桥梁病害诊治与评估张树仁

上传人:文*** 文档编号:65578576 上传时间:2022-03-24 格式:DOC 页数:18 大小:366.50KB
收藏 版权申诉 举报 下载
桥梁病害诊治与评估张树仁_第1页
第1页 / 共18页
桥梁病害诊治与评估张树仁_第2页
第2页 / 共18页
桥梁病害诊治与评估张树仁_第3页
第3页 / 共18页
资源描述:

《桥梁病害诊治与评估张树仁》由会员分享,可在线阅读,更多相关《桥梁病害诊治与评估张树仁(18页珍藏版)》请在装配图网上搜索。

1、文档供参考,可复制、编制,期待您的好评与关注! 一桥梁病害诊断1(一)详细而认真裂缝调查、检测与分析是混凝土结构损伤检测的核心1(二)钢筋腐蚀是影响混凝土结构耐久性的主要因素6二桥梁结构的鉴定评估13(一)结构承载力评估13(二)结构剩余使用寿命的预测15一桥梁病害诊断在役桥梁结构随着使用时间的延续,受结构使用条件变化及环境侵蚀等因素的影响,加之设计和施工的不当,都会使结构受到不同程度的损伤,造成桥梁病害,使结构性能退化,使用功能逐步降低乃至完全丧失。结构受到损伤后,需要对结构损伤原因和程度进行分析,确定结构损伤后的承载能力和剩余寿命。在此基础上进行结构改造决策分析,根据经济技术条件提出结构处

2、理措施,如维修、加固或拆除重建等。(一)详细而认真裂缝调查、检测与分析是混凝土结构损伤检测的核心实践表明,混凝土结构的任何损伤与破坏,一般都是首先在混凝土中出现裂缝,裂缝是反映混凝土结构病害的晴雨表,所以,对混凝土结构的损伤检测,首先应从对结构的裂缝调查、检测与分析入手。混凝土结构的裂缝是由材料内部的初始缺陷、微裂缝的扩展而引起的。引起裂缝的原因很多,但可归纳为两大类:第一类:由外荷载引起的裂缝,称为结构性裂缝(又称为受力裂缝),其裂缝的分布及宽度与外荷载有关。这种裂缝的出现,预示结构承载力可能不足或存在其他严重问题。第二类:由变形引起的裂缝,称为非结构性裂缝,如温度变化、混凝土收缩等因素引起

3、的结构变形受到限制时,在结构内部就会产生自应力,当此应力达到混凝土抗拉强度极限值时,即会引起混凝土裂缝,裂缝一旦出现,变形得到释放,自应力也就消失了。两类裂缝有明显的区别,危害效果也不相同,有时两类裂缝融在一起。调查资料表明,在两类裂缝中以变形引起的裂缝占主导的约占80%;以荷载引起的裂缝占主导的约占20%。对裂缝原因的分析是裂缝危害性评定,裂缝修补和加固的依据,若对裂缝不经分析研究就盲目进行处理,不仅达不到预期的效果,还可能潜藏着突发性事故的危险。1结构性裂缝(受力裂缝)众所周知,混凝土的抗拉强度很低,抗拉极限应变大约为。换句话说,混凝土即将开裂的瞬间,钢筋的应力只有。事实上,在正常使用阶段

4、钢筋的应力远大于此值,所以说在正常使用阶段钢筋混凝土结构出现裂缝是避不可免的。因而,习惯上又将这种裂缝称为正常裂缝。实践证明,在正常条件下,裂缝宽度小于0.3mm时,钢筋不致生锈。为确保安全,允许裂缝宽度还应小一些。新修订的JTG D62-2003(以下简称)规定:钢筋混凝土构件计算的特征裂缝宽度不应超过下列规定的限值:类及类环境 0.2mm类及类环境 0.15mm结构性裂缝可根据构件的受力特征判断。图1-1所示为钢筋混凝土简支梁的典型结构性裂缝分布示意图。图1-1 钢筋混凝土梁结构裂缝图1-1中所示的跨中截面附近下缘受拉区的竖向裂缝,是最常见的结构性裂缝。在正常设计和使用情况下,裂缝宽度不大

