英文文献科技类原文及翻译(电子电气自动化通信)(共21页)

上传人:风*** 文档编号:57391101 上传时间:2022-02-23 格式:DOC 页数:22 大小:874.50KB
收藏 版权申诉 举报 下载
英文文献科技类原文及翻译(电子电气自动化通信)(共21页)_第1页
第1页 / 共22页
英文文献科技类原文及翻译(电子电气自动化通信)(共21页)_第2页
第2页 / 共22页
英文文献科技类原文及翻译(电子电气自动化通信)(共21页)_第3页
第3页 / 共22页
资源描述:

《英文文献科技类原文及翻译(电子电气自动化通信)(共21页)》由会员分享,可在线阅读,更多相关《英文文献科技类原文及翻译(电子电气自动化通信)(共21页)(22页珍藏版)》请在装配图网上搜索。

1、精选优质文档-倾情为你奉上外文文献原文On the deployment of VoIP in Ethernet networks: methodology and case studyKhaled Salah, Department of Information and Computer Science, King Fahd University of Petroleum and Minerals, P.O. Box 5066, Dhahran 31261, Saudi Arabia Received 25 May 2004; revised 3 June 2005; accepted 3

2、June 2005. Available online 1 July 2005. AbstractDeploying IP telephony or voice over IP (VoIP) is a major and challenging task for data network researchers and designers. This paper outlines guidelines and a step-by-step methodology on how VoIP can be deployed successfully. The methodology can be u

3、sed to assess the support and readiness of an existing network. Prior to the purchase and deployment of VoIP equipment, the methodology predicts the number of VoIP calls that can be sustained by an existing network while satisfying QoS requirements of all network services and leaving adequate capaci

4、ty for future growth. As a case study, we apply the methodology steps on a typical network of a small enterprise. We utilize both analysis and simulation to investigate throughput and delay bounds. Our analysis is based on queuing theory, and OPNET is used for simulation. Results obtained from analy

5、sis and simulation are in line and give a close match. In addition, the paper discusses many design and engineering issues. These issues include characteristics of VoIP traffic and QoS requirements, VoIP flow and call distribution, defining future growth capacity, and measurement and impact of backg

6、round traffic. Keywords: Network Design,Network Management,VoIP,Performance Evaluation,Analysis,Simulation,OPNET 1 IntroductionThese days a massive deployment of VoIP is taking place over data networks. Most of these networks are Ethernet based and running IP protocol. Many network managers are find

7、ing it very attractive and cost effective to merge and unify voice and data networks into one. It is easier to run, manage, and maintain. However, one has to keep in mind that IP networks are best-effort networks that were designed for non-real time applications. On the other hand, VoIP requires tim

8、ely packet delivery with low latency, jitter, packet loss, and sufficient bandwidth. To achieve this goal, an efficient deployment of VoIP must ensure these real-time traffic requirements can be guaranteed over new or existing IP networks. When deploying a new network service such as VoIP over exist

9、ing network, many network architects, managers, planners, designers, and engineers are faced with common strategic, and sometimes challenging, questions. What are the QoS requirements for VoIP? How will the new VoIP load impact the QoS for currently running network services and applications? Will my

10、 existing network support VoIP and satisfy the standardized QoS requirements? If so, how many VoIP calls can the network support before upgrading prematurely any part of the existing network hardware? These challenging questions have led to the development of some commercial tools for testing the pe

11、rformance of multimedia applications in data networks. A list of the available commercial tools that support VoIP is listed in 1,2. For the most part, these tools use two common approaches in assessing the deployment of VoIP into the existing network. One approach is based on first performing networ

12、k measurements and then predicting the network readiness for supporting VoIP. The prediction of the network readiness is based on assessing the health of network elements. The second approach is based on injecting real VoIP traffic into existing network and measuring the resulting delay, jitter, and

13、 loss. Other than the cost associated with the commercial tools, none of the commercial tools offer a comprehensive approach for successful VoIP deployment. In particular, none gives any prediction for the total number of calls that can be supported by the network taking into account important desig

14、n and engineering factors. These factors include VoIP flow and call distribution, future growth capacity, performance thresholds, impact of VoIP on existing network services and applications, and impact background traffic on VoIP. This paper attempts to address those important factors and layout a c

15、omprehensive methodology for a successful deployment of any multimedia application such as VoIP and video conferencing. However, the paper focuses on VoIP as the new service of interest to be deployed. The paper also contains many useful engineering and design guidelines, and discusses many practica

