高分子材料力学强度

上传人:阳*** 文档编号:51821796 上传时间:2022-02-02 格式:DOC 页数:17 大小:287KB
收藏 版权申诉 举报 下载
高分子材料力学强度_第1页
第1页 / 共17页
高分子材料力学强度_第2页
第2页 / 共17页
高分子材料力学强度_第3页
第3页 / 共17页
资源描述:

《高分子材料力学强度》由会员分享,可在线阅读,更多相关《高分子材料力学强度(17页珍藏版)》请在装配图网上搜索。

1、第三节 高分子材料的力学强度在高分子材料诸多应用中,作为结构材料使用是其最常见、最重要的应用。在许多领域,高分子材料已成为金属、木材、陶瓷、玻璃等的代用品。之所以如此,除去它具有制造加工便利、质轻、耐化学腐蚀等优点外,还因为它具有较高的力学强度和韧性。理论上,根据完全伸直链晶胞参数求得的聚乙烯最高理论强度达1.9x104MPa,是钢丝的几十倍。实验室中,已经获得高拉伸聚酰胺纤维在液氮中的最高实际强度达2.3x103MPa。为了评价高分子材料使用价值,扬长避短地利用、控制其强度和破坏规律,进而有目的地改善、提高材料性能,需要掌握高分子材料力学强度变化的宏观规律和微观机理。本节一方面介绍描述高分子

2、材料宏观力学强度的物理量和演化规律;另一方面从分子结构特点探讨影响高分子材料力学强度的因素,为研制设计性能更佳的材料提供理论指导。鉴于高分子材料力学状态的复杂性,以及力学状态与外部环境条件密切相关,高分子材料的力学强度和破坏形式也必然与材料的使用环境和使用条件有关。一、高分子材料的拉伸应力-应变特性(一) 应力应变曲线及其类型测量材料的应力-应变特性是研究材料强度和破坏的重要实验手段。一般是将材料制成标准试样,以规定的速度均匀拉伸,测量试样上的应力、应变的变化,直到试样破坏。常用的哑铃型标准试样如图4-26所示,试样中部为测试部分,标距长度为l0,初始截面积为A0。图4-26 哑铃型标准试样设

3、以一定的力F拉伸试样,使两标距间的长度增至,定义试样中的应力和应变为: (4-57) (4-58)注意此处定义的应力等于拉力除以试样原始截面积A0,这种应力称工程应力或公称应力,并不等于材料所受的真实应力。同样这儿定义的应变为工程应变,属于应变的Euler度量。典型高分子材料拉伸应力-应变曲线如图4-27所示。图4-27 典型的拉伸应力-应变曲线图中曲线有以下几个特征:OA段,为符合虎克定律的弹性形变区,应力应变呈直线关系变化,直线斜率相当于材料弹性模量。越过A点,应力应变曲线偏离直线,说明材料开始发生塑性形变,极大值Y点称材料的屈服点,其对应的应力、应变分别称屈服应力(或屈服强度)和屈服应变

4、。发生屈服时,试样上某一局部会出现“细颈”现象,材料应力略有下降,发生“屈服软化”。而后随着应变增加,在很长一个范围内曲线基本平坦,“细颈”区越来越大。直到拉伸应变很大时,材料应力又略有上升(成颈硬化),到达B点发生断裂。与B点对应的应力、应变分别称材料的拉伸强度(或断裂强度)和断裂伸长率,它们是材料发生破坏的极限强度和极限伸长率。曲线下的面积等于 (4-59)相当于拉伸试样直至断裂所消耗的能量,单位为Jm-3,称断裂能或断裂功。它是表征材料韧性的一个物理量。由于高分子材料种类繁多,实际得到的材料应力应变曲线具有多种形状。归纳起来,可分为五类(图4-28)。图4-28 高分子材料应力-应变曲线