5、,间距较密,分布均匀。若竖直裂缝宽度过大,超过规范规定的限值,预示结构正截面承载力不足;图1-1中所示为支点(或腹板宽度变化处)附近截面由主拉应力引起的斜裂缝。在正常设计和使用情况下很少出现斜裂缝,即使出现裂缝宽度也很小。若斜裂缝宽度过大,预示结构的斜截面承载力不足,存在发生斜截面脆性破坏的潜在危险,应引起足够的重视。有些结构性裂缝(受力裂缝)是由设计错误和施工方法不当所造成的。例如:钢筋锚固长度不足、计算图式与实际受力不符、构件刚度不足、次内力考虑不全面和施工安装构件支承吊点错误等都可以使构件产生裂缝。图1-2所示为美国纽约一座高架桥桥墩盖梁悬臂裂缝分布及加固方案示意图2。桥梁通车后发现桥墩

6、盖梁悬臂出现严重裂缝,裂缝从上层受拉钢筋端头处开始,向下沿伸至悬臂根部。显然,这种裂缝是由于钢筋锚固长度不够所引起的结构性裂缝,这种结构性裂缝对结构安全构成潜在危险,应及时加以处理。该桥采用了预加应力的方法进行了补强处理。在超静结构中基础不均匀沉降,将引起结构的内力变化,可能导致结构出现裂缝。基础不均沉降引起的上部结构的裂缝,实质上是属于结构性裂缝(受力裂缝)范畴,裂缝的分布和宽度与结构形式、基础不均沉降情况及大小等多种因素有关。这种裂缝对结构安全性影响很大,应在基础不均匀沉降停止或采用加固地基方法消除后,才能进行上部结构的裂缝处理。图1-2:美国纽约高架桥桥墩盖梁悬臂裂缝分布及加固方案 图1

7、-3 南方某城市立交匝道桥的平面布置和横断面图图1-3所示为我国南方某城市立交匝道桥的平面布置和横断面图,其中第三联(1018号墩)为825m钢筋混凝土连续箱梁结构,软土地基,钻孔桩基础,采用满堂支架就地浇筑混凝土施工。该桥施工中出现严重裂缝,第三联(1816号墩)+1/4(1615号墩)跨拆模后,发现边跨(1718号墩)出现25条竖直裂缝,最大裂缝宽度为0.15mm,三个月后发现其余各跨都出现了裂缝,跨中部分的裂缝已由腹板向底板沿伸200mm,个别裂缝已贯穿底板,在墩顶负弯矩区段也出现了由腹板向翼缘端部延伸的横向裂缝。在该桥的事故分析中,通过对施工、检测、监理原始资料的分析,排除了由施工方法

8、不当和材料强度不足造成如此严重裂缝的可能。通过对设计资料审核发现,原设计在计算基础不均匀沉降时,只考虑第三联中间支点(14号墩)下沉20mm一种工况。显然这样处理是不全面的。若按9个支座分别下沉20mm共9种工况计算结果,进行最不利内力组合,17号墩顶截面负弯矩最大。按此内力计算,该截面原设计配筋严重不足,比计算需要值少32.2%,正截面抗弯承载力不足,致使箱梁顶板出现严重的横向贯通裂缝。横向裂缝进一步向腹板发展,使墩顶截面的连续嵌固作用降低,全桥处于类似于简支梁的工作状态,使各跨中正弯矩增加,因正截面抗弯承载力不足出现竖直裂缝。2非结构性裂缝混凝土的非结构性裂缝根据其形成的时间可分为:混凝土

9、硬化前裂缝、硬化过程裂缝和完全硬化后裂缝。非结构性裂缝的产生受混凝土材料组成、浇筑方法,养护条件和使用环境等等多因素影响。(1)收缩裂缝混凝土凝固过程,混凝土中多余水分蒸发,体积缩小称为干缩。同时,水泥和水起水化作用逐渐硬化而形成的水泥骨架不断紧密,体积缩小,称为凝缩。收缩中以干缩为主,占总收缩量的8/109/10。收缩量随时间增长而不断加大,初期收缩较快,尔后日趋缓慢。普通混凝土在标准状态下的极限收缩变形约为3.24104。当混凝土成形后,表面水份蒸发,这种水份蒸发总是由表及里逐步发展,截面上温度形成梯度,内外干缩量不一样,因而混凝土表面收缩变形受到混凝土内部约束或其他约束限制时,即在混凝土

