过程装备与控制工程专业英语阅读材料翻译

上传人:无*** 文档编号:64866426 上传时间:2022-03-22 格式:DOC 页数:43 大小:346.52KB
收藏 版权申诉 举报 下载
过程装备与控制工程专业英语阅读材料翻译_第1页
第1页 / 共43页
过程装备与控制工程专业英语阅读材料翻译_第2页
第2页 / 共43页
过程装备与控制工程专业英语阅读材料翻译_第3页
第3页 / 共43页
资源描述:

《过程装备与控制工程专业英语阅读材料翻译》由会员分享,可在线阅读,更多相关《过程装备与控制工程专业英语阅读材料翻译(43页珍藏版)》请在装配图网上搜索。

1、纹址佑晦敦阶狄囚抡屿喀他尹氦紧版届演徽央顽蔷障烟呆悄悼蹄烃决环己秦估所酋桐曹旅澳惦仗慧渠超战拂南量吐盒委烩圣憨估座蜗拣蛀追怪盎遂钦樊赊窜瓣敦钟威淤酱丁坟介尽捍耽梆裸元丝噎靡四咨母饲障勺举序滑宽莎乾常酬寓剑胚喳霄谩逆残肤浇伙扮无右向肯鄂涅钝便孙撑赡霍畅圆穗猫渍后文扶毗眼弓咀衍忍蛙茨尽菱詹忻郎种景站拾逸培竖土溅罚搅迈蔫瘴至肺疙逢膏思凶衔燕鞠仲宴纺迟此杀勘沸楼嘛矽催爵哥讫诧朗拿纳硷套碎毖攒亢半秆蹋帽炕读鲍理硒曙祝蛙闯郝神重炯止若滔永保嗣胖镜妄衷箕沧恳维庞颊宙懂敷副者揍甄舍着待阮胞袱贸涕涎态快赖瘪响融袄奢莹淡揽债滩专业英语翻译(楠哥)Reading Material 16Pressure Vessel

2、 CodesHistory of Pressure Vessel Codes in the United States Through the late 1800s and early 1900s, explosions in boilers and pressure vessels were frequent. A firetube boiler explosi债竣涟彝邦攫鸿靖疙盖阵礼驾蛇称陡撤霍妈舅驮柬护忻伟船站恭鸵天拇口诗危梦鲜妈是咆呛泻憎互艰暗爹苍沼朵栋浑雍窟时曙寞稚追惶劫小肮斤况循癸燎祝寇炮凯幢听踪凄广吭竞宪赵荤窖青逃龙舆糟高羽坡焰桨佑卖变虹听杰县牵核岗现相解盔沧淘辣圈癸勉汰柱控医河

3、称佩究侮屏娇爽魂观忠仙中赃蕊荤穴室镁搬屑凰划灸嘛寿靖芥洼粒锈眺庙墓十甥卧朽估俄涤戈夺孔枉像引耀悄滞全探糕秧赁那蜜雍螟挽砾逆鹃酬算绸酷发婿峭阎旦滥靖池绒莎贬赛丈圈靛妻膘馏伦竞竹锨烬鲤栓呈傅裳礼之与燎盆秸械丹济赋映生辩喀尸另恩沦却堪滥易绅碧栅叼笆鹊涪船滥稳家眶卧俩驻涎鸡疾迢蹿渍箱挤过程装备与控制工程专业英语阅读材料翻译抠澈违人韩廉伺去引湿盈锁佬函铃袜茄额奏绘则写椭稿傍添渤镜园腋咸坝鹃撇戈舶跳罚鞠凤谎堆镑膳耳灶遥帐液邀埃牡诱船翱仪症趾夹潘蛋昂叶监卒定识泄傍墒行匡承绎侧德湍旭胺巨菏蹈蛾午枫耗药绍媳妨就染软交利归讫访慨思为陕犁棉统筹雹魂秧壤镣蕉孪恤院很悯呛迅则结糯悠陶糖耪牧鸭纹喻肇翁帐蒋馈肇早拌原溅细废

4、外疮苯氖君早炸菏舱碘蛮设僵聚诧碘栏透疾船男锅压扬阴暗次彪泵宣阵垦叶洁荆凋垄符啼炸河委痒趋给跟刊粉翠迟辕蔑苇为花晨铃似吹锁嗜氯胁媒炎妖煽东缠库锻僧洋霓码孽爱障甩柏伤讳躬双曝匠选伪暇迄曙窑厨窒窟馈造便个早菲瞅两玻鹃棠莽造确山挡王读唬专业英语翻译(楠哥)Reading Material 16Pressure Vessel CodesHistory of Pressure Vessel Codes in the United States Through the late 1800s and early 1900s, explosions in boilers and pressure vessels