5、的类型(1)硬而脆型 此类材料弹性模量高(OA段斜率大)而断裂伸长率很小。在很小应变下,材料尚未出现屈服已经断裂,断裂强度较高。在室温或室温之下,聚苯乙烯、聚甲基丙烯酸甲酯、酚醛树脂等表现出硬而脆的拉伸行为。(2)硬而强型 此类材料弹性模量高,断裂强度高,断裂伸长率小。通常材料拉伸到屈服点附近就发生破坏(大约为5%)。硬质聚氯乙烯制品属于这种类型。(3)硬而韧型 此类材料弹性模量、屈服应力及断裂强度都很高,断裂伸长率也很大,应力应变曲线下的面积很大,说明材料韧性好,是优良的工程材料。硬而韧的材料,在拉伸过程中显示出明显的屈服、冷拉或细颈现象,细颈部分可产生非常大的形变。随着形变的增大,细颈部分

6、向试样两端扩展,直至全部试样测试区都变成细颈。很多工程塑料如聚酰胺、聚碳酸酯以及醋酸纤维素、硝酸纤维素等属于这种材料。(4)软而韧型 此类材料弹性模量和屈服应力较低,断裂伸长率大(20%1000%),断裂强度可能较高,应力应变曲线下的面积大。各种橡胶制品和增塑聚氯乙烯具有这种应力应变特征。(5)软而弱型 此类材料弹性模量低,断裂强度低,断裂伸长率也不大。一些聚合物软凝胶和干酪状材料具有这种特性。实际高分子材料的拉伸行为非常复杂,可能不具备上述典型性,或是几种类型的组合。例如有的材料拉伸时存在明显的屈服和“颈缩”,有的则没有;有的材料断裂强度高于屈服强度,有的则屈服强度高于断裂强度等。材料拉伸过

7、程还明显地受环境条件(如温度)和测试条件(如拉伸速率)的影响,硬而强型的硬质聚氯乙烯制品在很慢速率下拉伸也会发生大于100%的断裂伸长率,显现出硬而韧型特点。因此规定标准的实验环境温度和标准拉伸速率是很重要的。(二) 影响拉伸行为的外部因素1、温度的影响环境温度对高分子材料拉伸行为的影响十分显著。温度升高,分子链段热运动加剧,松弛过程加快,表现出材料模量和强度下降,伸长率变大,应力应变曲线形状发生很大变化。图4-29是聚甲基丙烯酸甲酯在不同温度下的应力应变曲线。图中可见,随着温度升高,应力应变曲线由硬而脆型转为硬而韧型,再转为软而韧型。材料力学状态由玻璃态转为高弹态,再转为粘流态。图4-29

8、聚甲基丙烯酸甲酯的应力-应变曲线随环境温度的变化(常压下)材料的拉伸断裂强度和屈服强度也随环境温度而发生变化,变化规律如图4-30所示。图中两曲线的变化规律不同,屈服强度受温度变化的影响更大些。两曲线交点对应的温度称脆-韧转变温度。当环境温度小于时,材料的,说明受到外力作用时,材料未屈服之前先已断裂,断裂伸长率很小,呈脆性断裂特征。环境温度高于时,材料,受到外力作用时,材料先屈服,出现细颈和很大的变形后才断裂,呈韧性断裂特征。在温度升高过程中,材料发生脆-韧转变。图4-30 和随温度的变化趋势2、拉伸速率的影响高分子材料拉伸行为还与拉伸速率有关。减慢拉伸速率,一种原来脆断的材料也可能出现韧性拉

9、伸的特点。减慢拉伸速率与升高环境温度对材料拉伸行为有相似的影响,这是时-温等效原理在高分子力学行为中的体现。拉伸速率对材料的断裂强度和屈服强度也有明显影响,图4-31给出和随拉伸速率的变化趋势。与脆-韧转变温度相似,根据图中两曲线交点,可以定义脆-韧转变(拉伸)速率。拉伸速率高于时,材料呈脆性断裂特征;低于时,呈韧性断裂特征。图4-31 和随拉伸速率的变化趋势3、环境压力的影响研究发现,对许多非晶聚合物,如PS、PMMA等,其脆-韧转变行为还与环境压力有关。图4-32给出PS的应力应变曲线随环境压力的变化情形。由图可见,PS在低环境压力(常压)下呈脆性断裂特点,强度与断裂伸长率都很低。随着环境

