毕业设计(论文)模拟D类功率放大器论文

上传人:沈*** 文档编号:41863461 上传时间:2021-11-23 格式:DOC 页数:29 大小:389.50KB
收藏 版权申诉 举报 下载
毕业设计(论文)模拟D类功率放大器论文_第1页
第1页 / 共29页
毕业设计(论文)模拟D类功率放大器论文_第2页
第2页 / 共29页
毕业设计(论文)模拟D类功率放大器论文_第3页
第3页 / 共29页
资源描述:

《毕业设计(论文)模拟D类功率放大器论文》由会员分享,可在线阅读,更多相关《毕业设计(论文)模拟D类功率放大器论文(29页珍藏版)》请在装配图网上搜索。

1、大庆石油学院应用技术学院毕业论文摘要全球音视频领域数字化的浪潮以及人们对音视频节能环保的要求,迫使人们尽快研究开发高效,节能,数字化的音频功率放大器。传统的音频功率放大器工作时,直接对模拟信号进行放大,工作期间必须工作于线性放大区,功率耗散较大,虽然采用推挽输出,减小了功率器件的承受功率,但在较大功率情况下,仍然对功率器件构成极大威胁,功率输出受到限制。此外,模拟功率放大器还存在以下的缺点:电路复杂,成本高。常常需要设计复杂的补偿电路和过流,过压,过热等保护电路,体积较大,电路复杂。效率低,输出功率不可能做的很大。D类开关音频功率放大器的工作基于PWM模式:将音频信号与采样频率比较,经过自然采

2、样,得到脉冲宽度与音频信号幅度成正比例变化的PWM波,然后经过驱动电路,加到功率MOS的栅极,控制功率器件的开关,实现放大,将放大的PWM信号送入滤波器,则还原为音频信号。D类功率放大器工作于开关状态,理论效率可达100%,实际的运用也可达80%以上。对于高电感的扬声设备,在设计电路的时候,是可以省去低通滤波器(LPF),这样可以大大的节省体积和花费。而且有更高的保真度,这一点,在国外的5V D类音频功率放大器中已经得到了运用,如:TEXAS公司的TPA2002D2。近几年,国际上加紧了对D类音频功率放大器的研究与开发,并取得了一定的进展,几家著名的研究机构及公司已经试验性地向市场提供了D类音

3、频功率放大器评估模块及技术。这一技术一经问世立即显示出其高效,节能,数字化的显著特点,引起了科研,教学,电子工业,商业界的特别关注。不久的将来,D类音频功率放大器必然取代传统的模拟音频功率放大器。全球音视频领域数字化的浪潮以及人们对音视频节能环保的要求,迫使人们尽快研究开发高效,节能,数字化的音频功率放大器。它应该具有工作效率高,便于与其他数字设备相连接的特点。关键字: 功率放大器;晶体管;D类放大器;音频放大器;LM4651/LM4652目录摘要I1.1 ABI Research全球射频功率放大器市场前景11.1.1 展望市场11.1.2 中国市场11.2功放的发展11.2.1 早期的晶体管

4、功放11.2.2 晶体管功放的发展和互调失真21.2.3 功放输入级差动与共射-共基31.2.4放大器的电源与甲类放大器4第2章 音频放大器52.1 音频放大器52.1.1 音频放大器的历史52.1.2 D类放大器的基本结构52.3 脉宽调制(PWM)6第3章 D类音频功率放大器的研究与实现83.1 D类放大器的电路设计83.2 改进型D类功率放大器电路设计93.2.1 脉宽调制电路(PWM)设计93.2.2 改进全桥PWM方案的模拟实现方法93.2.3 改进全桥PWM方案的数字实现方法103.3 D类音频功率放大器设计需知103.4 D类音频功率放大器的热耗散分析14第4章 高效D类超低音功