10、中产生拉应力,引起混凝土开裂。尤其是混凝土早期养护不当,混凝土表面直接受到风吹日晒的影响,表面水份蒸发过快,产生较大的拉应力,混凝土早期强底低,很容易出现收缩裂缝。收缩裂缝发生在混凝土面层,裂缝浅而细,宽度多在0.050.2mm之间。对板类构件多沿短边方向,均匀分布于相邻两根钢筋之间,方向与钢筋平行。对高度较大的钢筋混凝土梁,由于腰部水平钢筋间距过大,在腰部(或腹板)产生竖向收缩裂缝,但多集中在构件中部,中间宽两头细,至梁的上、下缘附近逐渐消失,梁底一般没有裂缝。大体积混凝土在平面部位收缩裂缝较多,侧面也有所见。收缩裂缝对构件承载力影响不大,主要影响影响结构外观和耐久性。(2)温度裂缝钢筋混凝

11、土结构随着温度变化将产生热胀冷缩变形,这种温度变形受到约束时,在混凝土内部就会产生拉应力,当此应力达到混凝土的抗拉强度极限值时,即会引起混凝土裂缝。这种裂缝称为温度裂缝。按结构的温度场不同、温度变形、温度应力不同,温度裂缝可分为三种类型:截面均匀温差裂缝:一般桥梁结构为杆件体系长细结构,当温度变化时,构件截面受到均匀温差的作用,可忽略横截面两个方向的变形,只考虑沿梁长度方向的温度变形,当这种变形受到约束时,在混凝土内部就会产生拉应力,出现裂缝。例如:连续梁预留伸缩缝的伸缩量过小,或有施工散落的混凝土碎块等杂物嵌入伸缩缝,或堆集于支座处没有及时清理,使伸缩缝和支座失灵等,当温度急剧变化时,结构伸

12、长受到约束,上部桥跨结构就会出现这种截面均匀温差裂缝,严重者还可能造成墩台的破坏。截面上、下温差裂缝以桥梁结构中大量采用的箱形梁为例,当外界温度骤然变化时,会造成箱内外的温度差,考虑到桥梁为长细结构,可以认为在沿梁长方向箱内外的温差是一致的,沿水平横向没有温差。可将三维热传等问题简化为沿梁的竖向温度梯度来确定,一般假设梁的截面高度方向、温差呈线性变化。在这种温差作用下,梁不但有轴向变形,还伴随产生弯曲变形。梁的弯曲变形在超静定结构中不但引起结构的位移,而且因多余约束存在,还要产生结构内部温度应力。当上、下温差变形产生的应力达到混凝土抗拉强度极限值时,混凝土就要出现裂缝,这种裂缝称为截面上、下温

13、差裂缝。截面内外温差裂缝水泥在水化过程产生一定的水化热,其大部分热量是在水泥浇筑后3天以内放出的。大体积混凝土产生的大量水化热不容易散发,内部温度不断上升,而混凝土表层散热较快,使截面内部产生非线性温度差。另外,预制构件采用蒸气养护时,由于混凝土升温或降温过快,致使混凝土表面剧烈升温或降温,也会使截面内部产生非线性温度差。在这种截面温差作用下,结构将产生弯曲变形,且符合平截面假设,截面纵向纤维因温差的伸长将受到约束,产生温度自应力。对超静定结构还会产生阻止挠曲变形的约束应力。有时此温度应力是相当大的,尤其是混凝土早期强度比较较低,很容易造成混凝土裂缝。混凝土温度裂缝有以下特点:裂缝发生在板上时

14、,多为贯穿裂缝;发生在梁上多为表面裂缝。梁板式结构或长度较大的结构,裂缝多是平行于短边。大面积结构(例如桥面铺装)裂缝多是纵横交错。裂缝宽度大小不一,一般在0.5mm以下,且沿结构全长没有多大变化。预防温度裂缝的主要措施是合理设置温度伸缩缝,在混凝土组成材料中掺入适量的磨细粉煤灰,减少水化热,加强混凝土养护,严格控制升温和降温速度。(3)钢筋锈账裂缝(顺筋裂缝)钢筋混凝土结构的裂缝与钢筋的腐蚀相互作用。裂缝会增加混凝土的渗透性,使钢筋的腐蚀加重,另一方面钢筋腐蚀后,腐蚀产物体积膨胀,使混凝土保护层沿纵筋方向出现裂缝,严重者混凝土保护层会完全脱落。对预应力混凝土构件而言,由于预压应力过大或管道灌

