脉冲编码调制及解调实验

上传人:js****6 文档编号:77550749 上传时间:2022-04-20 格式:DOC 页数:10 大小:653.50KB
收藏 版权申诉 举报 下载
脉冲编码调制及解调实验_第1页
第1页 / 共10页
脉冲编码调制及解调实验_第2页
第2页 / 共10页
脉冲编码调制及解调实验_第3页
第3页 / 共10页
资源描述:

《脉冲编码调制及解调实验》由会员分享,可在线阅读,更多相关《脉冲编码调制及解调实验(10页珍藏版)》请在装配图网上搜索。

1、-实验八 脉冲编码调制与解调实验一、实验目的1 掌握脉冲编码调制与解调的原理。2 掌握脉冲编码调制与解调系统的动态*围和频率特性的定义及测量方法。3 了解脉冲编码调制信号的频谱特性。4 了解大规模集成电路TP3067的使用方法。二、实验内容1 观察脉冲编码调制与解调的结果,观察调制信号与基带信号之间的关系。2 改变基带信号的幅度,观察脉冲编码调制与解调信号的信噪比的变化情况。3 改变基带信号的频率,观察脉冲编码调制与解调信号幅度的变化情况。4 观察脉冲编码调制信号的频谱。三、实验器材1. 信号源模块2. 模拟信号数字化模块3. 终端模块可选4. 频谱分析模块5. 20M双踪示波器 一台6. 音

2、频信号发生器可选 一台7. 立体声单放机可选 一台8. 立体声耳机 一副9. 连接线 假设干四、实验原理模拟信号进展抽样后,其抽样值还是随信号幅度连续变化的,当这些连续变化的抽样值通过有噪声的信道传输时,接收端就不能对所发送的抽样准确地估值。如果发送端用预先规定的有限个电平来表示抽样值,且电平间隔比干扰噪声大,则接收端将有可能对所发送的抽样准确地估值,从而有可能消除随机噪声的影响。脉冲编码调制PCM简称为脉码调制,它是一种将模拟语音信号变换成数字信号的编码方式。脉码调制的过程如图8-1所示。PCM主要包括抽样、量化与编码三个过程。抽样是把时间连续的模拟信号转换成时间离散、幅度连续的抽样信号;量

3、化是把时间离散、幅度连续的抽样信号转换成时间离散幅度离散的数字信号;编码是将量化后的信号编码形成一个二进制码组输出。国际标准化的PCM码组语音是八位码组代表一个抽样值。编码后的PCM码组,经数字信道传输,在接收端,用二进制码组重建模拟信号,在解调过程中,一般采用抽样保持电路。预滤波是为了把原始语音信号的频带限制在3003400Hz左右,所以预滤波会引入一定的频带失真。发送端接收端模拟信源抽样器预滤波器模拟终端波形编码器量化、编码数字信道波形解码器重建滤波器抽样保持、低通图8-1 PCM 调制原理框图在整个PCM系统中,重建信号的失真主要来源于量化以及信道传输误码,通常,用信号与量化噪声的功率比

4、,即信噪比S/N来表示,国际电报咨询委员会ITU-T详细规定了它的指标,还规定比特率为64kb/s,使用A律或律编码律。下面将详细介绍PCM编码的整个过程,由于抽样原理已在前面实验中详细讨论过,故在此只讲述量化及编码的原理。1 量化从数学上来看,量化就是把一个连续幅度值的无限数集合映射成一个离散幅度值的有限数集合。如图8-2所示,量化器Q输出L个量化值,k=1,2,3,L。常称为重建电平或量化电平。当量化器输入信号幅度落在与之间时,量化器输出电平为。这个量化过程可以表达为:模拟入量化器量化值这里称为分层电平或判决阈值。通常称为量化间隔。图8-2 模拟信号的量化模拟信号的量化分为均匀量化和非均匀

5、量化,我们先讨论均匀量化。把输入模拟信号的取值域按等距离分割的量化称为均匀量化。在均匀量化中,每个量化区间的量化电平均取在各区间的中点,如图8-3所示。其量化间隔量化台阶取决于输入信号的变化*围和量化电平数。当输入信号的变化*围和量化电平数确定后,量化间隔也被确定。例如,输入信号的最小值和最大值分用a和b表示,量化电平数为M,则,均匀量化的量化间隔为:0 量化误差 信号实际值信号量化值图8-3 均匀量化过程示意图量化器输出为: 当式中为第个量化区间的终点,可写成为第个量化区间的量化电平,可表示为上述均匀量化的主要缺点是,无论抽样值大小如何,量化噪声的均方根值都固定不变。因此,当信号较小时,则信