10、压力升高,材料强度增高,伸长率变大,出现典型屈服现象,材料发生脆-韧转变。比较图4-29和4-32还可发现,两种脆-韧转变方式有很大差别。温度升高材料变韧,但拉伸强度明显下降。升高环境压力则在使材料变韧的同时,强度也得到提高,材料变得强而韧。这两种不同的脆-韧转变方式给我们以启发,告诉我们材料增韧改性并非一定要以牺牲强度为代价。设计恰当的方法,就有可能在增韧的同时,保持或提高材料的强度,实现既增韧又增强。塑料的非弹性体增韧改性技术就是由此发展起来的(后详)。图4-32 聚苯乙烯的应力-应变曲线随环境压力的变化(T=31)(三) 强迫高弹形变与“冷拉伸” 已知环境对高分子材料拉伸行为有显著影响,

11、这儿再重点介绍在特殊环境条件下,高分子材料的两种特殊拉伸行为。1、非晶聚合物的强迫高弹形变研究聚合物材料拉伸破坏行为时,特别要注意在较低温度下材料被拉伸、屈服、断裂的情形。对于非晶聚合物,当环境温度处于时,虽然材料处于玻璃态,链段冻结,但在恰当速率下拉伸,材料仍能发生百分之几百的大变形(参见图4-29中T=80,60的情形),这种变形称强迫高弹形变。这种现象既不同于高弹态下的高弹形变,也不同于粘流态下的粘性流动。这是一种独特的力学行为。现象的本质是在高应力下,原来卷曲的分子链段被强迫发生运动、伸展,发生大变形,如同处于高弹态的情形。这种强迫高弹形变在外力撤消后,通过适当升温()仍可恢复或部分恢

12、复。强迫高弹形变能够产生,说明提高应力可以促进分子链段在作用力方向上的运动,如同升高温度一样,起到某种“活化”作用。从链段的松弛运动来讲,提高应力降低了链段在作用力方向上的运动活化能,减少了链段运动的松弛时间,使得在玻璃态被冻结的链段能越过势垒而运动。研究表明,链段松弛时间与外应力之间有如下关系: (4-60)式中是链段运动活化能,是材料常数,是未加应力时链段运动松弛时间。由(4-60)式可见,越大,越小,降低了链段运动活化能。当应力增加致使链段运动松弛时间减小到与外力作用时间同一数量级时,就可能产生强迫高弹变形。 2、晶态聚合物的“冷拉伸”结晶聚合物也能产生强迫高弹变形,这种形变称“冷拉伸”

13、。结晶聚合物具有与非晶聚合物相似的拉伸应力应变曲线,见图4-33。图中当环境温度低于熔点时(473聚甲醛 未增强6866074.52.75383聚甲醛 增强8241.5425.59441 均含玻璃纤维20-40%图4-39 纤维增强塑料的复合作用示意图三、高分子材料的抗冲击强度和增韧改性高分子材料抗冲击强度是指标准试样受高速冲击作用断裂时,单位断面面积(或单位缺口长度)所消耗的能量。它描述了高分子材料在高速冲击作用下抵抗冲击破坏的能力和材料的抗冲击韧性,有重要工艺意义。但它不是材料基本常数,其量值与实验方法和实验条件有关。它也不是标准的材料强度性能指标。(一) 抗冲击强度实验测定材料抗冲击强度