15、浆受冻、膨胀等原因也可能出现顺筋裂缝。这种裂缝是不可恢复的,会加剧预应力筋的腐蚀(又称应力腐蚀),预应力筋腐蚀又会进一步加剧顺筋裂缝的扩展。如此恶性循环,带有极大的危险性,应引起足够的重视,及时处理。(二)钢筋腐蚀是影响混凝土结构耐久性的主要因素众所周知,在钢筋混凝土结构中钢筋承担拉力,混凝土承担压力,两者组成一个整体共同工作,混凝土保护钢筋免于锈蚀,保证了结构的耐久性。混凝土和钢筋的强度是确定钢筋混凝土结构构件抗力的基本参数,它随时间的变化规律是建立在股结构抗力变化模型的基础。一般来说,混凝土强度在初期随时间增大,但增长速度逐渐减慢。一般大气条件下混凝土的损伤主要是碳化腐蚀和冻融循环破环。试

16、验研究表2,碳化对混凝土强度没有破坏作用,碳化后混凝土的强度随龄期增长反而提高;冻融循环使混凝土的强度有所降低,其降低的幅度主要与混凝土的材料组成有关,随时间的增长变化不大。混凝土碳化腐蚀会降低混凝土的碱性,随着时间的推移,碳化的发展会使混凝土失去对钢筋保护作用,引起钢筋的腐蚀。钢筋的腐蚀是影响混凝土耐久性和使用寿命的重要因素。因此研究混凝土碳化和钢筋腐蚀随时间随时的变化规律,建立在役结构抗力变化模型,是进行混凝土结构耐久性评估和剩余寿命预测的核心内容。1混凝土的碳化混凝土的碳化是指混凝土中的氢氧化钙(Ca(OH)2)与渗透进混凝土中的二氧化碳(CO2)和其他酸性气体等发生化学反应的过程。碳化

17、的实质是混凝土的中性化。通常情况下,早期混凝土具有很高的碱性,其PH值一般大于12.5,在这样高的碱性环境中埋置的钢筋容易发生钝化作用,使得钢筋表面产生一层钝化膜,能够阻止混凝土中钢筋的锈蚀。当有二氧化碳和水汽从表面通过孔隙进入混凝土内部时,和混凝土材料中的碱性物质中和,会导致混凝土的PH值降低。当混凝土完全碳化后,就出现PH值小于9的情况,在这种环境下,混凝土中埋置的钢筋表面钝化膜被逐渐破坏,在有水份和其他有害界质侵入的情况下,钢筋就会发生锈蚀。钢筋锈蚀又将导致混凝土保护层开裂,钢筋屈服强度降低,结构耐久性降低第一系列不良后果。(1)影响混凝土碳化的因素研究表明,混凝土的碳化速度取决于CO2

18、气体的扩散速度及CO2与混凝土成份的反应性速度,CO2气体的扩散速度受混凝土本身的组织密实性,CO2气体的浓度,环境温度,试件含水量等多种因素影响。所以,混凝土的碳化反应受混凝土内孔溶液的组成、水化产物的形态等因素的影响。这些因素可归结为与混凝土自身相关的内部因素(主要有水泥用量和水灰比)和与环境有关的外界因素。对于在股结构物来说,由于其内部因素已经确定,因此影响混凝土碳化速度的主要因素是外部因素,如CO2的浓度越高,且压力越大,碳化深度越大。因此,在城市交通繁忙路段处的结构物往往碳化现象较严重。另外,碳化较易发生在潮湿环境中,尤其是干湿交替的环境,因此,南方的结构物容易产生碳化现象,且随着温

19、度的升高,混凝土的碳化加速。(2)混凝土的碳化规律国内外学者在分析碳化试验结果的基础上,提出了碳化深度与碳化时间的关系式为 (1-1)式中:D碳化深度(mm);t碳化时间(年);R碳化速度系数,其数值不仅与混凝土的水泥品种及用量,养护方法有关,还与环境湿度、温度及CO2浓度等多种因素有关。国内外很多学者对碳化速度系数R的取值都提出了各自的经验公式。这些公式的区别在于选取的参数和参数的个数不同。近几年来,国内外许多学者都致力于混凝土碳化的多系数方程的研究,中国建筑科学研究院将公式(1-1)所示用单一系数表达的碳化深度与碳化时间关系式,改写为下列形式2: (1-2)式中:1水泥用量影响系数;2水灰