6、号量化噪声功率比也就很小,这样,对于弱信号时的量化信噪比就难以到达给定的要求。通常,把满足信噪比要求的输入信号取值*围定义为动态*围,可见,均匀量化时的信号动态*围将受到较大的限制。为了抑制这个缺点,实际中,往往采用非均匀量化。非均匀量化是根据信号的不同区间来确定量化间隔的。对于信号取值小的区间,其量化间隔也小;反之,量化间隔就大。它与均匀量化相比,有两个突出的优点。首先,当输入量化器的信号具有非均匀分布的概率密度实际中常常是这样时,非均匀量化器的输出端可以得到较高的平均信号量化噪声功率比;其次,非均匀量化时,量化噪声功率的均方根值根本上与信号抽样值成比例。因此量化噪声对大、小信号的影响大致一

7、样,即改善了小信号时的量化信噪比。实际中,非均匀量化的实际方法通常是将抽样值通过压缩再进展均匀量化。通常使用的压缩器中,大多采用对数式压缩。广泛采用的两种对数压缩律是压缩律和A压缩律。美*用压缩律,我国和欧洲各国均采用A压缩律,因此,本实验模块采用的PCM编码方式也是A压缩律。所谓A压缩律也就是压缩器具有如下特性的压缩律:未压缩12345678 0A律压扩特性是连续曲线,A值不同压扩特性亦不同,在电路上实现这样的函数规律是相当复杂的。实际中,往往都采用近似于A律函数规律的13折线A=87.6的压扩特性。这样,它根本上保持了连续压扩特性曲线的优点,又便于用数字电路实现,本实验模块中所用到的PCM

8、编码芯片TP3067正是采用这种压扩特性来进展编码的。图8-4示出了这种压扩特性。图8-4 13折线表8-1列出了13折线时的值与计算值的比较。表 8-10101按折线分段时的01段落12345678斜率16168421表中第二行的值是根据时计算得到的,第三行的值是13折线分段时的值。可见,13折线各段落的分界点与曲线十分逼近,同时按2的幂次分割有利于数字化。2 编码所谓编码就是把量化后的信号变换成代码,其相反的过程称为译码。当然,这里的编码和译码与过失控制编码和译码是完全不同的,前者是属于信源编码的*畴。在现有的编码方法中,假设按编码的速度来分,大致可分为两大类:低速编码和高速编码。通信中一

9、般都采用第二类。编码器的种类大体上可以归结为三类:逐次比较型、折叠级联型、混合型。本实验模块中的编码芯片TP3067采用的是逐次比较型。在逐次比较型编码方式中,无论采用几位码,一般均按极性码、段落码、段内码的顺序。下面结合13折线的量化来加以说明。表8-2 段落码 表8-3 段内码段落序号段落码量化级段内码8111151111141110711013110112110061011110111010105100910018100040117011160110301050101401002001300112001010001000100000在13折线法中,无论输入信号是正是负,均按8段折线8个段

10、落进展编码。假设用8位折叠二进制码来表示输入信号的抽样量化值时,其中用第一位表示量化值的极性,其余7位第二位至第八位则表示抽样量化值的绝对大小。具体的做法是:用第二至第四位表示段落码,它的8种可能状态来分别代表8个段落的起点电平。其它4位表示段内码,它的16种可能状态来分别代表每一段落的16个均匀划分的量化级。这样处理的结果,8个段落被划分成27128个量化级。段落码和8个段落之间的关系如表8-2所示;段内码与16个量化级之间的关系见表8-3。可见,上述编码方法是把压缩、量化和编码合为一体的方法。本实验采用大规模集成电路TP3067对语音信号进展PCM编、解码。TP3067在一个芯片内部集成了

11、编码电路和译码电路,是一个单路编译码器。其编码速率为2.048MHz,每一帧数据为8位,帧同步信号为8KHz。模拟信号在编码电路中,经过抽样、量化、编码,最后得到PCM编码信号。在单路编译码器中,经变换后的PCM码是在一个时隙中被发送出去的,在其他的时隙中编译码器是没有输出的,即对一个单路编译码器来说,它在一个PCM帧32个时隙里,只在一个特定的时隙中发送编码信号。同样,译码电路也只是在一个特定的时隙此时隙应与发送时隙一样,否则接收不到PCM编码信号里才从外部接收PCM编码信号,然后进展译码,经过带通滤波器、放大器后输出。具体电路图如图8-4所示。图8-4 PCM编译码电路原理图下面对PCM编

