110KV终端变电站(电气部分)设计

上传人:94****0 文档编号:59397956 上传时间:2022-03-02 格式:DOC 页数:41 大小:354KB
收藏 版权申诉 举报 下载
110KV终端变电站(电气部分)设计_第1页
第1页 / 共41页
110KV终端变电站(电气部分)设计_第2页
第2页 / 共41页
110KV终端变电站(电气部分)设计_第3页
第3页 / 共41页
资源描述:

《110KV终端变电站(电气部分)设计》由会员分享,可在线阅读,更多相关《110KV终端变电站(电气部分)设计(41页珍藏版)》请在装配图网上搜索。

1、精选优质文档-倾情为你奉上前言本毕业设计为贵州电力职业技术学院二八级供用电技术专业第一组毕业设计,设计题目为:110KV终端变电站(电气部分)设计。此设计任务旨在体现我本专业各科知识的掌握程度,培养我对本专业各科知识进行综合运用的能力,同时检验本专业学习三年以来的学习结果。首先根据任务书上所给系统与线路及所有负荷的参数,分析负荷发展趋势。从负荷增长方面阐明了建站的必要性,然后通过对拟建变电站的概括以及出线方向来考虑,并通过对负荷资料的分析,安全,经济及可靠性方面考虑,确定了110kV,35kV,10kV以及站用电的主接线,然后又通过负荷计算及供电范围确定了主变压器台数,容量及型号,同时也确定了

2、站用变压器的容量及型号,最后,根据最大持续工作电流及短路计算的计算结果,对高压熔断器,隔离开关,母线,绝缘子和穿墙套管,电压互感器,电流互感器进行了选型,从而完成了110kV电气一次部分的设计。本设计书仅为本人专业所学之成绩,不免出现纰漏或是错误,望老师及同学予以指正,将感激不尽。至此,感谢给予我指导和帮助的老师和同学们!杨茂二一一年二月二十八日目 录前言第一章 负荷计算及变压器选择 1.1变电所位置分析 1.2负荷计算 1.3主变压器的选择第二章 电气主接线设计 2.1电气主接线的设计原则 2.2设计方案进行比较第三章 短路电流计算 3.1短路电流计算的目的 3.2短路电流计算过程第四章 电

3、气设备及母线的选择 4.1选择电气设备和母线的主要技术条件 4.2断路器,隔离开关的选择原则 4.3 110KV母线,断路器,隔离开关的选择 4.4 35KV母线,断路器,隔离开关的选择 4.5 10KV母线,断路器,隔离开关的选择第五章 继电保护设计及整定5.1主变压器保护规划与整定5.2母线保护第六章 防雷保护和接地装置 6.1 变电所的防雷设计原则 6.2 变电所的主要防雷设计第一章 负荷计算及变压器选择1.1变电所位置分析变电所是电力系统的重要组成部分,它直接影响整个电力系统的安全与经济运行,是联系发电厂和用户的中间环节,起着变换和分配电能的作用。电气主接线是发电厂和变电所的主要环节,

4、电气主接线的拟定直接关系着全(所)电气设备的选择、配电装置的布置、继电保护和自动装置的确定,是变电所电气部分投资大小的决定性因素。110kv 两回出线 线路长20km (户外配电装置)35kv 六回出线 (屋外配电装置)10kv 二十回出线 (成套固定开关柜)(正常运行时由远方通过远动通道监控,QF就地操作)系统大方式阻抗:X=0.016系统最小方式阻抗:X=0.024零序阻抗:X=0.048线路阻抗:X=0.4欧/kmX0=3.5X1.35kv金磨线 磨料厂 7500kva 磨具厂 10050kva2.35kv花纱线 砂轮厂 12600kva 金钢玉厂 7030kva 棕钢玉厂 2715kv

