多孔氧化铝陶瓷的放电等离子烧结技术制备

上传人:z**** 文档编号:64831215 上传时间:2022-03-22 格式:DOC 页数:16 大小:184KB
收藏 版权申诉 举报 下载
多孔氧化铝陶瓷的放电等离子烧结技术制备_第1页
第1页 / 共16页
多孔氧化铝陶瓷的放电等离子烧结技术制备_第2页
第2页 / 共16页
多孔氧化铝陶瓷的放电等离子烧结技术制备_第3页
第3页 / 共16页
资源描述:

《多孔氧化铝陶瓷的放电等离子烧结技术制备》由会员分享,可在线阅读,更多相关《多孔氧化铝陶瓷的放电等离子烧结技术制备(16页珍藏版)》请在装配图网上搜索。

1、. . . . ScienceDirect学科指南Porous Alumina Ceramics Fabricated by Spark Plasma Sintering多孔氧化铝瓷的放电等离子烧结技术制备WANG Kun, FU Zheng-yi*, PENG Yong, WANG Yu-cheng,ZHANG Jin-gong, ZHANG Qing-jie王坤,福毅,勇,王宇城,晋宫,庆街State Key Lab ofAdvanced Technology for Materials Synthesis and Processing, WuhanUniversity of Techno

2、logy Wuhan, 430070, China国家重点实验室先进的材料合成与加工技术,理工大学,430070,中国Received 10 August 2006; accepted 6 November 20062006年8月10收到; 2006年11月6日接受Abstract摘要Porous alumina of regular spherical particles was fabricated with the spark plasma sintering (SPS) and then compared to those obtamed through conventional ho

3、t pressing (HP). The effects of the parameters of the heating process on porosity were also investigated.Microstructural studies suggest that porous ingots including regular pores be made out of regular spherical alumina particles due to theclose sphere packages. A comparative study on the relative

4、necks of the specimens produced by SPS and HP indicates an enhancementof neck growth with SPS. Contrasting the theoretical values to the experimental results over the relative necks indicates that a properrelationship between the relative necks and the porosity can be established by a sintering mode

5、l.多孔氧化铝为规则的球形颗粒与放电等离子烧结(SPS)制备,然后比较分析通过常规热压(惠普)。同时考察了加热过程的参数对孔隙率的影响。微观结构研究表明,多孔硅锭包括定期毛孔被制造出来的规则的球形氧化铝颗粒由于接近球包。在SPS和惠普生产的标本,相对的脖子比较研究表明SPS颈部生长的增强。对比理论值的实验结果表明,在相对的脖子相对的脖子和孔隙度之间的关系可以通过烧结模型的建立。Keywords: spark plasma sintering (SPS); porous alumina ceramics; sintering neck关键词:放电等离子烧结(SPS);多孔氧化铝瓷;烧结颈1 In

6、troduction1引言Porous alumina ceramics, which have bothfunctional and structural properties, have beenwidely applied in the chemical industries, metallurgical industries, medical industries, and many otherfields of engineering1. The various design and performance characteristics of porous alumina cera

7、micsare principally concentrated about controlled porosity and pore-size, high strength, heat and corrosionresistance, durability, shock resistance, and goodpermeability. Thereare many techniques to fabricate porous alumina ceramics, but the majority of those need to addorganic polymers as pore form

8、ing materials2. However, spark plasma sintering (SPS) issuggested to be effective on the fabrication of porous alumina ceramics because it makes possiblesintering and bonding at low temperature and shorttime by charging the intervals between powder particles with electrical energy and effectively ap

9、plyinga high temperature spark plasma generated momentarily3-5. Compared with hot pressing (HP) sintering, porous alumina ceramics can be manufacturedby SPS at lower heating temperature, short holdingtime without any addictive.多孔氧化铝瓷,具有的功能和结构特性,已被广泛应用于化学工业,冶金工业,医疗业,以与其他许多领域工程 1 。各种设计和多孔氧化铝瓷的性能特点,主要集