12、译码专用集成电路TP3067芯片做一些简单的介绍。图8-5为TP3067的内部构造方框图,图8-6是TP3067的管脚排列图。图8-5 TP3067逻辑方框图44图8-6 TP3067管脚排列图1 TP3067管脚的功能1VPO+:接收功率放大器的非倒相输出2GNDA:模拟地,所有信号均以该引脚为参考点3VPO-:接收功率放大器的倒相输出4VPI:接收功率放大器的倒相输入5VFRO:接收滤波器的模拟输出6Vcc:正电源引脚,Vcc=+5V+5%7FSR:接收帧同步脉冲,它启动BCLKR,于是PCM数据移入DR,FSR为8KHz脉冲序列。8DR:接收数据帧输入。PCM数据随着FSR前沿移入DR。

13、9BCLKR/CLKSESL:在FSR的前沿把输入移入DR时位时钟,其频率可以从64KHz至2.048MHz。另一方面它也可能是一个 逻辑输入,以此为在同步模式中的主时钟选择频率1.536MHz、1.544MHz或2.048MHz,BCLKR用在发送和接收两个方向。10MCLKR/PDN:接收主时钟,其频率可以为1.536MHz、1.544MHz或2.048MHz。它允许与MCLK*异步,但为了取得最正确性能应当与MCLK*同步,当MCLKR连续连在低电位时,CLK*被选用为所有内部定时,当MCLKR连续工作在高电位时,器件就处于掉电模式。11MCLK*:发送主时钟,其频率可以是1.536MH

14、z、1.544MHz或2.048MHz,它允许与MCLKR异步,同步工作能实现最正确性能。12BCLK*:把PCM数据从D*上移出的位时钟,其频率可以从64KHz至2.048MHz,但必须与MCLK*同步。13D*:由FS*启动的三态PCM数据输出。14FS*:发送帧同步脉冲输入,它启动BCLK*并使D*上PCM数据移出到D*上。15:开漏输出。在编码器时隙内为低脉冲。16ANLB:模拟环路控制输入,在正常工作时必须置为逻辑“0,当拉到逻辑“1时,发送滤波器和发送前置放大器输出的连接线被断开,而改为和接收功率放大器的VPO+输出连接。17GS*:发送输入放大器的模拟输出,用来在外部调节增益。1

15、8VF*I-:发送输入放大器的倒相输入。19VF*I+:发送输入放大器的非倒相输入。20VBB:负电源引脚,VBB=-5V+5%。2 功能说明 上电当开场上电瞬间,加压复位电路启动BO并使它处于掉电状态,所有非主要电路都失效,而D*、VFRO、VPO-、VPO+均处于高阻抗状态。为了使器件上电,一个逻辑低电平或时钟脉冲必须作用在MCLKR/PDN引脚上,并且FS*和FSR脉冲必须存在。于是有两种掉电控制模式可以利用。在第一种中MCLKR/PDN引脚电位被拉高。在另一种模式中使FS*和FSr二者的输入均连续保持低电平,在最后一个FS*或FSr脉冲之后相隔2ms左右,器件将进入掉电状态,一旦第一个

16、FS*和FSr脉冲出现,上电就会发生。三态数据输出将停留在高阻抗状态中,一直到第二个FS*脉冲出现。 同步工作在同步工作中,对于发送和接收两个方向应当用一样的主时钟和位时钟,在这一模式中,MCLK*上必须有时钟信号在起作用,而MCLKR/PDN引脚则起了掉电控制作用。MCLKR/PDN上的低电平使器件上电,而高电平则使器件掉电。这两种情况中,不管发送或接收方向,MCLK*都用作为主时钟输入,位时钟也必须作用在MCLK*上,对于频率为1.536MHz、1.544MHz或2.048MHz的主时钟,BCLKR/CLKEL可用来选择适宜的内局部频器,在1.544MHz工作状态下,本器件可自动补偿每帧内

17、的第193个时钟脉冲。当BCLKR/CLKSEL引脚上的电平固定时,BCLK*将被选为发送和接收方向兼用的位时钟。表3-1说明可选用的工作频率,其值视BCLK*/CLKSEL的状态而定。在同步模式中,位时钟BCLK*可以从64KHz变至2.048MHz,但必须与MCLK*同步。每一个FS*脉冲标志着编码周期的开场,而在BCLK*的正沿上,从前一个编码周期来的PCM数据从已启动的D*输出中移出。在8个时钟周期后,三态D*输出恢复到高阻抗状态。随着FSR脉冲降临,依赖BCLK*或在运行中的BCLKR负沿上的DR输入,PCM数据被锁定,FS*和FSR必须与MCLK*或MCLKR同步。表8-4 主时钟