5、a 水泥厂1600kva3.10kv金华线 198台配电变压器 2155kva1.2负荷计算要选择主变压器和站用变压器的容量,确定变压器各出线侧的最大持续工作电流。首先必须要计算各侧的负荷,包括站用电负荷(动力负荷和照明负荷)、10kV负荷、35kV负荷。由公式 式中 某电压等级的计算负荷同时系数(35kV取0.9、10kV取0.85、35kV各负荷与10kV各负荷之间取0.9、站用负荷取0.85)%该电压等级电网的线损率,一般取5%P、cos各用户的负荷和功率因数(由于任务书已给出该变电所主变为: 两台 50MVA 故负荷不再做计算,只校验其容量是否满足要求。)1.2.1 10kV负荷计算S

6、10KV=2155kva1.2.2 35kV负荷计算S35KV=7500+10050+12600+7030+2715+1600=41495kvaS=2155+41495=43650=44MVA可见,任务书所给变压器容量符合要求。1.3主变压器的选择1.3.1主变压器的选择变电所主变压器容量一般应按5-10年规划负荷来选择。根据城市规划,负荷性质,电网结构等综合考虑确定其容量。对于重要变电所应考虑以1台主变压器停运时其余变压器容量在计及负荷能力允许时间内,应满足类及类负荷的供电。对于一般变电所,当一台主变停运时,其余变压器的容量应能满足全部负荷的70%-80%,在目前实际的运行情况变电所中一般均

7、是采用两台变压器互为暗备用并联运行。变压器容量首先应满足在下,变压器能够可靠运行。对于单台:对于两台并联运行:+ + +变压器除满足以上要求外还需要考虑变电所发展和调整的需要,并考虑5-10年的规划,并留有一定的裕量并满足变压器经济运行的条件。根据现实运行的经验,一般是采用两台变压器互为备用。对于两台互为备用并联运行的变压器,变电所通常采用两台等容量的变压器,单台变压器容量视它们的备用方式而定:暗备用:两台变压器同时投入运行,正常情况下每台变压器各承担负荷的50%,此时,变压器的容量应按变压器最大负荷的70%选择,其有显著的优势:1.正常情况下,变压器的最大负荷率为70%,符合变压器经济运行并

8、留有一定的裕量。2.若一台变压器故障,另一台变压器可以在承担全部最大负荷下(过负荷40%)继续运行一段时间。这段时间完全有可能调整生产,切除不重要负荷,保证重要负荷的正常供电。这种暗备用的运行方式具有投资省,能耗小的特点,在实际中得到广泛应用。明备用:一台变压器工作,另一台变压器停止运行作为备用。此时,两台变压器按最大负荷时变压器负荷率为100%考虑,较暗备用能耗大,投资大,故在实际中不常采用。变压器选择方法:根据负荷计算出的,由于采用两台变压器互为暗备用并联运行,单台变压器容量按70%*选择,并考虑5-10年规划,留有15%的发展余地。一、主变台数的确定对于大城市郊区的一次变电所,在中、低压

9、侧已构成环网的情况下,变电所以装设两台主变压器为宜。此设计中的变电所符合此情况,故主变设为两台。二、主变容量的确定1、主变压器容量一般按变电所建成后5-10年的规划负荷选择,并适当考虑到远期10-20年负荷发展。对城郊变电所,主变压器容量应与城市规划相结合。2、根据变电所所带负荷的性质和电网结构来确定主变压器的容量。对于有重要负荷的变电所,应考虑到当一台主变压器停运时,其余变压器容量在计及过负荷能力后的允许时间内,应保证用户的一级和二级负荷;对一般性变电所,当一台主变压器停运时,其余变压器容量应能保证全部负荷的70-80。此变电所是一般性变电所。有以上规程可知,此变电所单台主变的容量为:S=S

10、2*0.8=43174.3*0.8=34539.48KVA所以应选容量为40000KVA的主变压器。三、主变相数选择1、主变压器采用三相或是单相,主要考虑变压器的制造条件、可靠性要求及运输条件等因素。2、当不受运输条件限制时,在330KV及以下的发电厂和变电所,均应采用三相变压器。社会日新月异,在今天科技已十分进步,变压器的制造、运输等等已不成问题,故有以上规程可知,此变电所的主变应采用三相变压器。四、主变绕组数量1)、在具有三种电压的变电所中,如通过主变压器各侧的功率均达到该变压器容量的15以上,或低压侧虽无负荷,但在变电所内需装设无功补偿装备时,主变压器宜采用三绕组变压器。根据以上规程,计