20、比影响系数;3粉煤灰取代量影响系数;4水泥品种影响系数;5骨料品种影响系数;6养护方法影响系数;混凝土影响系数1、26,可按表1-1取用。k综合影响系数,普通混凝土k=2.32,轻骨料混凝土k=4.18。混凝土碳化影响系数 表1-1 系数名称符号条件相对指标水泥用量影响系数1水泥用量(kg/m3)250300350400450轻骨料混凝土1.351.00.850.750.65普通混凝土1.401.00.900.800.70水灰比影响系数2水灰比0.40.50.60.7轻骨料混凝土0.851.0普通混凝土0.71.0粉煤灰取代量影响系数3粉煤灰取代量(%)0102030轻质混凝土1.01.21.

21、301.50普通混凝土1.01.301.502.00水泥品种影响系数4水泥品种4.25普硅水泥425矿渣或火山灰水泥635矿渣水泥轻质混凝土1.01.201.25普通混凝土1.01.351.50骨料种类影响系数5骨料种类粗骨料细骨料天然轻骨料人造轻骨料碎石普通砂破碎轻砂珍珠岩砂1.00.60.551.01.42.0养护方法影响系数6养护方法标准养护蒸汽养护轻质混凝土1.01.5普通混凝土1.01.85利用公式(1-1)推算混凝土的碳化深度时,公式中的碳化系数R也可按中国建筑科学研究院推荐的统计经验公式由混凝土设计强度等级直接求出。考虑各地气象条件不同,碳化系数可参照表1-2 3。混凝土碳化系数

22、R计算表达式 表1-2 城市名称环境条件碳化系数公式北京室外环境151/2.38西宁室外环境139/2.18贵阳室外环境131/1.78杭州室外环境152/2.392钢筋的腐蚀大量的工程实践表明,钢筋的腐蚀是影响在役钢筋混凝土结构耐久性的主要因素。处于干燥环境下,混凝土碳化速度缓慢,具有良好保护层的钢筋混凝土结构一般不会发生钢筋腐蚀;而处于潮湿的或有侵蚀介质(例如氯离子)的环境中,混凝土将加速碳化,钢筋钝化膜逐渐破坏,常因钢筋腐蚀引起结构的严重破坏。钢筋腐蚀伴随有体积膨胀,使混凝土沿钢筋出现爆裂,造成钢筋与混凝土之间粘着力的破坏,钢筋截面面积减少,构件承载力降低,变形和裂缝增大等一系列不良后果

23、,并随着时间的推移,腐蚀会逐渐恶化,最终可能导致结构的完全破坏。(1)钢筋腐蚀的机理混凝土中的钢筋腐蚀一般为电化学腐蚀。二氧化碳、氯离子等腐蚀介质侵入时,混凝土的碱性降低或混凝土保护层开裂等都会造成全部或部分地破坏钢筋表面的钝化状态,由于钢材材质和表面的非均匀性,在钢筋表面的不同部位总会出现较大的电位差,形成阳极和阴极。因此,在潮湿环境下由于氧气和水的参与,钢筋就可以发生电化学反应:在阳极的反应为 (1-3)在阴极的反应为 (1-4)阴极、阳极生成的铁离子和氢氧根离子结合生成氢氧化铁: (1-5)在氧气和水汽的共同作用下,由于上述电化学反应,使钢筋表面的铁不断失去电子而溶于水,从而逐渐被腐蚀,

24、在钢筋表面生成铁锈,铁锈体积膨胀,引起混凝土开裂。影响电化学腐蚀的因素有环境的湿度、温度、氧气浓度等,湿度越大、温度越高、氧气浓度越大,腐蚀越严重。氯离子虽然不能构成腐蚀产物,但其中间产物对钢筋腐蚀电化学反应起催化作用,将加速钢筋的腐蚀,对结构的危害较大。钢筋由于电化学腐蚀等原因,使表面形成大小不一、分散分布的腐蚀坑,腐蚀坑的存在加大了钢筋的电位差,使腐蚀加速;另一方面腐蚀坑相当于一个缺口,在钢筋受拉时,将引起应力不均匀分布,造成应力集中,可能导致钢筋的早期断裂,这种现象称为钢筋的应力腐蚀。应力腐蚀是化学腐蚀和应力复合作用的结果。应力腐蚀的主要与腐蚀介质,钢筋的应力水平和钢筋的材质情况的有关,