5、率放大器LM4651/ LM4652174.1 引脚功能174.2 主要参数及特点194.2.1 主要参数194.2.2 主要特点204.2.3 原理和应用电路214.3 系统功能简述214.4 待机(Standby)功能214.5 启动程序和定时2146 电流限制和短路保护22电流限制最小设备在10A,但调节RSCKT数值可以适当使电流增大,在输出端短路或场声器失效(出现短路)的情况下,IC将执行安全保护功能。224.7 死区时间设定224.8 过调制保护224.9 反馈放大器和滤波器224.10 误差放大器234.11 外部元件功能说明234.12 结 语24参考文献25致谢2626第1章

6、 功率放大器市场前景1.1 ABI Research全球射频功率放大器市场前景1.1.1 展望市场ABIResearch日前发布报告展望全球射频功率放大器市场,报告显示虽然手机基站设备市场收缩,但市场衰落并没有想像中严峻。研究报告也指出,最近15个月射频功放市场上出现两个明显变化:中国供应商开始杀入市场,使用高效率放大器的设计增长。ABIResearch研究主管LanceWilson表示,“虽然射频功率放大器市场依然为下滑趋势,但好消息是下降速度没有原先预料那么快。尽管GSM市场缓慢下滑,但用户对EDGE的数据传送率感到满意。同时,许多运营商在3G相关的开支方面更加谨慎,导致GSM系统的生存周

7、期加长,这也反过来减缓了3G的增长步伐。这对功率放大器和器件市场带来直接影响。” 1.1.2 中国市场以华为(Huawei)和中兴通信(ZTE)为代表的中国厂商积极进入射频功率放大器市场,现在已经开始瞄准器件市场。“这对市场来说既是机会又是挑战,现在中国厂商在射频功率放大器市场中规模还不大。”许多中国厂商专门针对国内市场,这有助于在初期解决设备需求问题。中国开始部署TD-SCDMA也将促进整体市场增长。 用于无线网络设备的高效率射频放大器正在开始进入主流市场,未来5年数量将进一步增加。放大器效率高意味着基站成本更低,包括最初采购成本低,以及更低的功率消耗和操作成本。 1.2功放的发展音频功率放

8、大器是一个技术已经相当成熟的领域,几十年来,人们为之付出了不懈的努力,无论从线路技术还是元器件方面,乃至于思想认识上都取得了长足的进步。回顾一下功率放大器的发展历程,对我们广大音响爱好者来说也许是一件饶有趣味的事情。1.2.1 早期的晶体管功放 半导体技术的进步使晶体管放大器向前迈进了一大步。自从有了晶体管,人们就开始用它制造功率放大器。 早期的放大器几乎全用锗管来制作,但由于锗管工艺上的一些原因,使得放大器中所用的晶体管,尤其是功放管性能指标不易做得很高,例如,共发射极截止频率fh的典型值为4kHz,大电流管的耐压值一般在30V一40V左右。这样,放大器的频率响应也就很狭窄,其3dB截止频率

9、通常在10kHz左右,大大影响了音乐中高频信号的重现。再加上功放管的耐压、电流和功耗三个指标相互制约,制作较大功率的OTL或OCL放大器不易寻到三个指标都满足要求的管于,所以不得不采用变压器耦合输出。变压器的相移又使电路中加深度负反馈变得很困难,谐波失真得不到充分的抑制,因此这一时期的晶体管放大器音质是很差的。“还是胆机规声”,这种看法的确事出有因。 1.2.2 晶体管功放的发展和互调失真 随着半导体工艺的逐渐成熟,大电流、高耐压的晶体管品种日益增加,越来越多的功率放大器采用了无输出变压器的OCL电路或OTL电路。最初的大功率PNP管是锗管,而NPN管是硅管,两者的特性差别非常显著,电路的对称

10、性很差,人们更多采用的是图二所示的准互补电路,通过小功率硅管Q1与一只大功率的NPN硅管Q2复合,得到一只极性与PNP管类似的大功率管,降低了电路因对称性差而招至的失真。到了六十年代末,大功率的PNP硅管商品化的时候,互补对称电路才得到广泛的应用。元器件的进步使晶体管功率放大器的技术指标产生了质的飞跃,在主观音质评价方面,也改变了过去人们对晶体管功放的看法,无论是在厅堂扩音、电台节目制作还是家庭重放,晶体管功放都被大量地采用,首次在数量上以压倒性的优势超过了电子管功放。在商品化的晶体管扩音机中,相继出现了一些摧琛夺目的名机,如JBL的SA600,Marantz互补对称电路MOdel15等等。