11、算主变各侧的功率与该主变容量的比值:高压侧:K1=(35600+9800)*0.8/40000=0.90.15中压侧:K2=35600*0.8/4000=0.70.15低压侧:K3=9800*0.8/40000=0.20.15由以上可知此变电所中的主变应采用三绕组。五、主变绕组连接方式变压器的连接方式必须和系统电压相位一致,否则不能并列运行。电力系统采用的绕组连接方式只有y和,高、中、低三侧绕组如何要根据具体情况来确定。 我国110KV及以上电压,变压器绕组都采用Y0连接;35KV亦采用Y连接,其中性点多通过消弧线接地。35KV及以下电压,变压器绕组都采用连接。有以上知,此变电站110KV侧采

12、用Y0接线35KV侧采用Y连接,10KV侧采用接线主变中性点的接地方式:选择电力网中性点接送地方式是一个综合问题。它与电压等级、单相接地短路电流、过电压水平、保护配置等有关,直接影响电网的绝缘水平、系统供电的可靠性和连续性、变压器和发电机的运行安全以及对通信线路的干扰。主要接地方式有:中性点不接地、中性点经消弧线圈接地和直接接地。电力网中性点的接地方式,决定了变压器中性点的接地方式。电力网中性点接地与否,决定于主变压器中性点运行方式。35KV系统,IC=10A;10KV系统;IC=30A(采用中性点不接地的运行方式)35KV:Ic=UL/350=35*(15+8+10*2+7*2+11)/35

13、0=6.8A10A10KV:Ic=10*(5*3+7*2+4+5+7*2)/350+10*(2*2+3)/10=8.2AIzk4.此断路器的额定关合电流Ieg=80KAIch=7.74KA IegIch5.动稳定校验动稳定电流:idw=80KA ich=7.74KA idwich热稳定效应:Qd=(I2+10I2 Z(t/2)+I2zt)/12*t=(3.0362+10*3.0362+3.0362)/12*3=27.65KA2SIr2t=31.52*3=2976.75Qd操作机构,采用气动草操动机构;由电气工程电气设备手册(上册)查得应采用CQA-1型电气操动机构。二、110KV隔离开关的选择

14、应采用户外型隔离开关参考电气工程电气手册(上册),可知应采用GW5-110G高压隔离开关。此隔离开关技术数据如下:额定电压额定电流动稳定电流值动稳定电流值操动机构110KV600A50KA72KA16(4S)40(5S)CS17-G校验:通过隔离开关的最大持续工作电流为220.4KA隔离开关的额定电流为600A,大于通过隔离开关的最大持续工作电流。动稳定校验:动稳定电流:idw=50KA ich=7.74KA idwich热稳定效应:Qd=(I2+10I2Z(t/2)+I2zt)/12 *t=(3.0362+10*3.0362+3.0362)/12*5=44.4KA2SIr2t=142*5=9

15、80Qd操动机构:CS17G三、敞露母线选择(参考资料:发电厂电气设备于长顺主编) 硬母线一般是指配电装置中的汇流母线和电气设备之间连接用的裸硬导体。硬母线分为敞露式和封闭式两类。1.线材料和截面形状的选择: 目前母线材料广泛采用铝材,因为铝电阻率较低,有一定的机械强度,质量轻、价格较低,我国铝材的储量丰富。钢虽有较好的性能,但价格贵,我国储备不多。所以只有在一些特殊场合,如工作电流较大,位置特别狭窄,环境对铝材有严重腐蚀的情况下才用铝材。 综上所述,在本设计中母线材料才用铝。 硬母线截面积形状一般有矩形、槽型、和管型。矩形母线散热条件好,有一定的机械强度,便于固定和连接,但集肤效应较大,矩形