10、中在受控的孔隙率和孔径,高强度,耐热性和耐蚀性,耐久性,耐冲击性,和良好的渗透性。有许多技术制备多孔氧化铝瓷,但大多数人需要添加有机聚合物材料的孔隙形成 2 。然而,放电等离子烧结(SPS)建议对多孔氧化铝瓷的制备是有效的因为它使烧结和粘结在较低的温度和较短的时间间隔,通过充电的电能和有效应用高温放电等离子粉末颗粒之间产生瞬间3-5。热压烧结(惠普)相比,多孔氧化铝瓷可由SPS在较低的加热温度,保持时间短,无任何添加剂。In this paper, porous alumina ceramics werefabricated by SPS and compared with the sampl

11、esby HP; furthermore, the effects of the techniqueparameters on porosity and the effectiveness for thesintering necks during SPS process were discussed.在本文中,SPS制备与惠普的多孔氧化铝瓷样品进行了比较;此外,还讨论了对孔隙度的技术参数和在SPS烧结过程的脖子的效果。2 Experimental Procedures2实验程序Rawmaterials were spherical particles ofAl2O3 with an addi

12、tive of ZrO, of which diameterswere from 0.4 mm to 0.5 mm. 4 g of these sphericalparticles were put into a graphite mold and sinteredusing a spark plasma sintering apparatus (modelSPS-1050, Sumi-tomo Coal Mining Co. Ltd. Japan).原材料是球形颗粒的Al2O3 with an添加剂of ZrO,diameters of which were from 0.4毫米至0.5毫米

13、4 g of these球形粒子是put into石墨模具和使用火花等离子体烧结sintered呼吸器(SPS 1050模型,大隅我煤矿业Japan)Fig.l shows the schematic diagram of SPS deviceemployed in the experiments图1显示了SPS装置采用的实验原理图SPS processing was carried out in a vacuum(1=6 Pa) by heating to the required temperature(1173 K-11253 K) at heating rate of 50 K/min

14、-400 K/min, with 1 min-30 min of holding time andan applied pressure of 0 kPa-80 kPa. Temperaturewas measured by thermocouple. For comparison,the same particles were compacted using ahot-pressing (HP) procedure under the same temperature with 60 min and 481kPa.SPS处理是在真空中进行(1 = 6 Pa)被加热到所需温度(1173 k-1

15、1253 K)在加热速率为50 K / min-400 Kmin,1 min-30分钟的保持时间和0 kpa-80千帕施加的压力。使用热电偶测量温度。相比之下,同一颗粒被压实采用热压(惠普)程序一样的温度下60分钟,481kpa。3 Results and Discussion结果与讨论3.1 Porosity measurement孔隙度测量Apparent porosity measurement was based onArchimedean principal method. Figs.2-5 show thatthe effect of the different technique

16、 parameters during the sintering process on porosity. As can be seenin Figs.2-4, apparent porosity decreases slightlywith increasing sintering temperature and increasingholding time, while the applied pressure has littleinfluence on the porosity because of the high hardness and large dimension of th

17、e raw particles. InFig.5, there is a slight decline in porosity when theheating rate goes up from 50 K/min to 100 K/min,which is followed by a roughly level off in porositywhen the heating rate reaches 400 K/min. Therefore,an appropriate ascend of heating rate has a positiveeffect on the porosity of

18、 the samples, and there exists different optimum heating rate for different systems.显气孔率的测量是基于阿基米德主要方法。 Figs.2-5表明,在烧结过程中对孔隙度的不同工艺参数的影响。如可于图2 - 4中可以看出,表观孔隙率随烧结温度和增加保持时间略有减小,而所施加的压力有因为高硬度和原料颗粒的大尺寸的影响较小的孔隙率。在图5中,有在孔隙率略有下降,当加热速率上升为50 K /分钟至100 K /分钟,这之后是在孔隙大致平整时的升温速率达到400 K / min的。因此,升温速率适当的递增有对样品的孔隙率有

19、正面影响,并且存在不同的最佳加热速度为不同的系统。Fig.2 The effect of sintering temperature on porosity for porous Al2O3 ceramics(pressure: 48 kPa; holding time: 10 min; heating rate: 100 K/min)图2烧结温度对孔隙度的多孔氧化铝瓷的影响 (压力48千帕;保温时间:10分钟;升温速率:100 K /分钟)Fig.3 The effect of uniaxial pressure on porosity for porous Al2O3 ceramics.(

