轿车制动系统设计(共46页)

上传人:夏*** 文档编号:55339239 上传时间:2022-02-17 格式:DOC 页数:46 大小:1.04MB
收藏 版权申诉 举报 下载
轿车制动系统设计(共46页)_第1页
第1页 / 共46页
轿车制动系统设计(共46页)_第2页
第2页 / 共46页
轿车制动系统设计(共46页)_第3页
第3页 / 共46页
资源描述:

《轿车制动系统设计(共46页)》由会员分享,可在线阅读,更多相关《轿车制动系统设计(共46页)(46页珍藏版)》请在装配图网上搜索。

1、精选优质文档-倾情为你奉上 毕业设计(论文)题 目: 院 (系): 姓 名: 学 号: 摘要本说明书主要介绍了汽车制动的设计探索,先绍了汽车制动系统的设计意义、研究现状以及设计目标。然后解释了制动器的主要类型并对制动系统进行方案论证分析与选择,主要包括制动器形式方案分析、制动驱动机构的机构形式选择、液压分路系统的形式选择和液压制动主缸的设计方案,最后确定方案采用简单人力液压制动双回路前后盘式制动器。除此之外,还根据已知的汽车相关参数,通过计算得到了制动器主要参数、前后制动力矩分配系数、制动力矩和制动力以及液压制动驱动机构相关参数。最后对制动性能进行了详细分析。 关键词:制动系统 盘式制动器 液

2、压 AbstractThis manual mainly introduces the design of the car brake exploration, occupying first automobile brake system design significance, research status and design target. And then explain the main types of brake system and project demonstration analysis and choice, mainly including brake form,

3、 braking scheme analysis drive agencies of choice of optical system, hydraulic form in the form of choice and hydraulic brake main cylinder, the design of the final determination scheme adopts simple human hydraulic brake double loop around disc brakes. In addition, also related parameters according

4、 to the known car, through the main parameters calculated, the front brake torque distribution coefficient, braking torque and power system and hydraulic brake driven related parameters. Finally the brake performance are analyzed in detail. Key words: Braking system Disc brakes hydraulic 目录专心-专注-专业第

5、一章 绪论第一节 制动系统设计的意义汽车是现代交通工具中用得最多、最普遍、也是运用得最方便的交通工具。现在由于很多方面的原因人们的安全胁,其中汽车制动系起着很大的作用。直接制约汽车运动的一个关键装置,是汽车上最重要的安全件。汽车的制动性能直接影响汽车的行驶安全性。随着公路业的迅速发展和车流密度的日益增大,人们对安全性、可靠性的要求越来越高,为保证人身和车辆安全,必须为汽车配备十分可靠的制动系统。本次毕业设计题目为汽车制动系统设计探索。第二节 制动系统研究现状车辆在形式过程中要频繁进行制动操作,由于制动性能的好坏直接关系到交通和人身安全,因此制动性能是车辆非常重要的性能之一,改善汽车的制动性能始

6、终是汽车设计制造和使用部门的重要任务。当车辆制动时,由于车辆受到与行驶方向相反的外力,所以才导致汽车的速度逐步减小到0,对这一过程中车辆受力情况的分析有助于制动系统的分析和设计,因此制动过程受力情况分析是车辆试验和设计的基础,由于这一过程较为复杂,因此一般在实际中只能建立简化模型分析,通常人们从三个方面来对制动系统进行分析和评价:1)制动效能:即制动距离与制动减速度;2)制动效能的恒定性:即热衰退性;3)制动时汽车方向的稳定性;目前,对于整车制动系统的研究主要通过路试或台架进行,由于在汽车道路试验中车轮扭矩不易测量,因此,多数有关制动系的试验均通过间接测量来进行汽车在道路上的行驶,其车轮与地面

7、的作用力是汽车运动变化的根据,在汽车道路试验中,如果能够方便地测量出车轮上扭矩的变化,则可为汽车整车制动性能研究提供更全面的试验数据和性能评价。第三节 本次制动系统应达到的目标1)具有良好的制动效能;2)具有良好的制动效能稳定性;3)制动时汽车操纵稳定性好;4)制动效能的热稳定性好;第四节 汽车制动规则和要求1.4.1 制动系统概况汽车必须配备有刹车系统。并且作用于所有四个车轮上,而且只被一个控制器控制。1)它必须有两套独立的液压回路,以防系统泄漏或失效时,至少在两轮上还保持有有效的制动力。每个液压回路必须有其专属的储油罐(可用独立储油罐或用原厂的储油罐)。2)单个刹车作用时,有限的滑移差是可

8、以接受的。3)刹车系统必须在以下的测试中,能够抱死所有四个轮。4)线控制动是禁止的。5)没有保护的塑料刹车线是禁止的。6)刹车系统必须装有碎片护罩,以防传动系失效或小碰撞(引起的碎片破坏制动系统)。7)从侧面看,安装在汽车簧上(簧上质量:指悬架支撑的质量)部分上的刹车系统的任何部分都不可以伸到车架或者承载式车身的下表面以下。(新内容)1.4.2 制动测试刹车系统将在动态中测试。并且必须能四轮抱死,并且不跑偏,同时能够在由制动性能检查官员指定的加速赛尽头停车。1.4.3 刹车踏板超程开关1)车上必须装有一个刹车踏板超程开关。在万一刹车踏板超程引起刹车系统失效时,这个开关必须能够被启动并停止发动机