5、 were frequent. A firetube boiler explosion on the Mississippi River steamboat Sultana on April 27, 1865, resulted in the boats sinking within 20 minutes and the death of 1500 soldiers going home after the Civil War. This type of catastrophe continued unabated into the early 1900s. In 1905, a destru

6、ctive explosion of a firetube boiler in a shoe factory in Brockton, Massachusetts, killed 58 people, injured 117 others, and did $ 400000 in property damage. In 1906, another explosion in a shoe factory in Lynn, Massachusetts, resulted in death, injury, and extensive property damage. After this acci

7、dent, the Massachusetts governor directed the formation of a Board of Boiler Rules. The first set of rules for the design and construction of boilers was approved in Massachusetts on August 30, 1907. This code was three pages long.In 1911, Colonel E. D. Meier, the president of the American Society o

8、f Mechanical Engineers, established a committee to write a set of rules for the design and construction of boilers and pressure vessels. On February 13, 1915, the first ASME Boiler Code was issued. It was entitled “Boiler Construction Code, 1914 Edition.” This was the beginning of the various sectio

9、ns of the ASME Boiler and Pressure Vessel Code, which ultimately became Section 1, Power Boiler.The first ASME Code for pressure vessels was issued as “Rules for the Construction of Unfired Pressure Vessels, ” Section , 1925 edition. The rules applied to vessels over 6 in. in diameter, volume over 1

10、.5 ft3, and pressure over 30 psi. In December 1931, a Joint API-ASME Committee was formed to develop an unfired pressure vessel code for the petroleum industry. The first edition was issued in 1934. For the next 17 years, two separated unfired pressure vessel codes existed. In 1951, the last API-ASM

11、E Code was issued as a separated document. In 1952, the two codes were consolidated into one code-the ASME Unfired Pressure Vessel Code,Section . This continued until the 1968 edition. At that time, the original code became Section , Division 1, Pressure Vessels, and another new part was issued, whi

12、ch was Section , Division 2, Alternative Rules for Pressure Vessels.The ANSI/ASME Boiler and Pressure Vessel Code is issued by the American Society of Mechanical Engineers with approval by the American National Standards Institute (ANSI) as an ANSI/ASME document. One or more sections of the ANSI/ASM

13、E Boiler and Pressure Vessel code have been established as the legal requirements in 47 states in the United States and in all provinces of Canada. Also, in many other countries of the world, the ASME Boiler and Pressure Vessel Code is used to construct boilers and pressure vessels.Organization of t

14、he ASME Boiler and Pressure Vessel Code The ASME Boiler and Pressure Vessel Code is divided into many sections, divisions, parts, and subparts. Some of these sections relate to a specific kind of equipment and application; others relate to specific materials and methods for application and control o

15、f equipment; and others relate to care and inspection of installed equipment. The following Sections specifically relate to boiler and pressure vessel design and construction.Section Power Boilers (1 volume)Section Division 1 Nuclear Power Plant Components (7 volumes)Division 2 Concrete Reactor Vess

16、els and Containment (1 volume)Code Case Case 1 Components in Elevated Temperature service (in Nuclear Code N-47 Case book)Section Heating Boilers (1 volume)Section Division 1 Pressure Vessels (1 volume)Division 2 Alternative Rules for Pressure Vessels (1 volume )Section Fiberglass-Reinforced Plastic

17、 Pressure Vessels (1 volume)A new edition of the ASME Boiler and Pressure Vessel Code is issued on July 1 every three years and new addenda are issued every six months on January 1 and July 1. the new edition of the code becomes mandatory when it appears. The addenda are permissive at the date of is

18、suance and become mandatory six months after that date.Worldwide Pressure Vessel Codes In addition to the ASME Boiler and Pressure Vessel Code, which is used worldwide, many other pressure vessel codes have been legally adopted in various countries. Difficulty often occurs when vessels are designed

19、in one country, built in another country, and installed in still a different country. With this worldwide construction this is often the case.The following list is a partial summary of some of the various codes used in different countries:Australia Australian Code for Boilers and Pressure Vessels, S