18、频率的选择BCLKR/CLKSEL被选主时钟频率TP3067时钟012.048MHZ1.536MHZ1.544MHZ2.048MHZ 异步工作在异步工作状态中,发送和接收时钟必须独立设置,MCLK和MCLR必须为2.048MHz,只要把静态逻辑电平加到MCLK*/PDN引脚上,就能实现这一点。FS*启动每个编码周期而且必须与MCLK*和BCLK*保持同步。FSR启动每一个译码周期而且必须与BCLKR同步。BCLKR必须为时钟信号。列于表8-4中的逻辑电平对于异步模式是不成立的。BCLK*和BCLKR工作频率可从64KHz变到2.048MHz。 短帧同步工作BO既可以用短帧,也可以用长帧同步脉冲

19、,在加电开场时,器件采用短帧模式。在这种模式中,FS*和FSr这两个帧同步脉冲的长度均为一个位时钟周期。在BCLK*的下降边沿当FS*为高时,BCLK*的下一个上升边沿可启动输出符号位的三态输出D*的缓冲器,紧随其后的7个上升边沿以时钟送出剩余的7个位,而下一个下降边沿则阻止D*输出。在BCLKR的下降边沿当FSr为高时BCLK*在同步模式,其下一个的下降边沿将锁住符号位,跟随其后的7个下降边沿锁住剩余的7个保存位。 长帧同步工作为了应用长帧模式,FS*和FSr这两个帧同步脉冲的长度等于或大于位时钟周期的三倍。在64KHZ工作状态中,帧同步脉冲至少要在160ns内保持低电位。随着FS*或BCL

20、K*的上升沿无论哪一个先到来到,D*三态输出缓冲器启动,于是被时钟移出的第一比特为符号位,以后到来的BCLK*的7个上升沿以时钟移出剩余的7位码。随着第8个上升沿或FS*变低无论哪一个后发生,D*输出由BCLK*的下降沿来阻塞,在以后8个BCLKR的下降沿BCLKR,接收帧同步脉冲FSR的上升沿将锁住DR的PCM数据。 发送部件发送部件的输入端为一个运算放大器,并配有两个调整增益的外接电阻。在低噪声和宽频带条件下,整个音频通带内的增益可达20dB以上。该运算放大器驱动一个增益为1的滤波器由RC有源前置滤波器组成,后面跟随一个时钟频率为256KHz的8阶开关电容带通滤波器。该滤波器的输出直接驱动

21、编码器的抽样保持电路。在制造中配入一个精细电压基准,以便提供额定峰值为2.5V的输入过载tma*。FS*帧同步脉冲控制滤波器输出的抽样,然后逐次逼近的编码周期就开场。8位码装入缓冲器内,并在下一个FS*脉冲下通过D*移出,整个编码时延近似地等于165ns加上125ns由于编码时延,其和为290ns。 接收部件接收部件包括一个扩展DAC数模转换器,而它又驱动一个时钟频率为256KHz的5阶开关电容低通滤波器。译码器时依照A律TP3067设计的,而5阶低通滤波器矫正8KHz抽样保持电路所引起的sin*/*衰减。在滤波器后跟随一个其输出在VFRO上的2阶RC低通后置滤波器。接收部件的增益为1,但利用

22、功率放大器可加大增益。当FSr出现时在后续的8个BCLKRBCLK*的下降边沿,DR输入端上的数据将被时钟控制。在译码器的终端,译码循环就开场了。 接收功率放大器两个倒相模式的功率放大器用来直接驱动一个匹配的线路接口电路。本编译码器的功能比较强,它既可以进展A律变换,也可以进展u律变换,它的数据既可以固定速率传送,也可以变速率传送,它既可以传输信令帧也可以选择它传送无信令帧,并且还可以控制它处于低功耗备用状态,到底使用它的什么功能可由用户通过一些控制来选择。在实验中我们选择它进展A律变换,以2.048Mbit来传送信息,信令帧为无信令帧,它的发送时序与接收时序直承受FS*和FSR控制。 还有一