9、。该开关必须能够彻底断绝点火,同时切断传给任何电动燃油泵的电力。2)重复启用此开关不能恢复给这些部件的动力。并且它必须被设计成不能被车手重置。3)开关只有被相似的部件代替才可,而不是通过依靠逻辑程序控制器、发动机控制单元,或有相似功能的数字控制器来替代。1.4.4 刹车灯1)汽车必须配备有至少15w,或可以从后面看等效的清晰可见的红色刹车灯。如果使用了LED(发光二极管)灯源,它必须在非常强的日光下也清晰可见。2)刹车灯必须安置在两轮之间的中线并在垂直方向上和车手的肩膀的高度齐高,并且在侧面,接近汽车的中线。第二章 制动系统概述 汽车上用以使外界(主要是路面)在汽车某些部分(主要是车轮)施加一

10、定的力,从而对其进行一定程度的强制制动的一系列专门装置统称为制动系统。其作用是,使行驶中的汽车按照驾驶员的要求进行强制减速甚至停车。使已停驶的汽车在各种道路条件下(包括在坡道上)稳定驻车,使下坡行驶的汽车速度保持稳定。 对汽车起制动作用的只能是作用在汽车上且方向与汽车行驶方向相反的外力,而这些外力的大小都是随机的、不可控制的。因此汽车上必须装设一系列专门装置以实现上述功能。第一节 分类与组成(1) 按制动系统的作用制动系统可分为行车制动系统、驻车制动系统、应急制动系统及辅助制动系统等。用以使行驶中的汽车降低速度甚至停车的制动系统称为行车制动系统,用以使已停驶的汽车驻留原地不动的制动系统则称为驻

11、车制动系统。在行车制动系统失效的情况下,保证汽车仍能实现减速或停车的制动系统称为应急制动系统。在行车过程中,辅助行车制动系统降低车速或保持车速稳定,但不能将车辆紧急制停的制动系统称为辅助制动系统。上述各制动系统中行车制动系统和驻车制动系统是每一辆汽车都必须具备的。 (2)按制动操纵能源 制动系统可分为人力制动系统、动力制动系统和伺服制动系统等。以驾驶员的肌体作为唯一制动能源的制动系统称为人力制动系统。完全靠由发动机的动力转化而成的气压或液压形式的势能进行制动的系统称为动力制动系统,兼用人力和发动机动力进行制动的制动系统称为伺服制动系统或助力制动系统。 (3)按制动能量的传输方式 制动系统可分为

12、机械式、液压式、气压式、电磁式等。同时采用两种以上传能方式的制动系称为组合式制动系统。第二节 制动系统的一般工作原理 制动系统的一般工作原理是:利用与车身(或车架)相连的非旋转元件和与车轮(或传动轴)相连的旋转元件之间的相互摩擦来阻止车轮的转动或转动的趋势。可用下图所示的一种简单的液压制动系统示意图来说明制动系统的工作原理。 制动系统工作原理示意图1.制动踏板 2.推杆 3.主缸活塞 4.制动主缸 5.油管 6.制动轮缸 7.轮缸活塞8.制动鼓 9.摩擦片 10.制动蹄 11.制动底板 12.支承销 13.制动蹄回位弹簧一个以内圆面为工作表面的金属制动鼓固定在车轮轮毂上,随车轮一同旋转。在固定

13、不动的制动底板上,有两个支承销,支承着两个弧形制动蹄的下端。制动蹄的外圆面上装有摩擦片。制动底板上还装有液压制动轮缸,用油管5与装在车架上的液压制动主缸相连通。主缸中的活塞3可由驾驶员通过制动踏板机构来操纵。 当驾驶员踏下制动踏板,使活塞压缩制动液时,轮缸活塞在液压的作用下将制动蹄片压向制动鼓,使制动鼓减小转动速度,或保持不动。下图给出了一种轿车典型制动系统的组成示意图,可以看出,制动系统一般由制动操纵机构和制动器两个主要部分组成。轿车典型制动系统组成示意图1.前轮盘式制动器 2.制动总泵 3.真空助力器 4.制动踏板机构 5.后轮鼓式制动器 6.制动组合阀 7.制动警示灯(1) 制动操纵机产

14、生制动动作、控制制动效果并将制动能量传输到制动器的各个部件,如图中的2、3、4、6以及制动轮缸和制动管路。(2) 制动器 产生阻碍车辆的运动或运动趋势的力(制动力)的部件。汽车上常用的制动器都是利用固定元件与旋转元件工作表面的摩擦而产生制动力矩称为摩擦制动器。它有鼓式制动器和盘式制动器两种结构型式。第三节 制动器2.3.1鼓式制动器1.制动器概述一般制动器都是通过其中的固定元件对旋转元件施加制动力矩,使后者的旋转角速度降低,同时依靠车轮与地面的附着作用,产生路面对车轮的制动力以使汽车减速。凡利用固定元件与旋转元件工作表面的摩擦而产生制动力矩的制动器都成为摩擦制动器。目前汽车所用的摩擦制动器可分

15、为鼓式和盘式两大类。旋转元件固装在车轮或半轴上,即制动力矩直接分别作用于两侧车轮上的制动器称为车轮制动器。旋转元件固装在传动系的传动轴上,其制动力矩经过驱动桥再分配到两侧车轮上的制动器称为中央制动器。2.领从蹄式制动器 下图为领从蹄式制动器示意图,设汽车前进时制动鼓旋转方向(这称为制动鼓正向旋转)如图中箭头所示。 领从蹄式制动器示意图l.领蹄 2.从蹄 3、4.支点 5.制动鼓 6.制动轮缸沿箭头方向看去,制动蹄1的支承点3在其前端,制动轮缸6所施加的促动力作用于其后端,因而该制动蹄张开时的旋转方向与制动鼓的旋转方向相同。具有这种属性的制动蹄称为领蹄。与此相反,制动蹄2的支承点4在后端,促动力