11、尽管电子管的拥护者仍大量存在,人们毕竟能够比较公正地看待晶体管放大器了,认为晶体管机频响宽阔,层次细腻,与电子管机比较起来有一种独特的舱力,而不是简单的谁取代谁的问题。 瞬态互调失真的提出是认识上的一次飞跃七十年代,功率放大器的发展史中出现了一件最引人注目的事情,这就是瞬态互调失真(Transientlntermodulation)及其测量方法的提出。1963年,芬兰Helvar工厂的一名工程师在制作一台晶体管扩音机时,由于接线失误,使电路的负反馈量减少了,后来却意外地发现负反馈量减少后的音质非常好,客观技术指标较差,而更正错误以后的线路尽管技术指标提高了,音质反而比误接时明显下降。这一现象引

12、起了当时同一工厂的Mr.Otala的重视,之后,他对此进行了悉心研究,于1970年首先发表丁关于晶体管功率放大器瞬态互调失真(TIM)的论文。至1971年,Otala博士及其研究小组就TIM失真理论发表的论文已经超过20篇,引起了电声界准互补电路人士的广泛反响。 瞬态互调失真的大意是这样的: 在直接耦合的晶体管放大电路中,为了得到很小的谐波失真度和宽阔平坦的频率响应,通常对整体电路施加深达40dB一60dB的负反馈,倘若在加负反馈前放大器的开环失真为10,那么加上40dB的负反馈后,失真即可降低至01,这是电子管功效难以做到的。晶体管功放由于要施加40dB。60dB的负反馈,所以对一台增益要求

13、为26dB的放大器,它的开环增益就要达到66、86dB。 如此高的增益之下引入深度负反馈,电路势必会产生自激振荡,因而需要进行相位补偿,一般是在推动级晶体管的集电极基极之间接接一个小电容C,破坏自激振荡的相位条件,形成所谓“滞后补偿”, 当放大器输入端输入持续时间非常短的过渡性脉冲时,由于电容C需要充电时间,所以推动管集电极电压要经过一段时间延迟方能达到最大值,。显然,在电容C充、放电期间,输出电压V。将达不到应有的电压值,输入级也不可能得到应有的反馈电压Vf,因而,在过渡脉冲通过输入级的瞬间,输入级将处于负反馈失控状态,致使输入级严重过载,输出将严重削波引起过渡脉冲瞬时失真。如果过渡脉冲波形

14、上还叠加有正弦信号,输出端还会得到很多输入信号频谱不存在的互调频率成份,这就是TIM失真。 TIM失真和音乐信号也有密切关系,音量大、频率高的节目信号容易诱发TIM失真。严重的TIM失真反映在听感上类似高频交选失真,而较弱的TIM失真给人以“金属声”的不快感觉,导致音质劣化。至今,音响界对于TIM失真都还有争议,但这毕竟是人们认识的深化,它使后来放大器的设计思想发生了根本性的变化,即更加注重放大器的动态性能而不是仅仅满足于静态技术指标的提高。 1.2.3 功放输入级差动与共射-共基 对称和平衡是电路发展的方向对称和平衡也许是世上事物完美的标志之一。 音乐讲究各声部之间的乎衡与统一,美术以色彩搭

15、配均衡、和谐为美,在服装设计中,常常采取看似不对称的设计,其实质也是为了取得视觉上的均衡。上面所说的都是艺术,对称和平衡给人一种安定、完美的感觉。有意思的是,在功率放大器中,对称和平衡也有类似的效果。最初采用对称设计的例子要算互补对称电路了,一上一下的两只异极性晶体管作推挽输出,不仅可以免除笨重的输出变压器,而且电路的偶次谐波失真在推挽的过程中被抵消了,保真度有了很大提高。稍后,人们从运算放大器的设计中得到启迪,将左右对称的差动式电路用于功率放木器的输入级,电路的稳定性和线性都得到改善,这一结构直至今天都还有人采用。如果以现代的眼光来审评,这一电路是显得过时了一点。电路的主要缺陷在于电压推动级