16、l issues pertaining to the deployment of VoIP. These issues include characteristics of VoIP traffic and QoS requirements, VoIP flow and call distribution, defining future growth capacity, and measurement and impact of background traffic. As a case study, we illustrate how our approach and guidelines

17、 can be applied to a typical network of a small enterprise. The rest of the paper is organized as follows. Section 2 presents a typical network topology of a small enterprise to be used as a case study for deploying VoIP. Section 3 outlines practical eight-step methodology to deploy successfully VoI

18、P in data networks. Each step is described in considerable detail. Section 4 describes important design and engineering decisions to be made based on the analytic and simulation studies. Section 5 concludes the study and identifies future work.2 Existing networkFig. 1 illustrates a typical network t

19、opology for a small enterprise residing in a high-rise building. The network shown is realistic and used as a case study only; however, our work presented in this paper can be adopted easily for larger and general networks by following the same principles, guidelines, and concepts laid out in this p

20、aper. The network is Ethernet-based and has two Layer-2 Ethernet switches connected by a router. The router is Cisco 2621, and the switches are 3Com Superstack 3300. Switch 1 connects Floors 1 and 2 and two servers; while Switch 2 connects Floor 3 and four servers. Each floor LAN is basically a shar

21、ed Ethernet connecting employee PCs with workgroup and printer servers. The network makes use of VLANs in order to isolate broadcast and multicast traffic. A total of five LANs exist. All VLANs are port based. Switch 1 is configured such that it has three VLANs. VLAN1 includes the database and file

22、servers. VLAN2 includes Floor 1. VLAN3 includes Floor2. On the other hand, Switch 2 is configured to have two VLANs. VLAN4 includes the servers for E-mail, HTTP, Web and cache proxy, and firewall. VLAN5 includes Floor 3. All the links are switched Ethernet 100 Mbps full duplex except for the links f

23、or Floors 13 which are shared Ethernet 100 Mbps half duplex.3 Step-by-step methodologyFig. 2 shows a flowchart of a methodology of eight steps for a successful VoIP deployment. The first four steps are independent and can be performed in parallel. Before embarking on the analysis and simulation stud

24、y, in Steps 6 and 7, Step 5 must be carried out which requires any early and necessary redimensioning or modifications to the existing network. As shown, both Steps 6 and 7 can be done in parallel. The final step is pilot deployment.3.1. VoIP traffic characteristics, requirements, and assumptions Fo

25、r introducing a new network service such as VoIP, one has to characterize first the nature of its traffic, QoS requirements, and any additional components or devices. For simplicity, we assume a point-to-point conversation for all VoIP calls with no call conferencing. For deploying VoIP, a gatekeepe

26、r or Call Manager node has to be added to the network 3,4,5. The gatekeeper node handles signaling for establishing, terminating, and authorizing connections of all VoIP calls. Also a VoIP gateway is required to handle external calls. A VoIP gateway is responsible for converting VoIP calls to/from t

27、he Public Switched Telephone Network (PSTN). As an engineering and design issue, the placement of these nodes in the network becomes crucial. We will tackle this issue in design step 5. Other hardware requirements include a VoIP client terminal, which can be a separate VoIP device, i.e. IP phones, o

28、r a typical PC or workstation that is VoIP-enabled. A VoIP-enabled workstation runs VoIP software such as IP Soft Phones .Fig. 3 identifies the end-to-end VoIP components from sender to receiver 9. The first component is the encoder which periodically samples the original voice signal and assigns a

29、fixed number of bits to each sample, creating a constant bit rate stream. The traditional sample-based encoder G.711 uses Pulse Code Modulation (PCM) to generate 8-bit samples every 0.125 ms, leading to a data rate of 64 kbps . The packetizer follows the encoder and encapsulates a certain number of

30、speech samples into packets and adds the RTP, UDP, IP, and Ethernet headers. The voice packets travel through the data network. An important component at the receiving end, is the playback buffer whose purpose is to absorb variations or jitter in delay and provide a smooth playout. Then packets are

31、delivered to the depacketizer and eventually to the decoder which reconstructs the original voice signal. We will follow the widely adopted recommendations of H.323, G.711, and G.714 standards for VoIP QoS requirements. Table 1 compares some commonly used ITU-T standard codecs and the amount of one-

32、way delay that they impose. To account for upper limits and to meet desirable quality requirement according to ITU recommendation P.800, we will adopt G.711u codec standards for the required delay and bandwidth. G.711u yields around 4.4 MOS rating. MOS, Mean Opinion Score, is a commonly used VoIP pe

