Another New ( G0)expansion Method and its Applications

上传人:无*** 文档编号:44256255 上传时间:2021-12-05 格式:DOC 页数:21 大小:750KB
收藏 版权申诉 举报 下载
Another New ( G0)expansion Method and its Applications_第1页
第1页 / 共21页
Another New ( G0)expansion Method and its Applications_第2页
第2页 / 共21页
Another New ( G0)expansion Method and its Applications_第3页
第3页 / 共21页
资源描述:

《Another New ( G0)expansion Method and its Applications》由会员分享,可在线阅读,更多相关《Another New ( G0)expansion Method and its Applications(21页珍藏版)》请在装配图网上搜索。

1、精品论文GAnother New ( G0 )-expansion Method and its ApplicationsHouxia Shi, Rongfen Shi, Chao LiSchool of Mathematics and Statistics, Lan-zhou University, Lan-zhou 730000, China0GAbstract: In this paper, the ( G )-expansion method is improved not only by making extension to the expression of the soluti

2、ons of the NLEEs, but also by substituting the linear subsidiary equation in30the G -expansion method for a nonlinear one in form of F 0 2 = Pnai F i . Making use of the extendedG i=0method, we study the compound KdV-Burgers equation, the Variant Boussinesq equations and the Hirota-Satsuma coupled K

3、dV equations and obtain rich new families of exact solutions, including the solution-like solutions, period-form solutions.PACS : 02.30.Jr, 04.20.JbGKeywords : extended ( G0 )-expansion method, homogeneous balance principle, compound KdV-Burgers equation, Variant Boussinesq equations, Hirota-Satsuma

4、 coupled KdV equations.1 IntroductionAs mathematical models of the complex physics phenomena, the investigation of explicit solutions of the nonlinear evolution equations (NLEEs) will help one to understand these phenomena better. e-mail: shihouxia2008Over last years, much work has been done by math

5、ematicians and physicists to find special solutions of NLEEs, such as the inverse scattering transform 1, the Backlund/Darboux transform 2-4, the Hirotas bilinear operators 5, the truncated Painleve expansion 6, the tanh-function expansion and its various extension 7-9, the Jacobi elliptic function

6、expansion 10-11, the F-expansion 12-15, the sub-ODE method 16-19, the homogeneous balance method 20-22, the exp-function expansion method and so on.GRecently, M.L. Wang, X.Zh Li and J.L. Zhang 24 present a ( G0 )-expansion method to seek0G0Gmore travelling wave solutions of NLEEs. In this paper, we

7、develop the ( G )-expansion method by changing the linear auxiliary equation of the ( G )-expansion method into a nonlinear one in form ofF =0 2 Pni=0ai F i , and we also make an extension to the expression of the solution. Then, we apply0the extended method to the compound KdV-Burgers equation, the

8、 Variant Boussinesq equations and the Hirota-Satsuma coupled KdV equations, and derive rich new families of exact solutions, including the solution-like solutions, period-form solutions.GThe rest of the paper is organized as follows. In Section 2, we describe the extended ( G )-expansionmethod, and

9、give the main steps of the method. In the subsequent sections, from Section 3 to Section5, we illustrate the method in detail with the compound KdV-Burgers equation, Variant Boussinesq equations and Hirota-Satsuma coupled KdV equations. In Section 6, we briefly make a summary to the extended method.

10、G2 Summary of the improved ( G0 )-expansion methodGIn this section, we describe the general theory of the improved ( G0 )-expansion method. For a givenNLEE, say, in two variablesP (u, ut , ux, utt , uxx, uxt , ) = 0, (2.1) where u = u(x, t) is an unknown function, P is a polynomial in u = u(x, t) an

11、d its various partial derivatives, in which the highest order derivatives and nonlinear terms are involved. In the followingGwe give the main steps of the modified ( G0 )-expansion method.step 1. We suppose thatu(x, t) = u(), = x V t, (2.2)the travelling wave variable (2.2) permits us reducing Eq.(2

12、.1) to an ODE for u = u()GP (u, V u0, u0, V 2u00 , V u00 , u00 , ) = 0. (2.3) Step 2. We assume that the solution of Eq.(2.3) can be expressed by a polynomial in ( G0 ) asfollows:u() = 0 +NXi=NG0i ( G)i , N = 0, (2.4)where 0, i , (i = N, , N ) are constants to be determined later, and G = G() satisf