16、母线一般只用于35KV及以上,电流在4000A级以下的配电装置中。 槽形母线的机械性能强度较好,集肤效应较小,在40008000A时一般才用槽形母线。管形母线集肤效应较小,机械强度高,管内可用水或风冷却,因此可用于800A及以上的大电流母线。此外,管形母线表面光滑,电晕放电电压高,因此,110KV以上配电装置中多才用管形母线。由以上分析知:在本设计中110KV用槽形母线,35KV、10KV用矩形母线。管形母线在支柱绝缘子上放置方式有两种:竖放和平放。平放比竖放散热条件差,允许电流小。三相母线的布置方式有水平布置和垂直布置,水平布置母线竖放时,机械强度差,散热条件好。垂直布置母线竖放时,机械强度

17、和散热条件都较好,但增加了配电装置的高度。综上,矩形母线在支柱绝缘子上采用水平布置母线竖放。2.母线截面积选择: 本设计中母线的截面按长期允许电流选择。 按长期允许电流选择时,所选母线截面积的长期允许电流应大于装设回路中最大持续工作电流即,IyImax Iy=kIyeIy指基准环境条件下的长期允许电流K指综合校正系数110KV母线截面选择: Imax=1.05Ie=210.8从电力工程电气手册第八章第一节表8-3中查的应选用载流量为2280(A)的双槽形母线,其参数如下:h(mm) :75,b(mm):35,t(mm):4,r(mm):6 双槽形导体截面积S(mm2):1040,集肤效应系数:

18、1.012。35KV母线截面选择:Imax=1.05Ie=1.05*40000/(31/2*37.5)=646.5(A)10kv母线截面选择:Imax=1.05Ie=1.05*40000/(31/2*10.5)=2309.47(A)从电力工程电气手册第八章第一节 表8-3中查得应选用载流量为692(A)单条竖放的导体,导体尺寸: h*b=50*5(mm*mm)四、110KV电流互感器选择由电气工程电气设备手册(上册)中比较分析得,在本设计中宜采用LCWB110(W)型号的电流互感器,技术数据如下:额定电流二次组合准确级准短时热稳定电流动稳定电流10倍数二次负荷110KV600A0.515.8-

19、31.6(KA)40-80(KA)P/P/P/0.5此电流互感器为多匝油浸式瓷绝缘电流互感器,其性能符合国际和IEC的有关标准,具有结构严密,绝缘强度高,介质损耗率和局部放电量低,可靠性高以及运行维护简单方便等特点。Imax=1.05In=1.05Sn/(31/2Un)=1.05*40000/(31/2*110)=220.4KAIe1=300A, Ie1Imax热稳定效验:LH的热稳定能力用热稳定倍数Kr表示。热稳定倍数Kr等于1S内允许通过的热稳定电流与一次额定电流之比。(KrIe1)2*tQd(KrIe)2*t=(I热min/Ie*Ie)2*t=(15.8)2*1=249.64AQd=27

20、.65 (KrIe1)2tQd 符合要求动稳定效验:LH的动稳定能力用动稳定倍数Kr表示。Kd 等于内部允许通过极限电流的峰值与一次额定电流之比。(Kd21/2Ie1)I(3)ch (Kd21/2Ie1)=21/2*40=56.56KA(按最小动稳定电流计算)ich=7.74KA (Kd21/2Ie1)ich 符合要求五、电压互感器的选择 从电气工程设备手册(电气一次部分)中比较各种电压互感器后选择JCC系列的电压互感器。 该系列电压互感器为单相、三绕组、串及绝缘,户外安装互感器,适用于交流50HZ电力系统,作电压、电能测量和继电保护用。4.4 35KV母线,断路器,隔离开关的选择高压开关柜的