33、rformance metric given in a scale of 15, with 5 is the best. However, with little compromise to quality, it is possible to implement different ITU-T codecs that yield much less required bandwidth per call and relatively a bit higher, but acceptable, end-to-end delay. This can be accomplished by appl

34、ying compression, silence suppression, packet loss concealment, queue management techniques, and encapsulating more than one voice packet into a single Ethernet frame.3.1.1. End-to-end delay for a single voice packet Fig. 3 illustrates the sources of delay for a typical voice packet. The end-to-end

35、delay is sometimes referred to by M2E or Mouth-to-Ear delay. G.714 imposes a maximum total one-way packet delay of 150 ms end-to-end for VoIP applications . In 22, a delay of up to 200 ms was considered to be acceptable. We can break this delay down into at least three different contributing compone

36、nts, which are as follows (i) encoding, compression, and packetization delay at the sender (ii) propagation, transmission and queuing delay in the network and (iii) buffering, decompression, depacketization, decoding, and playback delay at the receiver. 3.1.2. Bandwidth for a single callThe required

37、 bandwidth for a single call, one direction, is 64 kbps. G.711 codec samples 20 ms of voice per packet. Therefore, 50 such packets need to be transmitted per second. Each packet contains 160 voice samples in order to give 8000 samples per second. Each packet is sent in one Ethernet frame. With every

38、 packet of size 160 bytes, headers of additional protocol layers are added. These headers include RTP+UDP+IP+Ethernet with preamble of sizes 12+8+20+26, respectively. Therefore, a total of 226 bytes, or 1808 bits, needs to be transmitted 50 times per second, or 90.4 kbps, in one direction. For both

39、directions, the required bandwidth for a single call is 100 pps or 180.8 kbps assuming a symmetric flow.3.1.3. Other assumptionsThroughout our analysis and work, we assume voice calls are symmetric and no voice conferencing is implemented. We also ignore the signaling traffic generated by the gateke

40、eper. We base our analysis and design on the worst-case scenario for VoIP call traffic. The signaling traffic involving the gatekeeper is mostly generated prior to the establishment of the voice call and when the call is finished. This traffic is relatively small compared to the actual voice call tr

41、affic. In general, the gatekeeper generates no or very limited signaling traffic throughout the duration of the VoIP call for an already established on-going call. In this paper, we will implement no QoS mechanisms that can enhance the quality of packet delivery in IP networks. A myriad of QoS stand

42、ards are available and can be enabled for network elements. QoS standards may include IEEE 802.1p/Q, the IETFs RSVP, and DiffServ. Analysis of implementation cost, complexity, management, and benefit must be weighed carefully before adopting such QoS standards. These standards can be recommended whe

43、n the cost for upgrading some network elements is high and the network resources are scarce and heavily loaded.3.2. VoIP traffic flow and call distributionKnowing the current telephone call usage or volume of the enterprise is an important step for a successful VoIP deployment. Before embarking on f

44、urther analysis or planning phases for a VoIP deployment, collecting statistics about of the present call volume and profiles is essential. Sources of such information are organizations PBX, telephone records and bills. Key characteristics of existing calls can include the number of calls, number of

45、 concurrent calls, time, duration, etc. It is important to determine the locations of the call endpoints, i.e. the sources and destinations, as well as their corresponding path or flow. This will aid in identifying the call distribution and the calls made internally or externally. Call distribution

46、must include percentage of calls within and outside of a floor, building, department, or organization. As a good capacity planning measure, it is recommended to base the VoIP call distribution on the busy hour traffic of phone calls for the busiest day of a week or a month. This will ensure support

47、of the calls at all times with high QoS for all VoIP calls. When such current statistics are combined with the projected extra calls, we can predict the worst-case VoIP traffic load to be introduced to the existing network. Fig. 4 describes the call distribution for the enterprise under study based

48、on the worst busy hour and the projected future growth of VoIP calls. In the figure, the call distribution is described as a probability tree. It is also possible to describe it as a probability matrix. Some important observations can be made about the voice traffic flow for inter-floor and external

49、 calls. For all these type of calls, the voice traffic has to be always routed through the router. This is so because Switchs 1 and 2 are layer 2 switches with VLANs configuration. One can observe that the traffic flow for inter-floor calls between Floors 1 and 2 imposes twice the load on Switch 1,

50、as the traffic has to pass through the switch to the router and back to the switch again. Similarly, Switch 2 experiences twice the load for external calls from/to Floor 3.3.3. Define performance thresholds and growth capacity In this step, we define the network performance thresholds or operational