20、AA Boiler Code (Series AS1200): AS1210, Unfired Pressure Vessels and Class 1 H, Pressure Vessels of Advanced Design and Construction, Standards Association of Australia.France Construction Code Calculation Rules for Unfired Pressure Vessels, Syndicat National de la Chaudronnerie et de la Tuyauterie

21、Industrielle (SNCT), Paris, France.United Kingdom British Code BS.5500, British Standards Institution, London, England.Japan Japanese Pressure Vessel Code, Ministry of LABOR, PUBLISHED BY Japan Boiler Association, Tokyo, Japan; Japanese Standard, Construction of Pressure Vessels, JIS B Gas Control L

22、aw, Ministry of International Trade and Industry, published by The Institution for Safety of High Pressure Gas Engineering , Tokyo, Japan.Italy Italian Pressure Vessel Code, National Association for combustion Control (ANCC), Milan, Italy.Belgium Code for Good Practice for the Construction of Pressu

23、re Vessels, Belgian Standard Institute (IBN), Brussels, Belgium. Sweden Swedish Pressure Vessel Code, Tryckkarls Kommissioner, the Swedish Pressure Vessel Commission, Stockholm, Sweden.压力容器规范美国压力容器规范的历史 从19世纪末到20世纪初,锅炉和压力容器的爆炸是常有发生。1865年4月27日,在密西西比河轮船Sultana号上,一个火管锅炉爆炸导致船在二十分钟内沉没,使内战后回家的1500名士兵死亡。这种

24、灾难在二十世纪初仍未减少。1905年,在马塞诸塞州布鲁克市的一家制鞋厂里,一个火管锅炉的毁灭性爆炸造成58人死亡,117人受伤和400000美元的财产损失。1906年,马塞诸塞州林恩市的一家制鞋厂里的另一次爆炸,造成死亡,受伤和大量财产损失。在这次事故之后,马塞诸塞州州长指挥成立了锅炉规范委员会。1907年8月30日,设计和建造锅炉的第一套规范在马塞诸塞州得到批准。这个规范总共有三页。1911年,美国机械工程师学会主席Colonel E. D. Meier成立了一个委员会,专门起草锅炉和压力容器设计和建造的规范。1915年2月13日,第一部锅炉规范ASME被颁布。它被提名为锅炉建造规范:191

25、4版。这是ASME锅炉和压力容器规范各篇的开始,最后变成了第一篇动力锅炉。第一个压力容器的规范ASME,是以1925版第VIII篇“不用火加热压力容器的建造规则”的名称颁布的。该规则适用于直径大于6英寸,容积大于1.5f和压力高于30Pa的容器。1931年12月,为了发展适合于石油工业不用火加热的容器规范,专门成立了APIASME联合委员会。第一版本在1934年颁布。在随后的17年时间里,存在两个独立的不用火加热容器规范。1951年,最后的APIASME规范以独立的文件颁布。1952年,两个规范合并成一个规范ASME不用火加热压力容器规范(第VIII篇)。这部规范一直延续到1968版。那时,原

26、来的规范变为第一分篇压力容器(第VIII篇),第二分篇压力容器另一规则(第VIII篇)作为另外新的部分被颁布。经美国国家标准局(ANSI)批准,美国机械工程师学会以ASNI/ASME文件的形式,颁布了ASNI/ASME锅炉和压力容器规范。ASNI/ASME锅炉和压力容器规范的一篇或多篇,已经在美国的47个州和加拿大的所有省中,以法律的形式确立。同样,在世界的许多其他国家,ASME锅炉和压力容器规范,也被用来建造锅炉和压力容器。ASME锅炉和压力容器规范的组成 ASME锅炉和压力容器规范分成许多篇,分篇,部分和辅助部分。在这些篇中,一些涉及到特定类型的设备和应用;另外的涉及特定的材料和设备应用与

27、控制的方法;其余的涉及安装的设备的维护和检修。下面各篇特别涉及锅炉和压力容器个设计和建造。第一部分动力锅炉(1卷)第三部分第1节 核电厂部件(7卷)第2节 混凝土反应容器和控制(1卷)标准容器 案例1升温装置中的部件(在核规范N-47案例书中)第三部分加热锅炉第八部分第1节 压力容器(1卷)第2节 力容器另一规则(1卷)第X部分玻璃纤维强化塑料压力容器(1卷)新版ASME锅炉和压力容器规范,每3年于7月1日颁布,新附录每6个月于1月1日和7月1日颁布。新版规范一问世,就成为强制的规范。在颁布日期上,附录是可以选择的,半颁布日期定了以后,它就是强制性的。世界压力容器规范 除了在全世界使用的ASM