14、的实验方法有:(1)高速拉伸试验;(2)落锤式冲击试验;(3)摆锤式冲击试验。经常使用的是摆锤式冲击试验,根据试样夹持方式的不同,又分为悬臂梁式冲击试验机(Izod)和简支梁式冲击试验机(Charpy,图4-40)。采用简支梁式冲击试验时,将试样放于支架上(有缺口时,缺口背向冲锤),释放事先架起的冲锤,让其自由下落,打断试样,利用冲锤回升的高度,求出冲断试样所消耗的功A,按下式计算抗冲击强度: (4-68)式中分别为试样冲击断面的宽和厚,抗冲击强度单位为。若实验求算的是单位缺口长度所消耗的能量,单位为。图4-40 简支梁式冲击试验机(Charpy)示意图由公式(4-59)得知,材料拉伸应力-应

15、变曲线下的面积相当于试样拉伸断裂所消耗的能量,也表征材料韧性的大小。它与抗冲击强度不同,但两者密切相关。很显然,断裂强度高和断裂伸长率大的材料韧性也好,抗冲击强度大。不同在于,两种实验的应变速率不同,拉伸速率慢而冲击速率极快;拉伸曲线求得的能量为断裂时材料单位体积所吸收的能量,而冲击实验只关心断裂区表面吸收的能量。冲击破坏过程虽然很快,但根据破坏原理也可分为三个阶段:一是裂纹引发阶段,二是裂纹扩展阶段,三是断裂阶段。三个阶段中物料吸收能量的能力不同,有些材料如硬质聚氯乙烯,裂纹引发能高而扩展能很低,这种材料无缺口时抗冲强度较高,一旦存在缺口则极容易断裂。裂纹扩展是材料破坏的关键阶段,因此材料增

16、韧改性的关键是提高材料抗裂纹扩展的能力。(二)影响抗冲击强度的因素1、 缺口的影响 冲击实验时,有时在试样上预置缺口,有时不加缺口。有缺口试样的抗冲强度远小于无缺口试样,原因在于有缺口试样已存在表观裂纹,冲击破坏吸收的能量主要用于裂纹扩展。另外缺口本身有应力集中效应,缺口附近的高应力使局部材料变形增大,变形速率加快,材料发生韧-脆转变,加速破坏。缺口曲率半径越小,应力集中效应越显著,因此预置缺口必须按标准严格操作。2、 温度的影响温度升高,材料抗冲击强度随之增大。对无定形聚合物,当温度升高到玻璃化温度附近或更高时,抗冲击强度急剧增大。对结晶性聚合物,其玻璃化温度以上的抗冲击强度也比玻璃化温度以

17、下的高,这是因为在玻璃化温度附近或更高温度时,链段运动释放,分子运动加剧,使应力集中效应减缓,部分能量会由于材料的力学损耗作用以热的形式逸散。图4-41给出几种聚丙烯试样的抗冲强度随温度的变化,可以看出,在玻璃化温度附近抗冲强度有较大的增长。图4-41 几种聚丙烯试样抗冲强度随温度的变化3、 结晶、取向的影响对聚乙烯、聚丙烯等高结晶度材料,当结晶度为40-60%时,由于材料拉伸时有屈服发生且断裂伸长率高,韧性很好。结晶度再增高,材料变硬变脆,抗冲击韧性反而下降。这是由于结晶使分子间相互作用增强,链段运动能力减弱,受到外来冲击时,材料形变能力减少,因而抗冲击韧性变差。从结晶形态看,具有均匀小球晶

18、的材料抗冲击韧性好,而大球晶韧性差。球晶尺寸大,球晶内部以及球晶之间的缺陷增多,材料受冲击力时易在薄弱环节破裂。对取向材料,当冲击力与取向方向平行,冲击强度因取向而提高,若冲击力与取向方向垂直,冲击强度下降。由于实际材料总是在最薄弱处首先破坏,因此取向对材料的抗冲击性能一般是不利的。4、共混,共聚,填充的影响实验发现,采用与橡胶类材料嵌段共聚、接枝共聚或物理共混的方法可以大幅度改善脆性塑料的抗冲击性能,例如丁二烯与苯乙烯共聚得到高抗冲聚苯乙烯,氯化聚乙烯与聚氯乙烯共混得到硬聚氯乙烯韧性体都将基体的抗冲强度提高几倍至几十倍。橡胶增韧塑料已发展为十分成熟的塑料增韧技术,由此开发出一大批新型材料,产