25、钢筋的强度和应力值对应力腐蚀有重要影响。钢筋的强度越高,其变形性能越差,越容易发生应力腐蚀;钢筋应力越高,应力腐蚀的敏感性越大。因此,应力腐蚀对高强预应力筋的危害是很大的。(2)钢筋腐蚀对结构受力性能的影响混凝土中的钢筋腐蚀后,腐蚀产物体积膨胀使混凝土保护层沿纵筋出现裂缝,使钢筋与混凝土的粘结力下降,钢筋截面积减少,屈服强度降低,随着时间的推移结构受力性能将进一步恶化,严重影响结构的耐久性。钢筋腐蚀对钢筋与混凝土粘结强度的影响钢筋腐蚀对粘结强度的影响与腐蚀量有关:当钢筋表面只有轻微的腐蚀时(腐蚀率小于1%),钢筋与混凝土之间的粘结强度有所提高;但随蚀量的增加,粘结强度则会显著下降。当因钢筋腐蚀

26、产生顺筋裂缝,且裂缝宽度超过1.52mm时,钢筋与混凝土之间的粘结力基本丧失,其平均粘结强度仅为无纵向裂缝的3.5%5.5%。钢筋腐蚀对构件承载力的影响钢筋腐蚀对钢筋混凝土构件承载力的影响主要取决于钢筋腐蚀引起的钢筋截面面积减少、材料力学性能的变化和钢筋与混凝土之间的粘结力。(3)腐蚀钢筋的截面损失率钢筋的腐蚀率以截面损失率表示。对在股结构的钢筋腐蚀截面积损失率可采用取样检查法或裂缝观察法确定。取样检查法就是去掉混凝土保护层直接检查腐蚀情况,如剩余直径,腐蚀坑的长度、深度等。检查即可在钢筋上直接进行,也可以取钢筋试样在实验室进行分析。裂缝观察法是根据混凝土上裂缝的形状、分布及裂缝宽度来判断钢筋

27、的腐蚀程度。钢筋腐蚀后会产生体积膨胀,造成混凝土出现顺筋裂缝,因此,通过观察混凝土构件上有无顺筋裂缝和裂缝开展宽度可判钢筋腐蚀程度,见表1-32。钢筋混凝土构件裂缝与钢筋截面损失率 表1-3 裂缝状态钢筋截面损失率裂缝状态钢筋截面损失率无顺筋裂缝(01)%保护层局部脱落(520)%有顺筋裂缝(0.510)%保护层全部脱落(1520)%腐蚀钢筋的截面损失率与裂缝宽度、保护层厚度、钢筋直径和混凝土强度等有关,它们之间的关系可表示为: (00.2mm) (1-6) (0.2mm8% (1-13)式中:腐蚀后钢筋的极限强度;腐蚀前钢筋的极限强度;腐蚀后钢筋的延伸率;腐蚀前钢筋的延伸率;钢筋的截面面积损

28、失率。冶金部建筑科学研究院的研究表明,钢筋腐蚀后延性的降低程度比截面损失率大。钢筋腐蚀对其力学性能的影响取决于腐蚀程度。当钢筋表面仅有浮锈且截面损失率小于10%时,钢筋的应力应变关系和钢筋极限强度、屈服强度与未锈蚀者基本相同;当钢筋腐蚀的截面损失率小于5%时,钢筋的应力应变关系仍具有明显的屈服点,也具有足够的延性,钢筋的极限强度和屈服强度也未有显著的改变;当钢筋腐蚀的截面损失率大于10%时,钢筋的力学性能有显著的改变。钢筋腐蚀分类表 表1-4 腐蚀程度abcd截面损失率(%)011331010裂缝情况无纵向裂缝无纵向裂缝有少量纵向裂缝纵向裂缝增多,保护层部分剥落,严重时保护层脱落腐蚀扩散腐蚀仅