20、SPS temperature: 1 223 K; holding time: 15 min; heating rate:100 K/min)图3的单轴压力对孔隙度为多孔的影响 氧化铝瓷。 (SPS温度:1开氏223度,保温时间:15分钟;升温速率:100 K /分钟)Fig,4 The effect of holding time on porosity for porous Al2O3 ceramics.(SPS temperature: 1 223 K; pressure: 0 kPa; heating rate: 100 K/min)图,保温时间对孔隙度的多孔4的影响 氧化铝瓷。 (S

21、PS温度:1开氏223度,压力:0千帕;升温速率:100 K /分钟)Fig.5 The effect of heating rate on porosity for porous Al2O3 ceramics.(pressure: 0 kPa; holding time: 1 min; SPS temperature: 1 223 K)图5的加热速度对孔隙度的多孔的影响 氧化铝瓷。 (压力:0千帕;保温时间:1分钟; SPS温度:1223 K)3.2 Microscopy observation3.2显微镜观察Fig.6 shows SEM micrographs of sinteringn

22、eck of the SPS specimens at the sintering temperature of 1 173 K, an applied pressure of 80 kPa and aholding time of 5 min. As can be seen, there arenecks formed at the contacts between particles. Theforms of the pores are regular.图6示出烧结的所述SPS试样在1173 K,80千帕的施加压力并在5分钟的保持时间,烧结温度颈部的SEM显微照片。如可以看到的,也有形成在

23、颗粒之间的接触的脖子。的孔的形式是规则的。(pressure: 80 kPa; holding time: 5 min; SPS temperature: 1 173K; heating rate: 100 K/min)3.3 Calculation of relative necks相对脖子的计算Suppose all the specimens put into the graphitedie exhibited similar packing configuration, the relationship between the volume of the cylindricalsamp

24、les and porosity can be depicted by theseformulas. where b is the porosity of the specimens before sintering, a is the porosity of the specimens after sintering,Vb is the volume of the specimens before sintering,Va is the volume of the specimens after sintering,Vs is the total volume of all the soli

25、d particles,a changeless constant.假设所有放入石墨模具中的试样表现出类似的包装结构中,筒状的样品和孔隙的体积之间的关系可以用下列公式来描绘。其中b是在烧结前的试样的孔隙度,a为试样的孔隙率在烧结后,Vb为试样的体积烧结之前,Va为烧结后的试样的体积,Vs是所有固体的总体积颗粒,一个不变的常数。As can be seen in the double-sphere model(shown in Fig.7), the growth of sintering neck isenhanced during the earlier sintering process6

26、. Thedistance between the centers of the two sphere particles declines with the growing of the sinteringneck.作为所用的双球模型(图7所示),可以看出,烧结颈部的生长过程中较早烧结过程中被增强6。两个球体粒子的中心间的距离下降的烧结颈部的生长。 Under the assumption that the radius of sintering neck formed in earlier sintering process is small, and there is approxima

27、tely no change on the diameters of the raw particles, the linear shrinkage between the centers of the two sphere particles can be 双球烧结模型calculated by the geometrical relationship in Fig.7 asdescribed by theseequations. 由所描述的这些方程7所示的几何关系来计算。Based on the expression pattern of Eqs.(1)一(4), the value of

28、 the radios of sintering neck and radiusof particles can be calculated by Eq.(5).基于方程的表达模式(1)一(4),烧结颈部的颗粒和半径的无线电的值可以通过公式来计算(5)。Substituting the porosity of the specimens before and after sintering into Eq.(5) to reckon thetheoretical value of relative necks under differentsintering conditions. At th

29、e same time, an imageanalysis was carried out by measuring the relativenecks in the SEM graphs. The comparisons betweentheoretical and experimental values are shown inTable 1. Results indicate that the relation betweenrelative neck and porosity described in Eq.(5) isproper.前和烧结式代入后。代样品的孔隙率(5),以估计不同的