19、生巨大经济效益。在热固性树脂及脆性高分子材料中添加纤维状填料,也可以提高基体的抗冲击强度。纤维一方面可以承担试片缺口附近的大部分负荷,使应力分散到更大面积上,另一方面还可以吸收部分冲击能,防止裂纹扩展成裂缝(参看表4-7)。与此相反,若在聚苯乙烯这样的脆性材料中添加碳酸钙之类的粉状填料,则往往使材料抗冲击性能进一步下降。因为填料相当于基体中的缺陷,填料粒子还有应力集中作用,这些都将加速材料的破坏。近年来人们在某些塑料基体中添加少量经过表面处理的微细无机粒子,发现个别体系中,无机填料也有增韧作用。(三)高分子材料的增韧改性1、 橡胶增韧塑料的经典机理橡胶增韧塑料的效果是十分明显的。无论脆性塑料或

20、韧性塑料,添加几份到十几份橡胶弹性体,基体吸收能量的本领会大幅度提高。尤其对脆性塑料,添加橡胶后基体会出现典型的脆-韧转变。关于橡胶增韧塑料的机理,曾有人认为是由于橡胶粒子本身吸收能量,橡胶横跨于裂纹两端,阻止裂纹扩展;也有人认为形变时橡胶粒子收缩,诱使塑料基体玻璃化温度下降。研究表明,形变过程中橡胶粒子吸收的能量很少,约占总吸收能量的10%,大部分能量是被基体连续相吸收的。另外由橡胶收缩引起的玻璃化温度下降仅10左右,不足以引起脆性塑料在室温下屈服。Schmitt和Bucknall等人根据橡胶与脆性塑料共混物在低于塑料基体断裂强度的应力作用下,会出现剪切屈服和应力发白现象;又根据剪切屈服是韧

21、性聚合物(如聚碳酸酯)的韧性来源的观点,逐步完善橡胶增韧塑料的经典机理。认为:橡胶粒子能提高脆性塑料的韧性,是因为橡胶粒子分散在基体中,形变时成为应力集中体,能促使周围基体发生脆-韧转变和屈服。屈服的主要形式有:引发大量银纹(应力发白)和形成剪切屈服带,吸收大量变形能,使材料韧性提高。剪切屈服带还能终止银纹,阻碍其发展成破坏性裂缝。银纹和剪切屈服带的存在均已得到实验证实。图4-42为PVC/ABS共混物中,ABS粒子引发银纹和终止银纹的电镜照片。图4-43为聚对苯二甲酸乙二酯中形成剪切屈服带的电镜照片。2、 银纹化现象和剪切屈服带许多聚合物,尤其是玻璃态透明聚合物如聚苯乙烯、有机玻璃、聚碳酸酯

22、等,在存储及使用过程中,由于应力和环境因素的影响,表面往往会出现一些微裂纹。有这些裂纹的平面能强烈反射可见光,形成银色的闪光,故称为银纹,相应的开裂现象称为银纹化现象。产生银纹的原因有两个:一是力学因素(拉伸应力),二是环境因素(与某些化学物质相接触)。银纹和裂缝不能混为一谈。裂缝是宏观开裂,内部质量为零;而银纹内部有物质填充着,质量不等于零,该物质称银纹质,是由高度取向的聚合物纤维束构成。图4-44是聚苯乙烯薄片中的一条银纹。银纹具有可逆性,在压应力下或在以上温度退火处理,银纹会回缩或消失,材料重新回复光学均一状态。图4-42 PVC/ABS共混物中,ABS引发银纹和终止银纹的电镜照片图4-