23、点,编译码器一般都有一个PDN降功耗控制端,PDN=1时,编译码能正常工作,PDN=0,编译码器处于低功耗状态,这时编译码器其它功能都不起作用,我们在设计时,可以实现对编译码器的降功耗控制,这时,用户摘机,编译码器工作,用户挂机,编译码器低功耗。 五、实验步骤1 将信号源模块、模拟信号数字化模块、终端模块、频谱分析模块小心地固定在主机箱中,确保电源接触良好。2 插上电源线,翻开主机箱右侧的交流开关,再分别按下四个模块中的开关POWER1、POWER2、S2、S3,对应的发光二极管LED001、LED002、D200、D201、LED600、LED300、LED301发光,按一下信号源模块的复位

24、键,四个模块均开场工作。3 将信号源模块的拨码开关SW101、SW102设置为0000000 0000001。4 将信号源模块产生的正弦波信号频率2.5KHz,峰-峰值为3V从点“S-IN输入模拟信号数字化模块,将信号源模块的信号输出点“64K、“8K“BS分别与模拟信号数字化模块的信号输入点“CLKB-IN、“FRAMB-IN、“2048K-IN连接,观察信号输出点“PCMB-OUT的波形。将该点的信号送入频谱分析模块,观察该点信号的频谱,记录下来。5 连接“CLKB-IN和“CLK2-IN,“FRAMB-IN和“FRAM2-IN,连接信号输出点“PCMB-OUT和信号输入点“PCM2-IN

25、,观察信号输出点“OUT的波形。将该点的信号送入频谱分析模块,观察该点信号的频谱,记录下来。6 改变输入正弦信号的幅度,使其峰-峰值分别等于和大于5V假设幅度无法到达5V,可将输入正弦信号先通过信号源模块的模拟信号放大通道,再送入模拟信号数字化模块,将示波器探头分别接在信号输出点“OUT、“PCMB-OUT上,观察满载和过载时的脉冲幅度调制和解调波形,记录下来应可观察到,当输入正弦波信号幅度大于5V时,PCM解码信号中带有明显的噪声。7 改变输入正弦信号的频率,使其频率分别大于3400Hz或小于300Hz,观察点“OUT、“PCMB-OUT,记录下来应可观察到,当输入正弦波的频率大于3400H

26、z或小于300Hz时,PCM解码信号幅度急剧减小。8 用单放机或音频信号发生器的输出信号代替信号源模块的正弦波,从点“S-IN输入模拟信号数字化模块,重复上述操作和观察并记录下来。可选9 将信号输出点“OUT输出的信号引入终端模块,用耳机听复原出来的声音,与单放机直接输出的声音比较,判断该通信系统性能的优劣。可选六、输入、输出点参考说明1 输入点参考说明2048K-IN:PCM所需时钟输入点。S-IN:模拟信号输入点基带信号。CLKB-IN:PCM编码所需时钟输入点。FRAMB-IN:PCM编码帧同步信号输入点。PCM2-IN:PCM解调信号输入点。因为是对随机信号进展编码,所以用模拟示波器无

27、法同步该点信号,必须用数字存储示波器才能清楚观察到该点波形CLK2-IN:PCM解码所需时钟输入点。FRAM2-IN:PCM解码帧同步信号输入点。2 输出点参考说明PCMB-OUT:脉冲编码调制信号输出点。因为是对随机信号进展编码,所以用模拟示波器无法同步该点信号,必须用数字存储示波器才能清楚观察到该点波形OUT:PCM解调信号输出点。七、实验思考题1 TP3067PCM编码器输出的PCM数据的速率是多少.在本次实验系统中,为什么要给TP3067提供2.048MHz的时钟.2 认真分析TP3067主时钟与8KHz帧收、发同步时钟的相位关系。3 为什么实验时观察到的PCM编码信号总是随时变化的.

28、4 分析满载和过载时的脉冲编码调制和解调波形。5 当输入正弦信号的幅度大于3400Hz或小于300Hz时,分析脉冲编码调制和解调波形。八、实验报告要求1 画出实验电路方框图,并表达其工作过程。2 在坐标纸上画出实验过程中各测量点的波形图,注意对应相位关系。3 设PCM通信系统传输两路话音,每帧三个时隙,每路话音各占一个时隙,另一个时隙为帧同步时隙,使用TP3067编译码器。请答复: 编码器的抽样信号频率及时钟信号频率,以及两个抽样信号之间的相位关系。 时分复用信速率、帧构造。 采用PCM基带传输,线路码为HDB3码,设计此通信系统的详细方框图以及PCM编译码电路。4 写出本次实验的心得体会,以及对本次实验有何改进意见。. z

展开阅读全文
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!