30、烧结条件下相对颈部的理论值。与此同时,一个图像进行分析,通过测量在SEM图中的相对的脖子。理论和实验值之间的比较示于表1中。结果表明,相对于颈部和在方程所描述的孔隙率之间的关系(5)是适当的。Table 1 The comparison between calculated and experimental data of the ratios of neck and particle size (x/R) with sintering temperatures in SPS process表1 与烧结温度在SPS过程中颈部和粒度(X / R)的比值计算结果与实验数据的比较(pressure:

31、 48 kPa; holding time: 10 min; heating rate: 100 K/min)(压力48千帕;保温时间:10分钟;升温速率:100 K /分钟)3.4 Comparing with HP3.4 与HP相比较Under the same applied pressure and the sintering temperature, the samples with a holding timeof 5 min in SPS process, and 60 min in HP processwere examines by scanning electron mic

32、roscopy(SEM). Table 2 shows that the porous alumina ceramics fabricated via SPS exhibites an enhanceddensification in comparison with HP. To attain thesimilar value of relative necks, the SPS temperatureis lower than the HP temperature, and the holdingtime of SPS is shorter than that of HP.在一样的施加的压力

33、和烧结温度,用5分钟在SPS过程,并在HP工艺60分钟的保持时间的样品进行检通过扫描电子显微镜(SEM)。表2显示,通过SPS制备的多孔氧化铝瓷件展示品增强的致密化中使用HP比较。为了达到相对颈部的相似值,对SPS温度比HP温度下,和SPS的保持时间比HP的短。Table 2 Comparison of the ratios of neck and particle size(/R)with sintering temperatures for SPS and HP samples表1 颈部和颗粒大小(/ R)的比值与烧结温度对SPS和HP的样本比较4 Conclusions4结论(1) Ap

34、parent porosity decreases with increasingsintering temperature and increasing holding time,while the applied pressure has little influence on theporosity because of the high hardness and large dimension of the raw particles. And there exists different optimum heating rate for different systems.(1)随着

35、烧结温度和增加保持时间的表观孔隙度减小,而所施加的压力有因为高硬度和原料颗粒的大尺寸的影响较小的孔隙率。并且存在不同的最佳升温速率为不同的系统。 (2) The comparisons between theoretical andexperimental values indicate that the relation between relative neck and porosity described inis proper.(2)的理论值和实验值之间的比较表明,在中描述的相对颈部和孔隙率之间的关系是适当的。 (3) To attain the similar value of re

36、lative necks,the SPS temperature should be lower than the HPtemperature, and the holding time of SPS should beshorter than that of HP.(3)为了实现相对于颈部的相似值,对SPS温度应比HP温度下,和SPS的保温时间应比HP的短。References参考文献1 Eckert K L, Mathey M,Mayer J, et al. Preparation and in vivotesting of porous alumina ceramics for cell

37、 carrier applicationsBiomaterials 2000; 21(1): 63-69.2 Isobe T, Kameshima Y, Nakajima A, et al. Extrusion method usingnylon 66 fibers for the preparation of porous alumina ceramicswith oriented pores. Journal of the European Ceramic Society2006; 26(12): 2213-2217.3Tokita M. Trends in advanced SPS sp

38、ark plasma sintering systemsand technology. J Soc Powder Techaol Jpn 1993; 30: 790-804.4 Zhang D M, Fu Z丫Guo J K. Microstructure and temperature distribution in ZnA1204 sintered body妙pulse electric current.Journal of Materials Science and Technology 2003; 19(6):526-528.5 Wang K,Tan T Y,Fu Z Y,et al.

39、 Study on atom di8rrsion under the treatment by pulse current heating. Materials Science and Engineering: B 2006; 135(2): 154-161.6 Frenkel J.Viscous flow of crystalline bodies under the action ofsurface tension. J Phys 1945; 9: 385-391,7 Burke J E, Tumbull D. Recrystallization and grain growth. ProgMet Phys 1952; 3: 220-292.8Tokita M. Development of large-size ceramicJmetal bulk FGMfabricated by spark plasma sintering. Materials Science Forum1999; 308-311: 83-88.16 / 16

展开阅读全文
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!