16、,因为Q1承担了提供电压增益的主要任务,必然是开环失真很大,频带狭窄。典型的OCL放大器外,单管放大的过载能力也很差,这一系列的缺点是不利于电路的动态性能的。围绕着改进电压推动级的性能,人们相继提出了多种结构,共射共基电路就是一个典型的例子。共射共基电路又叫“猩尔曼”电路,它原先是高频电路中广为采用的结构,但用于音频电路中同样可以发挥出色的性能。首先是它的宽频响,由于共基放大管Qs非常低的输入阻抗,使Q,丧失了电压增益,弥勒效应的影响就非常微弱。宽频响的推动级拉开了与输入级极点的距离,相位补偿变得很容易,而且电容C的容量可以大大减小,这对于改善TIM失真是很有利的。第二个优点是电路的高度线性:

17、共基极电路的输出特性也可以清楚地显示出这一点,有人作过测试,共射一共基电路的失真度比单管共射电路要低一个数量级。 依然是一种不平衡的设计,这一限制来源于输入级。如果把输入级变动一下,从互补推挽的Q:和Qg的集电极输出信号,那么电压推动级就可以在图七的基础上再增加一组NPN管构成的共射一共基电路,做到推挽输出,这时电路也就非常对称平衡了,几乎达到了完美的程度。 当今许多最先进的功率放大器采用的也是这种电路结构。另一种电压推动级的形式,其输入信号来自图六中的Ql和Qs,当然此时Qz必须加上集电极负载电阻。电压推动级也采用对称的差动放大,这不仅可以改善输入级的平衡性,提高放大能力和共模抑制比,而且同

18、样可以降低推动级的失真,因为差动式放大电路当输入在一定的范围内时具有线性的传输特性,有的电路还在Qn、Qz的发射极串人负反馈反阻,更加扩大了线性范围。Q2和Qd构成镜像电流源,把Q,的集电极电流转移到Qz上,所以尽管是单端输出,电流推动能力却比原来增大了一倍。PIONEER的M22K功率放大器就是采用的这种电路结构,取得了非常好的效果。对称和平衡不仅体现在电路的结构上,还表现于元器件的参数上。差动电路是集成运放中广泛采用的结构,其性能是建立在两只差分管Hrs和Vss精确匹配的基础之上。同样,推挽电路中,如果两只异极性的晶体管特性不一致时,对波形的两个半周就不能做到一视同仁地放大,这将增力D电路

19、的失真度。 随着节目源的变化,音乐中包含大量瞬变、高能量的成份,要完美地重现这些细节,就要求放大器具有良好的动态响应,对晶体管配对的要求就不仅是静态的HrR和VBE匹配,而且在动态时也要高度匹配,这无疑对元器件参数的平衡提出了更苛刻的要求。幸运的是,半导体技术的进步为我们提供了这种可能,各种各样的差分对管、晶体管阵列陈出不穷,单个的晶体管一致性也得到较大提高。正是这些优质的元器件,让对称电路设计的优点得以充分体现,今天看到一台全无负反馈的电路也不会觉得惊讶,因为已经有足够好的开环性能了,又何必为了几个仪器上的数据去牺牲放大电路的动态响应呢?1.2.4放大器的电源与甲类放大器 极端重视电源的现代

20、放大器“放大器不过是电源的调制器”,这句话道出了放大的实质。 既然如此,又有什么理由不引起对电源的高度重视呢。电源部份作为推动扬声器发声的源泉,再也不应象过去那样随便找个整流电源接上了事。对电源的要求有两个方面,即纹波噪声小,输出能力强。噪声小比较容易办到,只要加大滤波电容器的容量就可以,但是要做到输出能力强却不简单。 首先要加大电源变压器的容量,这是过去一些放大器生产厂所不乐意的,因为加大电源变压器容量会使成本大量增加,整机的重量和体积也会加大;但现在听小喇叭的人越来越多,这些小喇叭大多效率很低,有些名牌音箱如CelestionSI一6O0或Ro3ersLS35a,十分大食难推,再加上现代节