16、加于其前端,其张开时的旋转方向与制动鼓的旋转方向相反。具有这种属性的制动蹄称为从蹄。当汽车倒驶,即制动鼓反向旋转时,蹄1变成从蹄,而蹄2则变成领蹄。这种在制动鼓正向旋转和反向旋转时,都有一个领蹄和一个从蹄的制动器即称为领从蹄式制动器。 下图为领从蹄式制动器受力示意图: 领从蹄式制动器受力示意图如图所示,制动时两活塞施加的促动力是相等的。制动时,领蹄1和从蹄2在促动力FS的作用下,分别绕各自的支承点3和4旋转到紧压在制动鼓5上旋转着的制动鼓即对两制动蹄分别作用着法向反力N1和N2以及相应的切向反力T1和T2,两蹄上的这些力分别为各自的支点3和4的支点反力Sl和S2所平衡。可见,领蹄上的切向合力T

17、l所造成的绕支点3的力矩与促动力FS所造成的绕同一支点的力矩是同向的。所以力T1的作用结果是使领蹄1在制动鼓上压得更紧从而力T1也更大。这表明领蹄具有增势作用。相反,从蹄具有减势作用。故二制动蹄对制动鼓所施加的制动力矩不相等。倒车制动时,虽然蹄2变成领蹄,蹄1变成从蹄,但整个制动器的制动效能还是同前进制动时一样。 在领从式制动器中,两制动蹄对制动鼓作用力N1和N2的大小是不相等的,因此在制动过程中对制动鼓产生一个附加的径向力。凡制动鼓所受来自二蹄的法向力不能互相平衡的制动器称为非平衡式制动器。 以上介绍的各种鼓式制动器各有利弊。 就制动效能而言在基本结构参数和轮缸工作压力相同的条件下,自增力式

18、制动器由于对摩擦助势作用利用得最为充分而居首位,以下依次为双领蹄式、领从蹄式、双从蹄式。但蹄鼓之间的摩擦系数本身是一个不稳定的因素,随制动鼓和摩擦片的材料、温度和表面状况(如是否沾水、沾油是否有烧结现象等)的不同可在很大范围内变化。自增力式制动器的效能对摩擦系数的依赖性最大,因而其效能的热稳定性最差。在制动过程中,自增力式制动器制动力矩的增长在某些情况下显得过于急速。双向自增力式制动器多用于轿车后轮,原因之一是便于兼充驻车制动器。单向自增力式制动器只用于中、轻型汽车的前轮,因倒车制动时对前轮制动器效能的要求不高。双从蹄式制动器的制动效能虽然最低,但却具有最良好的效能稳定性,因而还是有少数华贵轿

19、车为保证制动可靠性而采用(例如英国女王牌轿车)。领从蹄制动器发展较早,其效能及效能稳定性均居于中游,且有结构较简单等优点,故目前仍相当广泛地用于各种汽车。 2.3.2盘式制动器 1.盘式制动器概述 盘式制动器摩擦副中的旋转元件是以端面工作的金属圆盘,被称为制动盘。 其固定元件则有着多种结构型式,大体上可分为两类。一类是工作面积不大的摩擦块与其金属背板组成的制动块,每个制动器中有2-4个。这些制动块及其促动装置都装在横跨制动盘两侧的夹钳形支架中,总称为制动钳。这种由制动盘和制动钳组成的制动器称为钳盘式制动器。另一类固定元件的金属背板和摩擦片也呈圆盘形制动盘的全部工作面可同时与摩擦片接触,这种制动

20、器称为全盘式制动器。钳盘式制动器过去只用作中央制动器,但目前则愈来愈多地被各级轿车和货车用作车轮制动器。全盘式制动器只有少数汽车(主要是重型汽车)采用为车轮制动器。这里只介绍钳盘式制动器。钳盘式制动器又可分为定钳盘式和浮钳盘式两类。盘式制动器结构图如下图所示:盘式制动器结构图 定钳盘式制动器定钳盘式制动器的结构示意图见下图: 定钳盘式制动器示意图1.制动盘 2.活塞 3.摩擦块 4.进油口 5.制动钳体 6.车桥部在制动盘1上的制动钳体5固定安装在车桥6上,它不能旋转也不能沿制动盘轴线方向移动其内的两个活塞2分别位于制动盘1的两侧。制动时,制动油液由制动总泵(制动主缸)经进油口4进入钳体中两个

21、相通的液压腔中,将两侧的制动块3压向与车轮固定连接的制动盘1,从而产生制动。这种制动器存在着以下缺点,油缸较多,使制动钳结构复杂。油缸分置于制动盘两侧,必须用跨越制动盘的钳内油道或外部油管来连通,这使得制动钳的尺寸过大。难以安装在现代化轿车的轮辋内,热负荷大时,油缸和跨越制动盘的油管或油道中的制动液容易受热汽化。若要兼用于驻车制动,则必须加装一个机械促动的驻车制动钳。浮钳盘式制动器 下图所示为浮钳盘式制动器示意图。 浮钳盘式制动器示意图1.制动盘 2.制动钳体 3.摩擦块 4.活塞 5.进油口 6.导向销 7.车桥 钳体2通过导向销6与车桥7相连,可以相对于制动盘1轴向移动。制动钳体只在制动盘

22、的内侧设置油缸,而外侧的制动块则附装在钳体上。制动时,液压油通过进油口5进入制动油缸,推动活塞4及其上的摩擦块向右移动,并压到制动盘上,并使得油缸连同制动钳体整体沿销钉向左移动,直到制动盘右侧的摩擦块也压到制动盘上夹住制动盘并使其制动。 与定钳盘式制动器相反,浮钳盘式制动器轴向和径向尺寸较小,而且制动液受热汽化的机会较少。此外,浮钳盘式制动器在兼充行车和驻车制动器的情况下,只须在行车制动钳油缸附近加装一些用以推动油缸活塞的驻车制动机械传动零件即可。故自70年代以来浮钳盘式制动器逐渐取代了定钳盘式制动器。 4.盘式制动器的特点 盘式制动器与鼓式制动器相比,有以下优点:一般无摩擦助势作用,因而制动