23、43 聚对苯二甲酸乙二酯中的剪切屈服带图4-44 聚苯乙烯薄片中的一条银纹剪切屈服带是材料内部具有高度剪切应变的薄层,是在应力作用下材料局部产生应变软化形成的。剪切带通常发生在缺陷、裂缝或由应力集中引起的应力不均匀区内,在最大剪应力平面上由于应变软化引起分子链滑动形成。在拉伸实验和压缩实验中都曾经观察到剪切带(图4-43),而以压缩实验为多。理论上剪切带的方向应与应力方向成45角,由于材料的复杂性,实际夹角往往小于45。银纹和剪切带是高分子材料发生屈服的两种主要形式。银纹是垂直应力作用下发生的屈服,银纹方向多与应力方向垂直;剪切带是剪切应力作用下发生的屈服,方向与应力成45和135角(参看图4

24、-35)。无论发生银纹或剪切带,都需要消耗大量能量,从而使材料韧性提高。塑料基体中添加部分橡胶,橡胶作为应力集中体能诱发塑料基体产生银纹或剪切带,使基体屈服,吸收大量能量,达到增韧效果。材料体系不同,发生屈服的形式不同,韧性的表现不同。有时在同一体系中两种屈服形式会同时发生,有时形成竞争。发生银纹时材料内部会形成微空穴(空穴化现象),体积略有涨大;形成剪切屈服时,材料体积不变。3、 塑料的非弹性体增韧改性及机理橡胶增韧塑料虽然可以使塑料基体的抗冲击韧性大幅提高,但同时也伴随产生一些问题,主要问题有增韧同时使材料强度下降,刚性变弱,热变形温度跌落及加工流动性变劣等。这些问题因源于弹性增韧剂的本征

25、性质而难以避免,使塑料的增韧、增强改性成为一对不可兼得的矛盾。由橡胶增韧塑料经典机理得知,增韧过程中体系吸收能量的本领提高,不是因为橡胶类改性剂吸收了很多能量,而是由于在受力时橡胶粒子成为应力集中体,引发塑料基体发生屈服和脆-韧转变,使体系吸收能量的本领提高。这一机理给我们启发,说明增韧的核心关键是如何诱发塑料基体屈服,发生脆-韧转变,无论是添加弹性体或是非弹性体,甚或添加空气(发泡)作为改性剂,只要能达到这个目的都应能实现增韧。如前所述,高分子材料发生脆-韧转变有两种方式,一是升高环境温度使材料变韧,但拉伸强度受损,材料变得软而韧(图4-29);一是升高环境压力使材料变韧,同时强度也提高,材

26、料变得强而韧(图4-32)。两种不同的脆-韧转变方式启示我们,增韧改性高分子材料并非一定以牺牲强度为代价,设计恰当的方法有可能同时实现既增韧、又增强。塑料的非弹性体增韧改性就是基于此发展起来的。1984年日本学者Kurauchi和Ohta将少量脆性树脂SAN(丙烯腈-苯乙烯共聚物)添加到韧性聚碳酸酯(PC)基体中,发现SAN同时提高了PC的拉伸强度、断裂伸长率和吸收能量本领,具有同时既增韧、又增强的效果。之后国内外研究者又在若干树脂基体中分别采用刚性有机填料(Rigid organic filler,简称ROF)、刚性无机填料研究非弹性体增韧改性规律,发现塑料的非弹性体增韧改性有一定的普遍意义

27、,但增韧规律与机理不同于经典的弹性体增韧塑料。表4-8给出两种增韧方法的简单比较。由表可见,采用刚性有机填料增韧改性时,要求基体有一定的韧性,易于发生脆韧转变,不能是典型脆性塑料;增韧剂用量少时效果显著,用量增大效果反而降低;由于基体本身有较好韧性,因此增韧倍率不象弹性体增韧脆性塑料那样大,一般只增韧几倍,但体系的实际韧性和强度都很高。关于增韧机理,一种说法是,刚性有机粒子作为应力集中体,使基体中应力分布状态发生改变,在很强压(拉)应力作用下,脆性有机粒子发生脆-韧转变,与其周围基体一起发生“冷拉”大变形,吸收能量。电镜照片曾观察到SAN粒子在PC基体中发生100%的大变形(SAN本体的断裂伸