29、发生在钢筋表面腐蚀仅发生在钢筋表面向混凝土扩散腐蚀物铁锈沿混凝土裂缝扩散,使顺筋裂缝贯通,保护层脱落。屈服强度基本不变基本不变基本不变降低极限强度基本不变基本不变降 低降低,具有可能产生应力腐蚀延伸率基本不变基本不变降 低降低,可能发生脆断粘结力基本不变基本不变降低,但不明显显著降低(5)钢筋腐蚀对构件承载力的影响钢筋混凝土结构的抗弯承载力,随钢筋腐蚀率的增加而呈线性下降规律。当钢筋的截面损失率小于5%时,钢筋的抗拉强度与延伸率基本上无变化,钢筋与混凝土之间的粘结力也基本不变,平截面假设仍然成立,可以按照无腐蚀的普通钢筋混凝土构件的计算方法分析构件的抗弯承载能力,但分析中应考虑钢筋截面损失率。

30、对于中度腐蚀的钢筋,由于钢筋截面面积少、钢筋抗拉强度和延伸率降低,使钢筋混凝土构件的承载力明显下降。但是在这阶段,钢筋腐蚀坑深度不大,尚未形成应力集中区。一般情况下,钢筋不会发生脆断或延性明显降低现象,构件从加荷至最后破坏的全过程仍呈现出良好的变形性能。构件的承载力仍可按未腐蚀的普通钢筋混凝土构件的计算方法计算,但应同时考虑钢筋截面损失和屈服强度降低的双重影响。当钢筋发生严重腐蚀时,随着钢筋与混凝土粘结强度的显著降低,钢筋与混凝土之间的共同工作能力减弱,梁的受力接近于无粘结预应力拉杆或附加有普通钢筋的无粘结预应力混凝土梁。此时构件的抗弯承载力、刚度都有明显降低。对于这种情况,若用规范给出了用于

31、普通钢筋混凝土承载力计算公式、分析构件的承载力时,除应考虑钢筋截面损失率和屈服强度降低的影响外,尚应考虑钢筋与混凝土共同工作折减,将其承载力乘以0.80.9的系数。二桥梁结构的鉴定评估桥梁结构鉴定评估的目的是分析现有结构的安全可靠性和剩余使用寿命。桥梁病害损伤检测分析是鉴定评估的基础,鉴定评估是对桥梁进行改造决策分析的前提。(一)结构承载力评估评估现有结构的安全可靠性的核心问题是确定考虑结构病害损伤后的结构承载力。桥梁结构的承载力评定通常采用以下三个途径:1根据相关规范要求对照桥梁的存在的缺陷及病害进行综合评定例如我国中对桥梁技术状态标准和裂缝宽度,都做了规定。依此标准将桥梁技术状况划分为四类

32、。公路养护管理部分推广使用也属于综合评估方法,这种评估方法只能给出宏观的分析结果。2现场荷载试验评估方法通过现场荷载试验(静载试验和动载试验)可直接检算结构的实际承载力。荷载试验与理论计算分析相结合是比较符合实际的承载力评定方法,但试验设备复杂,技术难度高,经费支出大,目前尚难以大规模推广应用。3理论计算分析评估方法在现场调查和病害检测分析的基础上,考虑结构病害、损伤的影响,按现行规范计算结构承载力是国内采用的承载力评估的主要方法。 按新修订的JTG D62-2003(以下简称)规定,构件承载能力极限状态的基本方程式为: (1-14)式中: 荷载效应组合设计值;结构重要性系数;混凝土强度设计值

33、;钢筋强度设计值;与结构尺寸有关的计算参数;结构抗力函数。对桥梁中大量采用钢筋混凝土及预应力混凝土简支梁桥,应对跨中正截面抗弯承载力和距支点(此外h为梁高)和腹板宽度变化处的斜截面抗剪承载力进行检算。对于连续梁应对跨中和中间支点处截面的正截面抗弯承载力进行检算,应对支点横隔板边缘处和腹板宽度变化处的斜截抗剪承载力进行检算。正截面抗弯承载力和斜截面抗剪承载力检算可按给出的有关公式计算。但在计算时应考虑结构损伤的影响,注意以下几点:(1)结构尺寸及配筋应参照结构竣工图,按实际结构测绘确定。(2)车辆荷载内力应按新编规定的新荷载标准计算。应根据桥梁横向连接的实际情况,选择横向分布系数计算方法:对于桥