23、器效能受摩擦系数的影响较小.即效能较稳定,浸水后效能降低较少,而且只须经一两次制动即可恢复正常。在输出制动力矩相同的情况下,尺寸和质量一般较小,制动盘沿厚度方向的热膨胀量极小,不会象制动鼓的热膨胀那样使制动器间隙明显增加而导致制动踏板行程过大,较容易实现间隙自动调整。其他保养修理作业也较简便。对于钳盘式制动器而言,因为制动盘外露,还有散热良好的优点。盘式制动器不足之处是效能较低,故用于液压制动系统时所需制动促动管路压力较高,一般要用伺服装置。 目前,盘式制动器已广泛应用于轿车。但除了在一些高性能轿车上用于全部车轮以外,大都只用作前轮制动器。而与后轮的鼓式制动器配合,以期汽车有较高的制动时的方向

24、稳定性。在货车上,盘式制动器也有采用,但离普及还有相当距离。 第四节 人力制动系统 2.4.1机械制动系统 机械式行车制动已全部被淘汰。机械制动系统仅用于驻车制动。 驻车制动系统与行车制动系统共用后轮制动器。也可以是专设的中央制动器。 2.4.2人力液压制动系统 轿车的行车制动系统都采用了液压传动装置,主要由制动主缸(制动总泵)、液压管路、后轮鼓式制动器中的制动轮缸(制动分泵)、前轮钳盘式制动器中的液压缸等组成, 液压式双管路传动装置的布置形式 当其中一套管路损坏时,另一套仍可以正常工作,保证汽车制动系的工作可靠性。 两桥制动器独立制动 当一套管路失效时,另一套管路仍能保持一定的制动效能。制动

25、效能低于正常时的50。 同一制动器两个轮缸独立制动 前后制动器对角独立制动 自制动踏板到轮缸活塞的制动系统传动比,等于踏板机构杠杆比乘以轮缸直径同主缸直径之比。 传动比越大,踏板力越小,踏板行程却因此而越大,使得制动操作不便。 要求液压制动系传动比合适,保证制动踏板力较小,同时踏板行程又不太大。 对于人力液压制动系,考虑到制动器容许磨损量的踏板全行程不应超过150(轿车)180mm(货车)。制动器间隙调整正常时,踩下踏板到完全制动的踏板工作行程不应超过全行程的5060。最大踏板力一般不应超过350(轿车)550N(货车)。 第五节 伺服制动系 伺服制动系-在人力液压制动系的基础上加设一套动力伺

26、服系统而形成的,即兼用人体和发动机作为制动能源的制动系。 伺服制动系可分为助力式(直接操纵式)和增压式(间接操纵式)两类。 助力式(直接操纵式)-伺服系统控制装置用制动踏板机构直接操纵,其输出力也作用于液压主缸,以助踏板力之不足。 增压式(间接操纵式)-伺服系统控制装置用制动踏板机构通过主缸输出的液压操纵,且伺服系统的输出力与主缸液压共同作用于一个中间传动液缸(辅助缸),使该液缸输出到轮缸的液压远高于主缸液压。 按伺服能量的形式分: 真空伺服式,真空能(负气压能) 气压伺服式,气压能 液压伺服式,液压能 2.5.1助力式伺服制动系 1真空助力伺服制动系 在液压制动装置中,装有真空助力器,它安装

27、在主缸与踏板之间,利用发动机运转时产生的真空度来增大驾驶员在制动踏板上的操纵力。 (1)不制动时 真空助力器不工作,弹簧15将推杆12连同柱塞18推到后极限位置(即真空阀开启),阀门9则被弹簧16压紧在大气阀座10上(即大气阀关闭位置)。伺服气室前、后两腔经通道A、控制阀腔和通道B互相连通,并与大气隔绝。在发动机开始工作,且真空单向阀被吸开后,伺服气室左右两腔内都产生一定的真空度。 (2)制动时 将制动踏板踩下时,起初伺服气室尚未起作用,膜片座8固定不动,故来自踏板机构的控制力可以推动控制阀推杆12和控制阀柱塞18相对于膜片座前移,当柱塞与橡胶反作用盘7之间的间隙消除后,控制力便经反作用盘传给

28、制动主缸推杆2,使制动主缸液压上升传入各轮缸,此力是驾驶员所给。 随同控制阀柱塞18前移的同时,推杆12通过弹簧先将真空阀门9压向阀座8而关闭,使A腔与B腔隔绝。 进而大气阀座10与真空阀门9分离而开启,外界的空气经空气阀的开口和气道进入B腔。随着空气的进入,在伺服气室膜片的两侧出现压力差而产生推力,此推力通过膜片座8、橡胶反作用盘7推动制动主缸推杆2左移。 此时,推杆2上的作用力F应为踏板力和伺服气室活塞推力的总和,但后者较前者大得多,使制动主缸输出的液压成数倍的增高。 在此过程中,膜片20与阀座8也不断前移,直到阀门9重新与大空阀座10接触为止。因此在任何一个平衡状态下,伺服气室后腔中的稳