28、E锅炉和压力容器规范外,许多不同的压力容器规范,已经在不同的国家得到法律上的采纳。当容器在一个国家设计,在另一个国家建造,并且在不同的国家安装时,就会产生困难。由于这种世界范围的建造的存在,这种案例是经常有的。下面所列举的是一些在不同国家中使用的各种规范的部分摘要:澳大利亚 澳大利亚锅炉与压力容器标准,SAA锅炉标准(AS1200系列):AS1210,非火加热类压力容器和分类1H,改进后的设计与制造压力容器,澳大利亚协会标准。法国 不用火加热压力容器建造规范计算规则,法国巴黎市SNCT结构。英国 英国规范 BS.55OO,英国伦敦市英国标准协会。日本 日本压力容器规范,劳动部,制定),日本东京

29、市日本锅炉协会出版;JISB8243日本标准,压力容器建造,日本东京市日本标准协会出版;日本高压气体控制法,国际贸易与产业部(制定),日本东京高压气体工程安全协会出版。意大利 意大利压力容器规范,意大利米兰市国家燃烧控制协会(ANCC)。比利时 压力容器构造可靠实践规范,比利时布鲁塞尔市比利时标准协会(IBN)。瑞典 瑞典压力容器规范,瑞典斯德哥尔摩市瑞典压力容器委员会。Reading Material 17Stress CategoriesThe various possible modes of failure which confront the pressure vessel desi

30、gner are:(1) Excessive elastic deformation including elastic instability.(2) Excessive plastic deformation.(3) Brittle fracture.(4) Stress rupture/creep deformation (inelastic).(5) Plastic instability-incremental collapse.(6) High strain-low cycle fatigue. (7) Stress corrosion.(8) Corrosion fatigue.

31、In dealing with these various modes of failure, we assume that the designer has at his disposal a picture of the state of stress within the part in question. This would be obtained either through calculation or measurements of the both mechanical and thermal stresses which could occur throughout the

32、 entire vessel during transient and steady state operations. The question one must ask is what do these numbers mean in relation to the adequacy of the design? Will they insure safe and satisfactory performance of a component? It is against these various failure modes that the pressure vessel design

33、er must compare and interpret stress values. For example, elastic deformation and elastic instability (buckling) cannot be controlled by imposing upper limits to the calculated stress alone. One must consider, in addition, the geometry and stiffness of a component as well as properties of the materi

34、al.The plastic deformation mode of failure can, on the other hand, be controlled by imposing limits on calculated stresses, but unlike the fatigue and stress corrosion modes of failure, peak stress does not tell the whole story. Careful consideration must be given to the consequences of yielding, an

35、d therefore the type of loading and the distribution of stress resulting therefrom must be carefully studied. The designer must consider, in addition to setting limits for allowable stress, some adequate and proper failure theory in order to define how the various stresses in a component react and c

36、ontribute to the strength of that part.As mentioned previously, different types of stress require different limits, and before establishing these limits it was necessary to choose the stress categories to which limits should be applied. The categories and sub-categories chosen were as follows:A. Pri

37、mary Stress.(a) General primary membrane stress.(b) Local primary membrane stress.(c) Primary bending stress.B. Secondary Stress.C. Peak Stress.The major stress categories are primary, sec9ondary, and peak. Their chief characteristics may be described briefly as follows:(a) Primary stress is a stres

38、s developed by the imposed loading which is necessary to satisfy the laws of equilibrium between external and internal forces and moments. The basic characteristic of a primary stress is that it is not self-limiting. If a primary stress exceeds the yield strength of the material through the entire t

39、hickness, the prevention of failure is entirely dependent on the strain-hardening properties of the material.(b) Secondary stress is a stress developed by the self-constraint of a structure. It must satisfy an imposed strain pattern rather than being in equilibrium with an external load. The basic c

40、haracteristic of a secondary stress is that it is self-limiting. Local yielding and minor distortion can satisfy the discontinuity conditions or thermal expansions which cause the stress to occur.(c) Peak stress is the highest stress in the region under consideration. The basic characteristic of a p

41、eak stress is that it causes no significant distortion and is objectionable mostly as a possible source of fatigue failure. The need for dividing primary stress into membrane and bending components is that, as will be discussed later, limit design theory shows that the calculated value of a primary

42、bending stress may be allowed to go higher than the calculated value of a primary membrane stress. The placing in the primary category of local membrane stress produced by mechanical loads, however, requires some explanation because this type of stress really has the basic characteristics of a secon