21、选择近年来高压开关柜(简称开关柜)的开发和制造发展的步伐比较快。额定电压有3、6、10、35KV等多种,额定电流可达到3150A,开断电流可达到50KA。 高压开关柜应实现电器和机械的“五防闭锁”,防止误操作,提高安全可靠性,“五防”的具体要求是:1. 防止误合、误分断路器。2. 防止带负荷分、合隔离开关。3. 防止带电挂接地线。4. 防止带接地线合闸。5. 防止误入带电间隔。(一)、35KV侧高压开关柜的选择从电气工程电气设备手册(电气一次部分)第11章中比较各开关柜选择GBC35型手车式高压开关柜。GBC35型手车式高压开关柜系三相交流50HZ单母线系统的户内保护型成套装置。作为接受和分配

22、35KV的网络电能之用。该开关柜为手车结构,采用空气绝缘为主。各相带电体之间绝缘距离不小于30 mm ,只有个别部位相间不足时才设置极间障。开关柜主母线采用矩形铝母线,水平架空装于柜顶,前后可以观察。联络母线一般采用50*5铝管,呈三角形布置在柜的下部。除柜后用钢网遮拦以便观察外,开关柜的下面,柜间及柜的两侧,均采用钢板门或封板中以保护。GBC35型手车式高压开关柜技术数据名称参数名称参数额定电压35KV最大关合电流42KA最高工作电压40.5KV极限通过电流42KA最大额定电流1000A2S热稳定电流16KA额定断开电流16KA额定断流容量1000MVA35KV变压器出线开关柜方案选择:Im

23、ax=1.05Ie=4000/31/2*38.5=629.8A主要设备:LCZ35型电流互感器 ZN35/1000A12.5KA型真空断路器 CD10I型电磁操作机构35KV出线开关柜方案选择:Imax=S/31/2U=7000*(1+5%)/0.92*31/2*37=124A一次线路选择09号方案主要设备:LCZ35型电流互感器主要设备:F2-35型避雷器、JS-2型放电记录器主要设备:JDJJ2-35型电压互感器、RN2-35形熔断器有关设备校验:ZN35/1000A12.5KA型真空断路器ZN35/1000A12.5KA型真空断路器的技术参数如下:资料参考电气工程电气设备手册表4-3-3

24、额定电压最高工作电压额定电流额定开断电流动稳定电流35KV40.5KV630A1000A8KA12.5KA20KA32KA热稳定电流(2S)额定关合电流固有分闸时间8KA12.5KA20KA32KA0.06S此断路器的额定关合电流Ieg=20KAIch=7.74KA IegIch动稳定校验动稳定电流: idw=20KA, ich=7.74KA, idwich热稳定效应:Qd=(I2+10I2 Z(t/2)+I2zt)/12*t=(3.0362+10*3.0362+3.0362)/12*2=18.4KA2SIr2t=82*2=128Qd校验合格LCZ-35型电流互感器的校验从电气工程电气设备手册

25、表3-1-1查得参数额定电流比准确级准短时热稳定电流动稳定电流20-1000/50.53(B)13(1S)(KA)42.4(KA)上表中的动稳定电流、短时热热稳定电流实在额定电流为200KA的情况下取的热稳定校验:LH的热稳定能力用热稳定倍数Kr表示。热稳定倍数Kr等于1S内允许通过的热稳定电流与一次额定电流之比。(KrIe1)2*tQd(KrIe)2*t=(I热min/Ie)*Ie2*t=(32)2*2=2048A2SQd=(I2+10I2+I2zt)/12*t=(3.0362+10*3.0362+3.0362)*/12*2=18.4KA2S(KrIe1)2tQd 符合要求动稳定校验:LH的

26、动稳定能力用动稳定倍数Kd表示。Kd等于内部允许通过极限电流的峰值与一次额定电流之比。(Kd21/2Ie1)i(3)ch(Kd21/2Ie1)=21/2*80=113.12KA (按最小动稳定电流计算)ich=7.74KA (Kd21/2Ie1)ich 符合要求4.5 10KV母线,断路器,隔离开关的选择10KV侧高压开关柜的选择技术数据如下:名称参数名称参数额定电压3/6/10KV额定电流630/1000/2500A母线系统单母线最高工作电压3.6 7.2 11.510KV变压器出线开关柜方案选择:主要设备:LFS10型电流互感器 ZN310型真空断路器10KV线路出线开关柜方案选择:Ima