29、定真空度与踏板行程成递增函数关系-控制阀的随动作用。 驾驶员所施加的踏板力不仅要足以促动控制阀,并使制动主缸产生一定液压,而且还要足以平衡与伺服气室作用力成正比的,经反作用盘反馈过来的力。这样,驾驶员便可以通过所加踏板力的大小来感知伺服气室的作用力大小,即驾驶员有一定的踏板感。 2.5.2增压式伺服制动系 真空增压伺服制动系 真空增压伺服制动系比人力液压制动系多一套真空伺服系统 真空增压器-由辅助缸、控制阀和真空伺服气室等三部分组成。 在辅助缸活塞4上作用着两个力,主缸液压作用力和伺服气室输出的推杆力。因此,辅助缸左腔及各轮缸的压力高于主缸压力。 第六节 动力制动系统 动力制动系-以汽车发动机

30、为唯一的制动初始能源。 制动能源是空气压缩机或液压泵。在动力制动系中,驾驶员的肌体仅作为控制能源,而不是制动能源。动力制动系: 气压制动系 供能装置和传动装置全部是气压式的。其控制装置大多数是由制动踏板机构和制动阀等气压控制元件组成,也有的在踏板机构和制动阀之间还串联有液压式操纵传动装置。 气顶液制动系 供能装置、控制装置与气压制动系的相同,但其传动装置则包括气压式和液压式两部分。 全液压动力制动系 除制动踏板机构以外,其供能、控制和传动装置全是液压式。 2.6.1气压制动系统 当踩下制动踏板时,通过拉杆机构操纵制动阀,使制动阀上下两腔的进气口分别与本腔的出气口相通,使储气筒8前、后腔的压缩空

31、气得以分别通过制动阀的上、下腔进入后制动气室和前制动气室,从而促动制动器进入工作。当放松制动踏板时,制动阀使制动气室通大气,以解除制动。制动气室内建立的气压越高,则制动器所产生的制动力矩越大。故为了保证行车制动的渐进性,制动阀应具有随动作用,即保证制动气室压力与踏板行程成一定的递增函数关系。 在采用动力制动系的情况下,驾驶员所施加的踏板力只用来操纵控制装置,而不能像采用人力制动系时那样直接造成制动器促动装置的工作压力,故制动阀还应当能使制动气室压力与踏板力也成一定的递增函数关系,以保证驾驶员有足够强的踏板感。 气压系统各元件之间的连接管路(由钢管、橡胶软管和各种管接头组成)有三种: 供能管路-

32、供能装置各组成件(空压机、储气筒)之间和供能装置与控制装置(如制动阀)之间的连接管路; 促动管路-控制装置与制动器促动装置(如制动气室)之间的连接管路; 操纵管路-一个控制装置与另一个控制装置之间的连接管路。 解放CAl091型汽车制动系中只有一个气压控制装置制动阀,故无操纵管路。 第七节 气顶液制动系与全液压动力制动系 2.7.1 气顶液制动系 气压系统的工作压力比液压系统低得多,因而其部件的尺寸和质量都比液压系统的相应部件大得多。 气压制动系只宜用于中型以上,特别是重型的货车和客车。 气压制动系的工作滞后时间约三倍于液压制动系。 为了兼取气压系统和液压系统二者之长,有些重型汽车采用了气顶液

33、式动力制动系。供能装置和控制装置都是气压式的,传动装置则是气压液压组合式的。 2.7.2全液压动力制动系 以储能器储存的液压能或限制液流循环而产生液压作用的动力制动装置。 其制动系的液压系统,同动力转向液压系统一样,也有常压式(闭式)和常流式(开式)两种,两者的制动能源都是汽车发动机驱动的液压泵。 目前汽车用的全液压动力制动系多用常压式,因为其中设有储能器,可以积蓄液压能,以备在发动机或液压泵停止运转,或是泵油管路损坏的情况下,仍能进行若干次完全制动。 第三章 制动系统设计计算第一节 制动系统主要参数数值3.1.1 相关主要参数 1.汽车相关主要参数如表3.1所示。表3.1 汽车相关主要参数编

34、号名称符号数值单位备注1质量M0320.000 kg2重力G3136.000 N3质心高hg300.000 mm11.82 inch4轴距L1600.000 mm63.04 inch5质心至前轴的距离a848.000 mm33.41 inch6质心至后轴的距离b752.000 mm29.63 inch7前轴负荷Wf1473.920 N47.00 %8后轴负荷Wr1662.080 N53.00 %2.2010年FSAE赞助轮胎相关参数如表3.2所示。规格180/530R13标准轮辋内距8轮胎胎面宽(mm inch)223 8.8轮胎外径(mm inch)533 21.0轮胎接地面宽(mm inc

35、h)185 7.3轮胎半径(mm)244轮胎周长1626轮辋内距7.5-8.5表3.2 2010年FSAE赞助轮胎相关参数3.1.2 同步附着系数的分析(1)当时:制动时总是前轮先抱死,这是一种稳定工况,但丧失了转向能力;(2)当时:制动时总是后轮先抱死,这是容易发生后轴策划而使汽车丧失方向稳定性;(3)当时:制动时汽车前后轮同时抱死,是一种稳定工况,但也丧失了转向能力。分析表明,汽车在同步系数为的路面上制动(前后轮同时抱死)时,其制动减速度为,即q=,q为制动强度。而在其他附着系数的路面上制动时,达到前轮或者后轮即将抱死的制动强度q,这表明只有在的路面上,地面的附着条件才可以得到充分利用。根

36、据相关资料查出汽车=0.7,故取=0.7。3.1.3 地面对前、后轮的法向反作用力若在不同附着系数的路面上,前、后轮同时抱死(不论是同时抱死或分别先后抱死),此时或。地面作用于前、后轮的法向反作用力为 (3-1) (3-2)前后轮同时抱死制动时地面对前、后轮法向反作用力的变化如表3.3所示表3.3 前后轮同时抱死地面对前、后轮法向反作用力的变化01474 1662 47%53%0.1 1533 1603 49%51%0.2 1592 1544 51%49%0.3 1650 1486 53%47%0.4 1709 1427 55%46%0.5 1768 1368 56%44%0.6 1827 1