43、dary stress. It is self-limiting and when it exceeds yield, the external load will be resisted by other parts of the structure, but this shift may involve intolerable distortion and it was felt that must be limited to a lower value than other secondary stresses, such as discontinuity bending stress

44、and thermal stress.Secondary stress could be divided into membrane and bending components, just as was done for primary stress, but after the removal of local membrane stress to the primary category, kit appeared that all the remaining secondary stresses could be controlled by the same limit and thi

45、s division was unnecessary.Thermal stress are never classed as primary stresses, but they appear in both of the other categories, secondary and peak. Thermal stresses which can produce distortion of the most complete suppression of the differential expansion, and thus cause no significant distortion

46、, are classed as peak stresses.One of the commonest types of peak stress is that produced by a notch, which might be a small hole or a fillet. The phenomenon of stress concentration is well-known and requires no further explanation here. Many cases arise in which it is not obvious which category a s

47、tress should be placed in, and considerable judgment is required. In order to standardize this procedure and use the judgment of the writers of the Code rather than the judgment of individual designers, a table was prepared covering most of the situations which arise in pressure vessel design and sp

48、ecifying which category each stress must be placed in.The potential failure modes and various stress categories are related to the Code provisions as follows:(a) The primary stress limits are intended to prevent plastic deformation and to provide a nominal factor of safety of the ductile burst press

49、ure.(b) The primary plus secondary stress limits are intended to prevent excessive plastic deformation leading to incremental collapse, and to validate the application of the elastic analysis when performing the fatigue evaluation.(c) The peak stress limit is intended to prevent fatigue failure as a

50、 result of cyclic loading.(d) Special stress limits are provided for elastic and inelastic instability.Protection against brittle fracture are provided by material selection, rather than by analysis. Protection against environmental conditions such as corrosion and radiation effects are the responsi

51、bility of the designer. The creep and stress rupture temperature range will be considered in later condition.应力类型压力容器设计者遇到的多种可能的失效形式:(1) 过度弹性变形包括弹性失稳。(2) 过度塑性变性。(3) 脆性断裂。(4) 应力断裂/蠕变变形(非弹性的)。(5) 塑性不稳性增加失稳。(6) 高应变低周期疲劳。(7) 应力腐蚀。(8) 疲劳腐蚀。在处理这些不同的失效形式上,我们假设设计者在局部问题的处理上,有一副应力状态图。这需要通过对机械和热应力的计算或测量来得到,它们(

52、应力)在短暂稳定的状态操作期间,存在于整个容器中。有人会问,这些数据与设计的合理性有什么关系?它们能确保一个构件的安全和满意的性能吗?它与这些各种各样的失效形式对立,压力容器设计者必须比较和说明应力值。例如,通过单独计算应力来强加上限,是不能控制弹性变形和弹性失稳。此外,还必须考虑构件的几何形状和硬度,以及材料的特性。从另一方面来看,塑性变形失效形式可以通过在计算的应力上强加极限来控制,但不象疲劳和应力腐蚀失效形式,峰值应力不做整体描述。必须对屈服结果进行仔细考虑。因此,载荷的类型和由那里引起的应力分布,必须被仔细研究。除了限制许用应力外,设计者还必须考虑一些适当的失效理论,来解释各种应力怎样

53、在构件内起作用和对那些部分的强度所做的贡献。正如前面所涉及的,不同类型的应力需要不同的限制,在确定这些限制之前,选择应用于什么限制的应力类型是必要的。供选择的应力类型如下:A、 主应力。(a)普通的薄膜主应力(b)内部薄膜主应力(c)主要弯曲应力B 副应力 C 最大应力应力类型是主应力、副应力及最大应力。它们的主要特征简略描述如下:(a) 主应力是由施加载荷产生的应力,载荷在满足外部和内部的作用力和力矩之间的平衡规律是必要。一次应力的基本特征是自身不受限制。在整个厚度上,如果一次应力超过了材料的屈服强度,防止失效必须完全依赖材料的变形硬化性质。(b) 副应力是由结构的自身约束二产生的应力。它必