27、x=S/(31/2U)=1000*(1+5%)/(0.92*31/2*11)=64.15A主要设备:LFS10型电流互感器 ZN310型真空断路器FS3型避雷器 JDZ型电压互感器RN2型熔断器有关设备校验:ZN310型真空断路器ZN310型真空断路器的技术参数如下:额定电压额定电流开断电流动稳定电流10KV630A 1000A20KA50KA热稳定电流(2S)合闸时间固有分闸时间20KA0.1S0.05S此断路器的额定开断电流Ieg=20KAIch=7.74KA IegIch5、动稳定校验动稳定电流: idw=50KA, ich=7.74KA, idwich热稳定效应:Qd=(I2+10I2

28、Z(t/2)+I2zt)/12*t=(3.0362+10*3.0362+3.0362)/12*2=18.4KA2SIr2t=202*2=800KA2SQd校验合格LFS-10型电流互感器的校验额定电流比准确级准热稳定电流动稳定电流5-1000/50.53B32(KA) (2S)80KA上表中的动稳定电流、短时热稳定电流实在额定电流为200KA的情况下取的.热稳定校验:LH的热稳定能力用热稳定倍数Kr表示。热稳定倍数Kr等于1S内允许通过的热稳定电流与一次额定电流之比。(KrIe1)2*tQd(KrIe)2*t=(I热min/Ie)*Ie2*t=(32)2*2=2048A2SQd=(I2+10I

29、2+I2zt)/12*t=(3.0362+10*3.0362+3.0362)*/12*2=18.4KA2S(KrIe1)2tQd 符合要求动稳定校验:LH的动稳定能力用动稳定倍数Kd表示。Kd等于内部允许通过极限电流的峰值与一次额定电流之比。(Kd21/2Ie1)i(3)ch(Kd21/2Ie1)=21/2*80=113.12KA (按最小动稳定电流计算)ich=7.74KA (Kd21/2Ie1)ich 符合要求第五章 继电保护设计及整定5.1主变压器保护设计与整定现代生产的变压器,虽然结构可靠,故障机会较少,但实际运行中仍有可能发生各种类型故障和异常运行。为了保证电力系统安全连续地运行,并

30、将故障和异常运行对电力系统的影响限制到最小范围,必须根据变压器容量的大小、电压变压器保护的配置原则。变压器一般应装设以下保护:1. 变压器油箱内部故障和油面降低的瓦斯保护。2. 差动保护。3. 后备保护。4. 中性点直接接地电网中的变压器外部接地短路时的零序电流保护。5. 过负荷保护。一、瓦斯保护 容量为800KVA级以上的油浸式变压器,均应装设瓦斯保护,当有内部故障时产生经微瓦斯后油面下降时保护应瞬时动作于信号,当产生大量瓦斯时,瓦斯保应动作与断开变压器各电源侧断路器。瓦斯保护装置及整定: 瓦斯继电器又称气体继电器,瓦斯继电器安装在变压器油箱与油枕之间的连接管道中,油箱内的气体通过瓦斯继电器

31、流向油枕。 目前,国内采用的瓦斯继电器有浮筒挡板式和开口杯式两种型式。在本设计中采用开口杯式。瓦斯保护的整定:(1)、一般瓦斯继电器气体容积整定范围为250300m,变压器容量在10000KVA以上时,一般正常整定值为250cm2,气体容积值是利用调节重锤的位置来改变。(2)、重瓦斯保护油流速度的整定重瓦斯保护动作的油流速度整定范围为0.61.5m/s,在整定流速时均以导油管中的流速为准,而不依据继电器处的流速。根据运行经验,管中油速度整定为0.61.5时,保护反映变压器内部故障是相当灵敏的。但是,在变压器外部故障时,由于穿越性故障电流的影响,在导油管中油流速度约为0.40.5。因此,本设计中