37、309 58%42%0.7 1886 1250 60%40%0.8 1944 1192 62%38%0.9 2003 1133 64%36%1.0 2062 1074 66%34%第二节 制动器有关计算3.2.1 确定前后制动力矩分配系数 根据公式: (3-3) 得到: (3-4)3.2.2 制动器制动力矩的确定应急制动时,假定前后轮同时抱死拖滑,此时所需的前桥制动力矩为 (3-5)式中,G为汽车重力;L为轴距;a为汽车质心到前轴的距离;为汽车质心的高度;为附着系数;为轮胎有效半径。当=0.7时,即= (3-6)所以3.2.3 盘式制动器主要参数确定 1)制动盘直径D制动盘直径D应尽可能取大些

38、,这时制动盘的有效半径得到增加,可以降低制动钳的夹紧力,减少衬块的单位压力和工作温度。受轮辋直径的限制,制动盘的直径通常选择为轮辋直径的70一79。总质量大于2t的汽车应取上限。 这里去制动盘的直径D为轮辋直径的百分之70%,即mm 2)制动盘厚度的选择制动盘厚度对制动盘质量和工作时的温升有影响。为使质量小些,制动盘厚度不宜取得大;为了降低温度,制动盘厚度又不宜取得过小。制动盘可以做成实心的,或者为了散热通风的需要在制动盘中间铸出通风孔道。一般实心制动盘厚度可取为1020mm,通风式制动盘厚度取为2050mm,采用较多的是2030mm。在高速运动下紧急制动, 制动盘会形成热变形, 产生颤抖。为

39、提高制动盘摩擦面的散热性能, 大多把制动盘做成中间空洞的通风式制动盘, 这样可使制动盘温度降低20 %30 %。这里制动器采用实心制动盘设计,mm厚度 。3)摩擦衬块内半径R1和外半径R2摩擦衬块(如图3-1所示)是指钳夹活塞推动挤压在制动盘上的摩擦材料。摩擦衬块分为摩擦材料和底板,两者直接压嵌在一起。摩擦衬块外半径只与内半径及推荐摩擦衬块外半径与内半径的比值不大于1.5。若此比值偏大,工作时衬块的外缘与内侧圆周速度相差较多,磨损不均匀,接触面积减少,最终导致制动力矩变化大。因为制动器直径D等于231mm,则摩擦块mm取,所以mm。 图3-1 摩擦衬块4)摩擦衬块工作面积对于盘式制动器衬块工作

40、面积A,推荐根据制动衬块单位面积占有的汽车质量在范围内选用。单个前轮摩擦块,则单个前轮制动器A=48;单个后轮摩擦块,则单个后轮制动器A=32.能够满足的要求。5)摩擦衬块摩擦系数f选择摩擦片时不仅希望其摩擦系数要高些,更要求其热稳定性要好,受温度和压力的影响要小。不能单纯地追求摩擦材料的高摩擦系数,应提高对摩擦系数的稳定性和降低制动器对摩擦系数偏离正常值的敏感性的要求,后者对蹄式制动器是非常重要的。各种制动器用擦材料的摩擦系数的稳定值约为 0.30.5,少数可达0.7。一般说来,摩擦系数愈高的材料,其耐磨性差。所以在制动器设计时并非一定要追求高摩擦系数的材料。当前国产的制动摩擦片材料在温度低

41、于 250时,保持摩擦系数=0.350.40 已无大问题。因此,在假设的理想条件下计算制动器的制动力矩。另外,在选择摩擦材料时应尽量采用减少污染和对人体无害的材料。所选择摩擦系数=0.35。总结得到参数如表3.4所示表3.4 制动器基本参数制动盘外径/mm工作半径/mm制动盘厚度/mm摩擦衬块厚度/mm摩擦面积前轮2319610948后轮23196109323.2.4 盘式制动器的制动力计算假定衬块的摩擦表面全部与制动盘接触,且各处单位压力分布均匀,则制动器的制动力矩为 (3-7)式中,为摩擦因数;为单侧制动块对制动盘的压紧力;R为作用半径。对于常见的具有扇形摩擦表面的衬块,若其径向宽度不很大

42、,则R等于平均半径或有效半径,在实际中已经足够精确。平均半径为 mm式中,和为摩擦衬块扇形表面的内半径和外半径。有效半径是扇形表面的面积中心至制动盘中心的距离,如下式所示(推导见离合器设计) (3-8)式中,.因为,故,越小,则两者差值越大。应当指出,若过小,即扇形的径向宽度过大,衬块摩擦面上各不同半径处得滑磨速度相差太远,磨损不均匀,因为单位压力分布均匀这一假设条件不能成立,则上述计算方法也就不适用。值一般不应小于0.65.假定衬块的摩擦表面全部与制动盘接触,且各处单位压力分布均匀,则制动器的制动力矩为 (3-9)式中,为摩擦因数;为单侧制动块对制动盘的压紧力;R为作用半径。对于常见的具有扇

43、形摩擦表面的衬块,若其径向宽度不很大,则R等于平均半径或有效半径,在实际中已经足够精确。平均半径为 (3-10)式中,和为摩擦衬块扇形表面的内半径和外半径。对于前制动器 (3-11)所以对于后制动器 (3-12)所以第三节 制动器主要零部件的结构设计1)制动盘制动盘一般用珠光体灰铸铁制成,或用添加Cr或Ni等合金铸铁制成。制动盘在工作时不仅承受着制动块作用的法向力和切向力,而且承受着热负荷。为了改善冷却效果,钳盘式制动器的制动盘有的铸成中间有径向通风槽的双层盘这样可大大地增加散热面积,降低温升约20-30%,但盘得整体厚度较厚。而一般不带通风盘的汽车制动盘,其厚度约在10-13mm之间。本次设