13、ies a nonlinearODE in the formG0 2 + qG2 = p, p = 0, (2.5)精品论文where q and p are constants, and N in Eq.(2.4) is a positive integer that can be determined by considering the homogeneous balance principle in Eq.(2.3).Step 3. Substituting Eq.(2.4) into Eq.(2.3) and using Eq.(2.5), the left-hand side of

14、 Eq.(2.3) isconverted into another polynomial in ( G0 ), collecting all terms with the same order of ( G0 )i together.G GGEquating each coefficient of the ( G0 )i to zero, yields a set of algebraic equations for 0 , i , (i =N, , N ) and V .Step 4. Assume that the constants 0, i , (i = N, , N ) and V

15、 can be obtained by solving the algebraic equations in Step 3. Since the solutions of the Eq.(2.5) can be obtained, we substitute 0, i , (i = N, , N ), V and the general solutions of Eq.(2.5) into (2.4), then we have travelling wave solutions of Eq.(2.1).We find that Eq.(2.5) admits many fundamental

16、 solutions which are listed as follows. Case 1. If q 0, p 0, say, the Eq.(2.5) is equivalent toG0 2 + qG2 = p, q 0, p 0, (2.6)then the Eq.(2.6) possesses three triangular type solutions18G11 () = r psin(qr p q( c), G12 () = G13 () = 1cos(qr psin(2qq( c),q( c) + 2r pcos(2q q( c),(2.7)where c is an ar

17、bitrary constant, and 1 = 1, 2 = 1.Case 2. If q 0, the Eq.(2.5) is equivalent toG0 2 qG2 = p, q 0, p 0(2.8)精品论文then the Eq.(2.8) possesses a hyperbolic type solutionG20 () = r psinh(q q( c), (2.9)where c is an arbitrary constant.Case 3. If q 0, p 0, p 0, (2.10)then the Eq.(2.10) possesses a hyperbol

18、ic type solutionG30 () = r pcosh(q q( c), (2.11)where c is an arbitrary constant.Case 4. If q = 0, p = 0, the Eq.(2.5) possesses a polynomial type solutionG40 () = p + c, (2.12)where c is an arbitrary constant.Remark : When p = 0, q = 0, the Eq(2.5) possesses the exponential type solution, however,

19、theNLEEs only has trivial solutions, so we omit this case.3 compound KdV-Burgers equationWe start with the well-known compound KdV-Burgers equation 26ut + Auux + Bu2ux + uxx suxxx = 0, (3.1)where A, B, , s are constants, which is a composition of the KdV, mKdV and Burgers equations, involving nonlin

20、ear, dispersion and dissipation effect.The travelling wave variable belowu(x, t) = u(), = x V t, (3.2)permits us converting Eq.(3.1) into an ODE0V u+ Auu0+ Bu2 u0+ u00 su000= 0, (3.3)Considering the homogeneous balance principle, we suppose the solution of Eq.(3.3) in the form:G G0u() = 1( G0 ) + 0

21、+ 1( G ), 1 = 0, (3.4)where G = G() satisfies the Eq.(2.5).0GUsing Eq.(2.5), substituting (3.4) into Eq.(3.3) and eliminating ( G )i , yields a set of simultaneous algebraic equations for 1, 0 , 1 and V . Solving the algebraic equations and yields(1)1 = 0, 0 = 3As 6B6Bs , 1 = 6sB, V1 =B2B2 24qs2B 3s

22、A212Bs ,(3.5)B(2)1 = q6sB, 0 = 3As 6B6Bs , 1 = 6sB, V2 =B2B2 96qs2B 3sA212Bs .By using (3.5), expression (3.4) can be written as:6sB G03As 6Bu1 () = B ( G )6Bs ,(3.6)q6sB G3As 6B6sB G0u2 () = ( )B G06Bs ( ), B GSubstituting the general solutions of Eq.(2.5) into (3.6), we have exact solutions of Eq.

23、(3.1).Case 1. When q 0, p 0,6sBq3As 6Bu111 () = u121 () = cot B6sBqtan B6Bs ,3As 6B6Bs ,(3.7)6sBq1 cos 2 sin 3As 6Bu131 () = (B 1sin + 2)cos 6Bs ,where = q( c), = x V1t, 1 = 1, 2 = 1, c is an arbitrary constant.u112 () = u122 () = 6sBqtan B6sBqtan B6sBqcot B6sBqcot Bq3As 6B6Bs ,3As 6B6Bs ,(3.8)6sBq1