32、,为了防止穿越性故障时瓦斯保护误动作,可将油流速度整定在1S左右。二、纵联差动保护 瓦斯保护只能反应变压器油箱内部的故障,而不能反应油箱外绝缘套管及引出线的故障,因此,瓦斯保护不能作为变压器唯一的主保护,对容量较小的变压器可以在电源侧装设电流速断保护。但是电流速断保护不能保护变压器的全部,故当其灵敏度不能满足要求时,就必须采用快速动作并能保护变压器的全部绕组,绝缘套管及引出线上各种故障的纵联差动保护。 瓦斯保护职能反应变压器油箱内部的故障,而不能反应油箱外绝缘套管及引出线的故障,因此,瓦斯保护不能作为变压器唯一的主保护,对容量较小的变压器可在电源侧装设电流速断保护,但是电流速断保护不能保护变压

33、器的全部,故当灵敏度不能满足要求时,就必须采用快速动作并能保护变压器全部绕组,绝缘套管及引出线上各种故障的纵差动保护。 在本设计中,采用由BCH-2继电器起动的纵联差动保护。变压器纵联动保护参数计算结果名称各侧数值额定电压110KV35KV10KV额定电流40000/(31/2*110)209.95KA40000/(31/2*37)599.7KA40000/(31/2*10.5)2099.5KA电流互感器的接线方式电流互感器一次电流计算值31/2*209.95=363.6KA31/2*599.86=1038.96KA31/2*2099.5=3636.36KA确定保护的动作电流:(1)、躲过励磁

34、涌流IDZ=Kk*Ie=1.3*209.95=272.94A(2)、躲过外部短路时的最大不平衡电流IDZ=Kk*Ibpmax=Kk*(KTXKfzqKi+U+fza)*Idmax =1.3*(1*1*0.1+0.05+0.05)*8790=2285.4A折算至高压侧得:2285.4*(11/110)228.5A(3)、躲过电流互感器二次回路断线的最大负荷电流:IDZ=1.3*Ie=1.3*209.95=272.94A综上保护基本侧的动作电流为:272.94A为了防止外部短路引起的过电流和作为变压器差动保护、瓦斯保护的后备,变压器应装设后备保护。后备保护的方案有过电流保护、负荷电压起动的过流保护

35、、负序过电流保护和低阻抗保护等。5.2母线保护设计110KV母线保护设计 110KV220KV电网中母线保护应用较多的是母联相位比较差动保护,故在本设计中110KV母线保护母采用联相位比较差动保护。35KV,10KV母线保护设计35KV,10KV采用的都是单母分段连线,35KV,10KV单母分段连线,一般采用低阻抗的电流差动母线保护,故在本设计中35KV,10KV母线保护采用低阻抗的电流差动母线保护。第六章 防雷保护和接地装置6.1 变电所的防雷设计原则变电所的防雷设计应做到设备先进、保护动作灵敏、安全可靠、维护试验方便,并在在保证可靠性的前提下力求经济性。6.2 变电所的防雷设计防止雷电直击

36、的主要电气设备是避雷针,避雷针由接闪器和引下线、接地装置等构成。避雷针的位置确定,是变电所防雷设计的关键步骤。首先应根据变电所电气设备的总平面布置图确定,避雷针的初步选定安装位置与设备的电气距离应符合各种规程范围的要求,初步确定避雷针的安装位置后再根据下列公式进行,校验是否在保护范围之内。单根避雷针的保护范围应按下列公式确定:当式中-被保护物高度,m 避雷针的高度,m每侧保护范围的宽度,m 高度影响系数,当30m, =1, 当30h120 , = 两支等高避雷针保护范围确定方法:两针外侧的保护范围应按单支避雷针的计算方法确定,两针间的保护最低点高度应按下式计算:式中两针间保护最低点的高度两避雷针间的距离两针间在水平面上的保护范围的一侧的最小宽度按下式计算:当时, 当时, 式中保护范围的一侧最小宽度求出后就可以确定两针间的保护范围。三支等

展开阅读全文
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!