要条件共同确定,也有一些三角极值问题我们可以反复运用柯西不等式进展解决。例3.6.1 在中 ,求证:证明:当且仅当时等号成立。 令,于是引进参求的最值。 由柯西不等式, =又由平均值不等式得 1当且仅当时等号成立。中,证明。证明:由柯西不等式:即 1因为故 2又因为因而 3将3代入2得 4 将4代入1得即。点与直线,设是上任意一点,点到的距离的最小值|就是点到的距离,证明:|。证明:因为是上的点,所以有。 1 而| 2 由柯西不等式: 3 由1得: 4 将4代入3,如此有即移项如此有:| 5当且仅当即时5式取等号,即点到直线的距离公式:|。【结论】: 在许多问题中,如果我们能够利用柯西不等式去解决,往往能收到事半功倍的效果,使人耳目一新。当遇到类似的题目,应用柯西不等式时,尽量联系条件,转化成柯西不等式的形式来求解。【参考文献】:1王学功,著名不等式,中国物资2李永新李得禄,中学数学教材教法,东北师大3柯西不等式与排序不等式,南山,某某教育4柯西不等式的微小变动,数学通报,2002 第三期14 / 14

展开阅读全文
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!