44、计采用的材料为HT250。 .2)制动钳制动钳由可锻铸铁KTH370-12或球墨铸铁QT400-18制造,也有用轻合金制造的,例如用铝合金压铸。3)制动块制动块由背板和摩擦衬快组成,两者直接牢固地压嵌或铆接或粘结在一起。4)摩擦材料制动摩擦材料应具有稳定的摩擦系数,抗热衰退性要好,不应在温升到某一数值以后摩擦系数突然急剧下降,材料应有好的耐磨性,低的吸水(油、制动液)率,低的压缩率、低的热传导率和低的热膨胀率,高的抗压、抗剪切、抗弯曲性能和耐冲击性能,制动时应不产生噪声、不产生不良气味、应尽量采用污染小对人体无害的摩擦材料。当前,制动器广泛采用模压材料。5)制动轮缸制动轮缸采用单活塞式制动轮缸

45、,其在制动器中布置方便。轮缸的缸体由灰铸铁HT250制成。其缸简为通孔,需镗磨。活塞由铝合金制造。活塞外端压有钢制的开槽顶快,以支承插槽中的制动蹄,极端部或端部接头。轮缸的工作腔由装在活塞上的橡胶密封圈或靠在活塞内端面处得橡胶皮碗密封。本次设计采用的是HT250.第四章 液压制动驱动机构的设计计算第一节 前轮制动轮缸直径的确定制动轮缸对制动块施加的张开力与轮缸直径和制动管路压力的关系为 (4-1)制动管路压力一般不超过1012。取。 (4-2)轮缸直径应在标准规定的尺寸系列中选取(HG2865-1997),具体为19mm、22mm、24mm、25mm、28mm、30mm、32mm、35mm、3

46、8mm、40mm、45mm、50mm、55mm。因此取前轮制动轮缸直径为32mm.同理,后轮制动轮缸直径。因此取后轮制动轮缸直径为25mm.第二节 制动主缸直径的确定第个轮缸的工作容积为: (4-3)式中,为第个轮缸活塞的直径;为轮缸中活塞的数目;为第个轮缸活塞在完全制动时的行程,初步设计时,对鼓式制动器可取2.0-2.5mm.此处取mm.所以一个前轮轮缸的工作容积为一个后轮轮缸的工作容积为所有轮缸的总工作容积为,式中,为轮缸数目。制动主缸应有的工作容积为,式中为制动软管的变形容积。在初步设计时,制动主缸的工作容积可为:对于乘用车;对于商用车。此处取。所以 (4-4)主缸活塞行程和活塞直径为

47、(4-5)一般=(0.81.2)。此处取=。 所以 (4-6)主缸的直径应符合QC/T311-1999中规定的尺寸系列,具体为19mm、22mm、28mm、32mm、35mm、38mm、40mm、45mm。所以取得mm。第三节 制动踏板力和制动踏板工作行程制动踏板力为: (4-7)式中,为制动主缸活塞直径;p为制动管路的液压;为探班机构的传动比;为踏板机构及液压主缸的机械效率,可取=0.820.86.此处取=4,=0.85.制动踏板力应满足以下要求;最大踏板力一般为500N(乘用车)或700N(商用车)。设计时,制动踏板力可在200N350N的范围内选取。所以符合设计要求。制动踏板工作行程为

48、(4-8)式中,为主缸中推杆与活塞间的间隙,一般取1.5mm2mm;为主缸活塞空行程,主缸活塞由不工作时的极限位置到使其皮碗完全封堵主缸上的旁通孔所经过的行程。制动器调整正常时的踏板工作行程,在只应占计及制动衬块的容许磨损量的踏板行程的40%60%。为了避免空气侵入制动管路,在计算制动主缸活塞回位弹簧时,应保证踏板放开后,制动管路中仍保持0.050.14的残余压力。最大踏板行程,对乘用车应不大于100150mm,对商用车不大于180mm。此外,作用在制动手柄上最大的力,对乘用车不大于400N,对商用车不大于600N。制动手柄最大行程对乘用车不大于160mm,对商用车不大于220mm.符合设计要

49、求第五章 制动性能分析任何一套制动装置都是由制动器和制动驱动机构两部分组成。汽车的制动性是指汽车在行驶中能利用外力强制地降低车速至停车或下长坡时能维持一定车速的能力。第一节 制动性能评价指标汽车的制动性主要由下列三方面来评价:1) 制动效能,即制动距离与制动减速度。2)制动效能的恒定性,即抗热衰退性能。3)制动时汽车的方向稳定性,即制动时汽车不发生跑偏、侧滑以及失去转向能力的性能。第二节 制动效能 制动效能是指在良好路面上,汽车以一定初速度制动到停车的制动距离或制动时汽车的减速度。制动效能是制动性能中最基本的评价指标。制动距离越小,制动减速度越大,汽车的制动效能就越好。第三节 制动效能的恒定性

50、制动效能的恒定性主要指的是抗热衰退性能。汽车在高速行驶或下长坡连续制动时制动效能保持的程度。因为制动过程中实际上是把汽车行驶的动能通过制动器吸收转换为热能,所以制动器温度升高后能保持在冷态时的制动效能,已成为设计制动器时要考虑的一个重要问题。第四节 制动时汽车方向的稳定性制动时汽车的方向稳定性,常用制动时汽车给定路径行驶的能力来评价。若制动时发生跑偏、侧滑或失去转向能力。则汽车将偏离原来的路径。制动过程中汽车维持直线行驶,或按预定弯道行驶的能力,称为方向稳定性。影响方向稳定性包括制动跑偏、后轴侧滑或前轮失去转向能力三种情况。制动时发生跑偏、侧滑或失去转向能力时,汽车将偏离给定的行驶路径。因此,