51、 points for a number of important key network elements. These thresholds are to be considered when deploying the new service. The benefit is twofold. First, the requirements of the new service to be deployed are satisfied. Second, adding the new service leaves the network healthy and susceptible to

52、future growth. Two important performance criteria are to be taken into account. First is the maximum tolerable end-to-end delay; and second is the utilization bounds or thresholds of network resources. The maximum tolerable end-to-end delay is determined by the most sensitive application to run on t

53、he network. In our case, it is 150 ms end-to-end for VoIP. It is imperative to note that if the network has certain delay sensitive applications, the delay for these applications should be monitored, when introducing VoIP traffic, such that they do not exceed their required maximum values. As for th

54、e utilization bounds for network resources, such bounds or thresholds are determined by factors such as current utilization, future plans, and foreseen growth of the network. Proper resource and capacity planning is crucial. Savvy network engineers must deploy new services with scalability in mind,

55、and ascertain that the network will yield acceptable performance under heavy and peak loads, with no packet loss. VoIP requires almost no packet loss. In literature, 0.15% packet loss was generally asserted. However, in 24 the required VoIP packet loss was conservatively suggested to be less than 10

56、. A more practical packet loss, based on experimentation, of below 1% was required in 22. Hence, it is extremely important not to utilize fully the network resources. As rule-of-thumb guideline for switched fast full-duplex Ethernet, the average utilization limit of links should be 190%, and for swi

57、tched shared fast Ethernet, the average limit of links should be 85% 25. The projected growth in users, network services, business, etc. must be all taken into consideration to extrapolate the required growth capacity or the future growth factor. In our study, we will ascertain that 25% of the avail

58、able network capacity is reserved for future growth and expansion. For simplicity, we will apply this evenly to all network resources of the router, switches, and switched-Ethernet links. However, keep in mind this percentage in practice can be variable for each network resource and may depend on th

59、e current utilization and the required growth capacity. In our methodology, the reservation of this utilization of network resources is done upfront, before deploying the new service, and only the left-over capacity is used for investigating the network support of the new service to be deployed.3.4.

60、 Perform network measurementsIn order to characterize the existing network traffic load, utilization, and flow, network measurements have to be performed. This is a crucial step as it can potentially affect results to be used in analytical study and simulation. There are a number of tools available

61、commercially and noncommercially to perform network measurements. Popular open-source measurement tools include MRTG, STG, SNMPUtil, and GetIF 26. A few examples of popular commercially measurement tools include HP OpenView, Cisco Netflow, Lucent VitalSuite, Patrol DashBoard, Omegon NetAlly, Avaya E

62、xamiNet, NetIQ Vivinet Assessor, etc. Network measurements must be performed for network elements such as routers, switches, and links. Numerous types of measurements and statistics can be obtained using measurement tools. As a minimum, traffic rates in bits per second (bps) and packets per second (

63、pps) must be measured for links directly connected to routers and switches. To get adequate assessment, network measurements have to be taken over a long period of time, at least 24-h period. Sometimes it is desirable to take measurements over several days or a week. One has to consider the worst-ca

64、se scenario for network load or utilization in order to ensure good QoS at all times including peak hours. The peak hour is different from one network to another and it depends totally on the nature of business and the services provided by the network. Table 2 shows a summary of peak-hour utilizatio

65、n for traffic of links in both directions connected to the router and the two switches of the network topology of Fig. 1. These measured results will be used in our analysis and simulation study.外文文献译文以太网网络电话传送调度:方法论和案例分析Khaled Salah , 信息与计算机科学, Fahd University 皇家石油矿物大学, 信箱5066, Dhahran 31261, 沙特阿拉伯

66、半岛 收到日期2004 年5月25 日; 校正日期2005 年6月3 日; 接受日期2005 年6月3 日。网上可用日期2005 年7月1 日。摘 要对网络数据研究者和设计师来说,IP电话或语音IP电话调度是一项重大而艰巨的任务。本文概述的准则和循序渐进的方法,解释了怎样在IP上成功调度传送语音。该方法可用于评估的支持,并准备用在现有的网络。此前购买并部署的网络电话设备,这种方法预算出了在保证现有网络服务质量要求和日后足够扩充能力基础上的网络电话调用次数。作为一个研究的课题,我们把这种方法在一个典型的小型企业网上得到逐步应用。我们运用分析和模拟吞吐量和延迟区域。我们的分析基于排队理论,并且OPNET用于模拟。理论分析和模拟结构比较一致

展开阅读全文
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!