21、目信号中常常出现一些炮弹爆炸,锣鼓敲击的声音,对放大器是一个极为严峻的考验,同样两台100W的放大器,一台可能让你感觉到大炮地动山摇的震撼力,而另一台可能象是破鼓在“咐咐”作响。第2章 音频放大器2.1 音频放大器2.1.1 音频放大器的历史音频放大器已经快有一个世纪的历史了,最近几年,电子产品正在向薄型化、便携式迅速发展。音质好、电源效率高、发热少的D类放大器成为市场的需求。并且由于D类放大器的耗电低、发热少等诸多特点,越来越得到日益强调环保的市场的认同。同时,便携电子设备的工作时间一直是厂商全力追求的最重要的性能指标,新的无滤波器D类放大器在几瓦特的功率级别上正在取代原先固定的AB类器件。

22、与体积庞大的传统线性放大器相比,使用D类放大器并不影响音频信号的音质却能够实现便携产品的小型化,因此市场对电子产品薄型化、便携式的需求趋势造就了传统放大器向数字放大器的转化。 简单地说,历史上出现过三代D类放大器设计:第一代的范例是由托卡塔设计的TacTMillennium,证实了D类放大器的概念,但是该技术还不能提供足够的性能,这使第一代D类放大器向着实用性的方向发展。第二代D类放大器把一个用于模拟源信号的PWM信号和一个集成的输出级以及片外滤波器组合在一起。这些放大器需要源选择,音量,平衡和音调控制等复杂的前端功能,而这些附加的功能增加了额外的复杂性。但是首先这代放大器变得价格可以承受,其

23、次在低功耗性能上接近甚至超过了AB类放大器,从而获得了一定的应用。第三代是最近一段时间,现有的D类数字放大器较以前的技术已有所改善,他们在音质、封装、性能、价格和核心技术方面都已取得重大改进。为了生成精确的音频,输入晶体管需要在动态范围的两端都能同样出色地工作,以帮助精确地实现准确的功率分配。通过采用一个简单但功能强大的内部控制逻辑系统改善音频输出,并额外增加一套输入晶体管,这些晶体管可以实现对音频信号输入的更精细的控制。最后还不能忽视新的架构技术。2.1.2 D类放大器的基本结构D类放大器的电路共分为三级:输入开关级、功率放大级及输出滤波级。D类放大器工作在开关状态下可以采用脉宽调制(PWM

24、)模式。利用PWM能将音频输入信号转换为高频开关信号。通过一个比较器将音频信号与高频三角波进行比较,当反相端电压高于同相端电压时,输出为低电平;当反相端电压低于同相端电压时,输出为高电平。在D类放大器中,比较器的输出与功率放大电路相连,功放电路采用金属氧化物场效应管(MOSFET)替代双极型晶体管(BJT),这是因为:(1)功率MOSFET是一种高输入阻抗、电压控制型器件,BJT则是一种低阻抗、电流控制型器件。(2)从二者的驱动电路来看,功率MOSFET的驱动电路相对简单,BJT可能需要多达20的额定集电极电流以保证饱和度,而MOSFET需要的驱动电流则小得多,而且通常可以直接由CMOS或者集

25、电极开路TTL驱动电路驱动。(3)MOSFET的开关速度比较迅速,他是一种多数载流子器件,没有电荷存储效应,能够以较高速度工作。(4)MOSFET没有二次击穿失效机理,他在温度越高时往往耐力越强,发生热击穿的可能性越低。他还可以在较宽的温度范围内提供较好的性能。(5)MOSFET具有并行工作能力,具有正的电阻温度系数。温度较高的器件往往把电流导向其他MOSFET,允许并行电路配置。而且,MOSFET的漏极和源极之间形成的寄生二极管可以充当箝位二极管,在电感性负载开关中特别有用。2.2 场效应管的工作模式场效应管有两种工作模式,即开关模式或线性模式。所谓开关模式,就是器件充当一个简单的开关,在开