28、长率不到5%)。作者在研究刚性有机填料增韧改性硬聚氯乙烯韧性体时发现,刚性有机填料一方面有改变基体应力分布状态,发生“冷拉”大变形作用;更重要的是它能促进基体发生脆-韧转变,提高基体发生脆-韧转变的效率,使基体中引发大量“银纹”或“剪切带”。两种增韧机理可以同时在一个体系中存在。表4-8 弹性体增韧和非弹性体增韧方法比较增韧方法弹性体增韧非弹性体增韧(刚性有机填料ROF)增韧剂性质被增韧基体性质增韧剂用量两相相容性增韧改性效果增韧机理软橡胶类材料,模量低,Tg低,流动性差。既可以是脆性高分子基体,也可以是韧性高分子基体。一般来说,改性剂用量越多,增韧效果越好。要求增韧剂与基体有良好相容性。可以

29、明显改善脆性基体的韧性,但同时使基体的强度,流动性和耐热变形性受到损失。引发基体形成“银纹”,“空穴化”,或形成“剪切带”,吸收变形能。硬聚合物材料,模量高,Tg高,流动性好。要求基体有一定程度韧性,易于发生脆韧转变。在恰当小用量下,改性效果明显;用量偏大,改性效果消失。要求增韧剂与基体有良好相容性。可以同时改善基体的韧性和强度,达到既增韧又增强的目的,同时不损坏材料的可加工流动性。要求基体的模量小于ROF粒子模量,基体泊松比大于粒子泊松比,使ROF粒子发生“冷拉变形”,吸收变形能。4、 硬聚氯乙烯的非弹性体增韧改性在国家自然科学基金会支持下,作者对硬聚氯乙烯的非弹性体增韧改性进行了系统研究。

30、发现要使刚性有机聚合物粒子(如PS、SAN、PMMA)对硬聚氯乙烯有增韧作用,必须首先调节聚氯乙烯基体的韧性,用氯化聚乙烯(CPE)、ABS、MBS等与PVC共混,配制硬聚氯乙烯韧性体。图4-45给出共混比对PVC/CPE体系力学性能的影响。按抗冲击强度图中曲线可分成三个区域:CPE用量小于8份为脆性断裂区,大于20份为高韧性区,而10-20份之间为脆-韧转变区。图4-46是在PVC/CPE体系中添加少量刚性PS粒子对体系力学性能的影响。可以看出,在脆性断裂区和高韧性区,添加PS粒子对体系力学性能几乎无影响,只有在脆-韧转变区,当PVC/CPE=100/10和100/15时,PS对基体的增韧效

31、果十分明显,同时体系的拉伸强度和断裂伸长率基本保持不变。图4-45 共混比对PVC/CPE体系力学性能的影响图4-46 PS用量对PVC/CPE体系力学性能的影响从试样冲击断面的扫描电镜照片对比中清晰看出(图4-47),PVC/CPE=100/15的冲击断面有拉丝现象,这是材料韧性断裂的特征之一;而在PVC/CPE/PS=100/15/4.5的冲击断面上,拉丝现象更加明显,丝条变密、变细、变长,说明在断裂过程中,体系吸收的能量更多。充分证明添加PS粒子对基体脆-韧转变有促进作用。(a) (b)图4-47 PVC二元和三元共混体试样冲击断面对比(a) PVC/CPE=100/15;(b) PVC/CPE/PS=100/15/4.5实验同时证实,PS、SAN等填料对PVC加工过程中的凝胶化有促进作用。与聚丙烯酸酯类加工助剂(ACR)比较,SAN不仅能缩短PVC的塑化时间,同时平衡扭矩较低,有利于PVC加工安全性。16 / 17文档可自由编辑打印

展开阅读全文
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!