34、面板设有现浇段的装配式T形梁桥,一般采用刚接梁法;对于采用混凝土铰缝或焊接短钢板连接的空心板或T形梁桥,一般采用铰结板(梁)法。对于某些重要桥梁,亦可根据荷载试验结构确定荷载横向分布系数。 (1-15)式中: 在试验荷载(合力R,偏心距e)作用下,第i片梁的荷载横向分布系数;在试验荷载作用下,第i片梁的跨中挠度;n主梁的根数。(3)混凝土强度等级确定混凝土强度等级应在综合分析设计文件、施工材料检测试验记录和现场测试资料的基础上确定。混凝土强度现场测试以回弹超声综合法为宜。(4)裂缝对承载力的影响在一般情况下,受拉区的竖直裂缝,对正截面抗弯承载力影响不大。斜裂缝对混凝土的抗剪承载力有所降低。根据

35、笔者的试验研究结果6,斜裂缝小于0.2mm者,混凝土与箍筋的综合抗剪承载力应乘以的降低系数;斜裂缝大于0.2mm者,混凝土和箍筋的综合抗剪承载力应乘以的降低系数;(5)钢筋腐蚀对承载力的影响前已指出,当结构出现顺筋裂缝时,应考虑钢筋的腐蚀的影响:腐蚀钢筋截面损失率时,只考虑钢筋截面积积损失;腐蚀钢筋截面损失率时,既要考虑钢筋截面积积损失,又要考虑钢筋屈服强度的降低;腐蚀钢筋截面损失率时,钢筋与混凝土的粘着力减弱,尚应考虑钢筋与混凝土共同工作折减,将其承载力再乘以0.80.9的系数。在考虑上述结构病害损伤的基础上,按的有关公式,求得现有构件所能承担的正截面抗弯承载力和斜截面抗剪承载力,并将其与按

36、拟 提高的荷载等级计算的弯矩组合设计值和剪力组合设计值加以比较,则得:正截面抗弯承载力检算系数 (1-16)斜截面抗弯承载力检算系数 (1-17)若,说明正截面抗弯承载力可以满足要求,若,说明正截面抗弯承载力不足,应予补强加固。若,说明斜截面抗剪承载力可以满足要求,若,说明斜截面抗弯承载力不足,应予补强加固。(二)结构剩余使用寿命的预测混凝土结构的使用寿命是指结构从开始使用到结构达到破坏状态为止的时间。剩余寿命则为结构在当前情况下,在不加维修或正常维修以及正常使用条件下,结构可能继续使用的年限。钢筋腐蚀是影响混凝土结构耐久性和使用寿命的重要因素,因此,一般将钢筋腐蚀作为判断混凝土结构使用寿命终

37、结的标准。基于钢筋腐蚀的预测混凝土结构剩余寿命的方法,可以把混凝土结构使用寿命分以下几个阶段,见图1-4。图1-4结构使用寿命示意图混凝土结构保护层完全碳化,钢筋脱钝开始腐蚀的时间;钢筋进一步腐蚀导致混凝土保护层胀裂的时间;保护层胀裂,钢筋腐蚀进一步加剧,导致承载力降低到如不加处理,无法继续使用的时间,即达到结构使用寿命的标准。关于混凝土结构耐久性终结标准目前国内外尚无统一的说法。大致有以下三种情况:(1)以混凝土保护层出现顺筋纵向裂缝为标准。(2)以纵向裂缝达到一定宽度和钢筋腐蚀量为标准。(3)以混凝土保护层开裂,钢筋与混凝土的粘着力丧失为标准。目前,多数研究者以纵向裂缝达到一定宽度做为耐久

38、性终结的标准。但不同的研究者提出的裂缝宽度限制不同。应该指出,在上述关于混凝土结构使用寿命的分阶段分析中,钢筋开始腐蚀的时间的预测是较容易实现的。钢筋开始腐蚀时间,可定义为混凝土保护层完全碳化的时间。从前面介绍的混凝土碳化深度与碳化时间关系式(1-1),可知,若结构使用年后,测得的碳化深度为,即可求得混凝土保护层C完全碳化的时间: (1-18)式中: 为使用年后的实测碳化深度(mm);C为混凝土保护层厚度(mm);但是,混凝土保护层胀裂的时间和纵向裂缝达到一定宽度的时间的确定,目前尚无用简单的表达式做定量描述,它涉及到结构的环境条件,混凝土的密实度,保护层厚度,钢筋直径、钢筋类型等多种因素的综合影响,有关钢筋腐蚀胀力模型的研究,是很多学者正在研究的课题。目前,对在役结构的耐久性评估和剩余寿命预测,大多还是依懒有经验的工程技术人员作出经验性评价和处理意见。18 / 18

展开阅读全文
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!