24、 sin + 2 cos 6sBq1 cos 2 sin 3As 6Bu132 () = (B 1cos 2)sin (B 1sin + 2)cos 6Bs ,where = q( c), = x V2t, 1 = 1, 2 = 1, c is an arbitrary constant.Case 2. When q 0,6sBq3As 6Bu201 () = coth B6Bs , V = V1 ,(3.9)u202 () = 6sBqtanh B3As 6B6Bs 6sBqcoth , V = V2, Bwhere = q( c), = x V t, c is an arbitrary c

25、onstant.Case 3. When q 0, p 0, p 0,H111 () = 2q cot2 2q, u111 () = 2q cot + 0 ,H121 () = 2q tan2 2q, u121 () = 2q tan + 0 , 1 cos 2 sin 2(4.9)H131 () = 2q(1sin + 2)cos 2q,131 q( sin + cos u () =2 1 cos 2 sin 1 2) + 0 ,where 0 and c are arbitrary constants, = q( c), = x 0 t.H112 () = H122 () = 2q(cot

26、2 + tan2 ), u112 () = u122 () = 2q(cot + tan ) + 0,(4.10) 1 cos 2 sin 2 1 sin + 2 cos 2H132 () = 2q(1sin + 2)cos 2q(1cos 2) ,sin 1 cos 2 sin 1 sin + 2 cos u132 () = 2q(1 sin + 2 cos ) 2q(1 cos 2 sin ) + 0 ,where 0 and c are arbitrary constants, = q( c), = x 0 t.H113 () = 2q(cot2 + tan2 ) 4q, u113 ()

27、 = 2q(cot tan ) + 0, H123 () = 2q(tan2 + cot2 ) 4q, u123 () = 2q(cot tan ) + 0,(4.11) 1 cos 2 sin 2 1 sin + 2 cos 2H133 () = 2q(1sin + 2)cos 2q(1cos 2)sin 4q, 1 cos 2 sin 1 sin + 2 cos u133 () = 2q(1 sin + 2 cos ) 2q(1 cos 2 sin ) + 0 ,where 0 and c are arbitrary constants, = q( c), = x 0 t.Case 2.

28、When q 0,H201 () = 2q coth2 2q, u201 () = 2q coth + 0,H202 () = 2q coth2 2q tanh2 ,u202 () = 2q coth 2q tanh + 0, H203 () = 2q coth2 2q tanh2 4q, u203 () = 2q coth 2q tanh + 0,where 0 and c are arbitrary constants, = q( c), = x 0 t.Case 3. Whenq 0, p 0, p 0,u111 () =1q tan +16q2 + 0 2 + 40282+ 4q co

29、t2 ,v () = 4 q111 2cot2 + 0,(5.8)w111 () = 21q tan + 0 + q2 cot ,216q2 30 2 120where 1, 0, 1 , 0, 2 are arbitrary constants, = q( c), = x 82 t.u112 () = 4q(cot2 + tan2 ) +1 tan +q16q2 + 02 + 40,282v112 () = q2(cot2 + tan2 ) + 0,(5.9)4q w112 () =2(tan2 + cot2) + 1 tan + ,q0216q2 30 2 120where 1, 0, 2

30、 , 1, 0 are arbitrary constants, = q( c), = x 82 t.121 qu () = 1 cot +16q2 + 0 2 + 40282+ 4q tan2 ,v () = 4 q121 2tan21 + 0,2(5.10)w121 () = q cot + 0 + q2 tan ,216q2 30 2 1202where 1, 0, 1 , 0, 2 are arbitrary constants, = q( c), = x 82 t.u122 () = 4q(cot2 + tan2 ) 1 cot +q16q2 + 02 + 40,82v122 ()

31、= q2(cot2 + tan2 ) + 0,(5.11)4q w122 () =2(tan2q0 + cot2) 1 cot + ,216q2 30 2 120where 1, 0, 2 , 1, 0 are arbitrary constants, = q( c), = x 82 t.1 1 cos 2 sin 216q2 + 02 + 40 1 sin + 2 cos 2u131 () =q ( sin + 2) +cos 282+ 4q(1cos 2) ,sin 14q 1 cos 2 sin 2(5.12)v131 () = (2 1sin + 2)cos + 0,11 cos 2 sin 2 1 sin + 2 cos 2w131 () =q ( 1sin + 2)cos + 0 + q2(1cos 2) ,sin 216q2 30 2 120where 1, 0, 1 , 0, 2 are arbitrary constants, = q( c), = x 1 = 1, 2 = 1.82 t, 1 cos 2 sin 2 1 sin + 2 cos 211 sin + 2 cos u132 () = 4q(1sin + 2)cos + 4q(

展开阅读全文
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!