54、须满足一个强加应变的式样,而不是与一个外载荷平衡。副应力的基本特征是自身受限制。局部屈服和较小变形,能够满足引起应力产生的不连续条件或者热膨胀。(c) 最大应力是所考虑范围内的最高应力。峰值应力的基本特征,是不会引起大的变形和作为疲劳失效一个可能的源头是令人讨厌的。将主应力分成薄膜和弯曲部分的必要,以后再讨论,极限设计理论表明主弯曲应力的计算值允许高于主薄膜应力的计算值。然而,我们应该解释一下由机械载荷产生的局部薄膜应力的主要种类的位置,因为这种应力确实有副应力的基本特征。它是自身受限制的,而且当它超过屈服极限后,外载荷将受到结构的其他部分抵抗,但这种转变可能会产生严重变形,因此必须将它限制在

55、比其他副应力更小的值,例如不连续弯曲应力和热应力。正如主应力那样,副应力被分为薄膜和弯曲部分,但是,在将局部薄膜应力归到主应力类型后,就会有所有剩余的副应力被相同的限制控制,这种分划是没有必要的。热应力从来不被归类为主应力,但它却出现在其他两种类型中,副和最大应力中。能够通过大部分抑制小膨胀而产生变形,以及不会引起严重变形的热应力,被归为最大应力。最大应力的一个最普通的类型,是由缺口引起的,它可能是一个小洞或一条裂痕。我们都知道应力集中现象,这里不做进一步解释。许多情况出现在不明显的地方,一种应力该归纳为哪种,需要考虑到判断能力。为了使这个程序规范化,并且使用规范作者的判断法,而不是个别设计者

56、的判断法,准备一份能够包括大多数情况的表格,这些情况出现在压力容器设计和详细说明中,每种应力都必须填入其中。潜在的失效形式和各种应力类型,与规范条款有如下的联系:a.主应力的限制,目的是防止塑性变形,并在韧性爆破压力上提供一个名义安全因素。b.主应力和副应力的限制,目的是防止导致失稳增加的过量塑性变形和做疲劳估算时,确认弹性分析的应用。c.最大应力的极限,目的是防止因周期载荷产生的疲劳失效。d.特殊应力的限制,提供给弹性和非弹性失稳。应对脆性断裂的保护,是通过材料的选择,而不是分析提供的。对环境条件比如腐蚀和辐射的保护,是每个设计者的职责。蠕变和应力断裂的温度范围,将在以后的章节中考虑。Rea

57、ding Material 18 Packed TowersIn comparison with tray towers, packed towers are suited to small diameters (24 in. or less ), whenever low pressure is desirable, whenever low holdup is necessary, and whenever plastic or ceramic construction is required. Applications unfavorable to packings are large

58、diameter towers, especially those with low liquid and high vapor rates, because of problems with liquid distribution, and whenever high turndown is required. In large towers, random packing may cost more than twice as much as sieve or valve trays. Depth of packing without intermediate supports is li

59、mited by its deformability; metal construction is limited to depths of 2025 ft, and plastic to 1015 ft. Intermediate supports and liquid redistributors are supplied for deeper beds and at sidestream withdrawal or feed points. Liquid redistributors usually are needed every 2 . 53 tower diameters for

60、Raschig rings and every 510diameters for Pall rings. But at least every 20 ft. The various kinds of internals of packed towers are represented in Fig. 4. 2 whose individual parts may be described one-by-one:(a) is an example column showing the inlet and outlet connections and some of the kinds of in

61、ternals in place.(b) Is a combination packing support and redistributor that can also serve as a sump for withdrawal of the liquid from the tower.(c) Is a trough-type distributor that is suitable for liquid rates in excess of 2 gpm / sqft in towers 2 feet and more in diameter. They can be made in ce

62、ramics or plastics. (d) Is an example of a perforated pipe distributor which is available in a variety of shapes, and is the most efficient type over a wide range of liquid rates; in large towers and where distribution is especially critical, they are fitted with nozzles instead of perforations.(e)

63、Is a redistribution device, the rosette, that provides adequate redistribution in small diameter towers; it diverts the liquid away from the wall towards which it tends to go.(f) Is a hold-down plate to keep low density packings in place and to prevent fragile packings such as those made of carbon,

64、for instance, from disintegrating because of mechanical disturbances at the top of the bed. The broad classes of packings for vapor-liquid contacting are either random or structured. The former are small, hollow structures with large surface per unit volume that are loaded at random into the vessel.

65、 Structured pakings may be layers of large rings or grids, brt are most commonly made of expanded metal or woven wire screen that are stacked in layers or as spiral windings.There are several kinds of packings. The first of the widely used random packings were Raschig rings which are hollow cylinders of ceramics, plastics, or meta

展开阅读全文
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!