26、与关两个状态之间切换。线性工作模式是指器件工作在某个特性曲线中的线性部分,但也未必如此。此处的线性是指MOSFET保持连续性的工作状态,此时漏电流是所施加在栅极和源极之间电压的函数。他的线性工作模式与开关工作模式之间的区别是,在开关电路中,MOSFET的漏电流是由外部元件确定的,而在线性电路设计中却并非如此。D类放大器需要两只MOSFET,他们在非常短的时间内可完全工作在导通或截止状态下。当一只MOSFET完全导通时,其管压降很低;而当MOSFET完全截止时,通过管子的电流为零。两只MOSFET交替工作在导通和截止状态的开关速度非常快,因而效率极高,产生的热量很低,所以D类放大器不需要散热器。

27、2.3 脉宽调制(PWM)采样控制理论中有一个重要结论:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。PWM控制技术就是以该结论为理论基础,对半导体开关器件的导通和关断进行控制,使输出端得到一系列幅值相等而宽度不相等的脉冲,用这些脉冲来代替正弦波或其他所需要的波形。按一定的规则对各脉冲的宽度进行调制,既可改变逆变电路输出电压的大小,也可改变输出频率。 D类数字音频功率放大器与上述各类模拟功放的最大区别是不以线性放大音频信号为基础,而是以放大数字信号为原理的一种数字信号放大技术。D类数字功放首先把模拟音频信号变换为脉冲宽度调制(PWM)信号,如图2-1所示。在PWM转换中,以

28、44.1 kHz或48 kHz的取样频率和8 b或16 b的量化率(即模拟信号振幅值的读出刻度)进行AD(模拟数字)变换,然后再把PWM数字信号进行高效率放大(D类放大)由于音频信号的信息全部包含在脉冲的宽度变化中,与脉冲的幅度变化无关,因此,只要采用截止频率为3040 kHz的低通虑波器就可把模拟音频信号解调出来。图2-1脉冲宽度调制信号波形图2是D类数字功放的原理图,为每个数字声源直接输出的PCM信号输入,机内还设置有一个PCMPWM两种脉冲编码的转换装置。图2-2 D型数字功耗的原理图第3章 D类音频功率放大器的研究与实现为适应CD光碟等数字声源直接输出的脉冲编码调制(PCM)数字信号输

29、入,数字功放内设有一个PCM转换为PWM的调制转换装置。D类数字功放的电源利用率可达80以上,他的延时(相移)约为模拟功放的16,但是解调出来的音频信号交越失真较大。3.1 D类放大器的电路设计D类放大器的组成D类放大器的架构有对称与非对称两大类,在此讨论的D类功放针对的是对功率、体积都非常敏感的便携式应用,因此采用全电桥的对称型放大器,以充分利用其单一电源、系统小型化的特点。D类放大器一般由积分器、PWM电路、开关功放电路及输出滤波器组成,原理框图如图3-1所示。 图3-1全桥D型放大器原理他采用了由比较器和三角波发生器组成的固定频率的PWM电路,用输入的音频信号幅度对三角波进行调制,得到占

30、空比随音频输入信号幅度变化的方波,并以相反的相位驱动上下桥臂的功率管,使功率管一个导通时另一个截止,再经输出滤波器将方波转变为音频信号,推动扬声器发声。采用全桥的D类放大器可以实现平衡输出,易于改善放大器的输出滤波特性,并可减少干扰。全桥电路负载上的电压峰峰值接近电源电压的2倍,可采用单电源供电。实现时,通常采取2路输出脉冲相位相反的方法。其输出电压是叠加变大的,经过低通滤波器后,仍存在较大的负载电流,特别当滤波器设计不好时,流过负载的电流就会更大,从而导致负载损耗大,降低放大器效率。3.2 改进型D类功率放大器电路设计3.2.1 脉宽调制电路(PWM)设计H全桥电路如图3-2所示。图3-2