51、常用制动时汽车按给定路径行驶的能力来评价汽车制动时的方向稳定性,对制动距离和制动减速度两指标测试时都要求了其实验通道的宽度。方向稳定性是从制动跑偏、侧滑以及失去转向能力方面来考验。制动跑偏的原因有两个:1)汽车左右车轮,特别是转向轴左右车轮制动器制动力不相等。2)制动时悬架导向杆系与转向系拉杆在运动学上不协调(相互干涉)。前者是由于制动调整误差造成的,是非系统的。而后者是属于系统性误差。侧滑是指汽车制动时某一轴的车轮或两轴的车轮发生横向滑动的现象。最危险的情况时高速制动时后轴发生侧滑。防止后轴发生侧滑应使前后轴同时抱死或前轴先报死后轴始终不抱死。理论分析如下,真正的评价需要靠实验。第五节 制动

52、器制动力分配曲线分析对于一般汽车而言,根据其前后轴制动力的分配、载荷情况及路面附着系数和坡度等因素,当制动器制动力足够时,制动过程可能出现如下三种情况:1)前轮先抱死拖滑,然后后轮抱死拖滑。2)后轮先抱死拖滑,然后前轮抱死拖滑。3)前后轮同时抱死拖滑。所以,前后轮制动力分配将影响汽车制动时的方向稳定性和附着条件利用程度,是设计汽车制动时必须妥善处理的问题。根据给定参数和及制动力分配系数,应用EXCEL编制出制动力分配曲线如下:当I线与线相交时,即=0.7时,即前后轮同时抱死。当I线在线下方时,前轮先抱死。当I线在线上方时,后轮先抱死。通过图5-1可以看出相关参数和制动力分配系数的合理性。第六节

53、 制动减速度和制动距离S制动系的制动效果,可以用最大制动减速度及最小制动距离来评价。假设汽车是在水平的,坚硬的道路上行驶,并且不考虑路面附着条件,因此制动力是由制动器产生。此时 所以符合要求。第七节 摩擦衬块的磨损特性计算摩擦衬块的磨损受温度、摩擦力、滑磨速度、制动鼓(制动盘)的材质及加工情况,以及衬片本身材质等许多因素的影响,因此在理论上计算磨损性能极为困难。但试验表明,影响磨损的最重要的因素还是摩擦表面的温度和摩擦力。从能量的观点来说,汽车制动过程即是将汽车的机械能(动能和势能)的一部分转变为热能而耗散的过程。在制动强度很大的紧急制动过程中,制动器几乎承担了汽车全部动能耗散的任务。此时,由

54、于制动时间很短,实际上热能还来不及逸散到大气中就被制动器所吸收,致使制动器温度升高。这就是所谓制动器的能量负荷。能量负荷越大,则衬片(衬块)的磨损越严重。对于盘式制动器的衬块,其单位面积上的能量负荷比鼓式制动器衬片大许多倍,所以制动盘的表面温度比制动鼓的高。各种汽车的总质量及其制动衬块的摩擦面积各不相同,因而有必要用一种相对的量作为评价能量负荷的指标。目前,各国常用的指标是比能量消散率,即单位时间内衬块单位摩擦面积耗散的能量,通常所用的计量单位为。比能量耗散率有时也称为单位功负荷,或简称能量负荷。双轴汽车的单个前轮及后轮制动器的比能量耗散率分别为 (5-1) (5-2) (5-3)式中,为汽车

55、总质量;为汽车回转质量换算系数;、为制动初速度和终速度();为制动减速度();t为制动时间;、为前、后制动衬片(衬块)的摩擦面积;为制动力分配系数。在紧急制动到停车的情况下,并可认为,故 (5-4) (5-5)据有关文献推荐,鼓式制动器的比能量耗散率比不大于为宜,计算时取减速度。制动初速度:乘用车用100km/h(27.8m/s);总质量3.5t以下的商用车用;总质量3.5t以上的商用车用65km/h(18m/s)。乘用车的盘式制动器在同上的和的条件下,比能量耗散率应不大于。对于最高车速低于以上规定的制动初速度的汽车,按上述条件算出的值允许略大于。比能量耗散率过高不仅引起衬片(衬块)的加速磨损

56、,且又可能使制动或制动盘更早发生龟裂。 (5-6) (5-7) (5-8)盘式制动器的比能量耗散率应不大于,故符合要求。另一个磨损特性指标是衬片(衬块)单位摩擦面积的制动力摩擦力,称为比摩擦力。比摩擦力越大,则磨损越严重。单个车轮制动器的比摩擦力为 (5-9)式中,为单个制动器的制动力矩;R为制动鼓半径(衬块平均半径或有效半径);A为单个制动器衬片(衬块)摩擦面积。在时,鼓式制动器的比摩擦力以不大于为宜。与之相应的衬片与制动鼓之间的平均单位压力=1.371.60(设摩擦因素=0.30.35)。这比过去一些文献中推荐的要小,因为磨损问题现在已较过去受到更大程度的重视。符合要求。结论本说明书主要介绍了汽车制动的设计探索,先绍了汽车制动系统的设计意义、研究现状以及设计目标。然后解释了制动器的主要类型并对制动系统进行方案论证分析与选择,主要包括制动器形式方案分析、制动驱动机

展开阅读全文
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!