31、H全桥电路采取改进的PWM调制方案:零信号输入时2路输出的PWM同相,负载上的电压为0,当输入信号为正时,第一路输出脉冲的占空比大于50,另一路输出脉冲的占空比小于50,当输入信号为负时,第一路输出脉冲的占空比小于50,另一路输出脉冲的占空比大于50。当一路信号确定时,改进PWM方案的第二路输出与传统PWM方案的第二路输出相差了半个周期。采用这种PWM方法能够抑制零信号输入时的静态损耗,从而有利于放大器效率的提高。3.2.2 改进全桥PWM方案的模拟实现方法采用改进PWM方案的全桥D类功率放大器结构中,PWM控制器是以音频信号为基准信号,对高频(300 kHz)的三角波进行调制,得到脉冲宽度随

32、音频幅度变化的脉冲信号。比较器可采用高速比较器实现,其反相输入端接高频三角波,同相输入端则分别接输入电压放大器输出的相位相反的音频信号。当输入音频信号电压为0时,输出两路占空比为50的脉冲波;输入信号电压为正时,一路输出为占空比大于50的脉冲波,另一路输出为占空比小于50的脉冲波;输入信号电压为负时,情况则相反。该方案在全国大学生电子设计竞赛高效率音频功率放大器的设计中得到了很好的应用。实践表明,该系统性能优良,并降低了对滤波器性能的要求3.2.3 改进全桥PWM方案的数字实现方法采用基于CPLD的数字方法来实现改进的全桥PWM方案,其PWM变换器结构框图如图3-3所示。图3-3 CPLD实现

33、PWM变换器原理图当输入不同的脉宽数据D8D0时,变换器输出不同脉宽的PWM1和PWM2信号。时钟信号经512进制计数器得到进位脉冲C0和Cy2(延时C0半个周期),用以决定PWM信号的频率,其上升沿将D触发器Q端置1;512进制计数器的数值从0开始不断递加,当计数值与输入脉宽寄数值相等时,比较器输出一个负脉冲,将触发器C清0。这样实现了与输入脉宽数据相对应的PWM信号的输出。在电路的实现中,可利用2路PWM输出存在的规律性,以减少所需的电路资源。将9 b数值比较器拆分成8 b比较器和1 b比较器,这样2路PWM输出可共用8 b比较器,只是高位比较器的比较量不同,因为PWM2的清0时刻比PWM

34、1的清0滞后了半个周期。3.3 D类音频功率放大器设计需知本文从构成、拓扑结构对比、MOSFET的选择与功率损耗、失真和噪音产生、音频性能等D类音频功率放大器设计有关的基础问题作分析,并例举D类功率放大器参考设计。D功放是基于脉冲宽度调制技术的开关放大器,包括脉冲宽度调制器(几百千赫兹开关频率),功率桥电路,低通滤波器。这种类型的功放已经展示出很好的性能,要想设计出并实现电源效率高于90%,THD低于0.01%,低电磁噪音的D类功率放大器,或者甚至包括能将高保真音质技术引入的D类的放大器,其首要的问题是掌握与D类音频功放设计有关的基础技术与原理,为此本文将作其概述。1、 D类功放基本构成 目前

35、有很多种不同种类的功放,如:A类、B类、AB类等。但D类功放与其不同的是基本是一个开关功放或者是脉宽调制功放。为此,主要将对说明这类D类功放作以说明。 在这种D类功放中,器件要么完全导通,要么完全关闭,大幅度减少了输出器件的功耗,效率达90-95%都是可能的。音频信号是用来调制PWM载波信号,其载波信号可以驱动输出器件,用最后的低通滤波器去除高频PWM载波频率。 众所周知, A类、B类和AB类功放均是线形功放,那么D类功放与它们究竟有什么不同?我们首先应作讨论。D功放原理框图,在一个线性功放中信号总是停留在模拟区,输出晶体管(器件)担当线性调整器来调整输出电压。这样在输出器件上存在着电压降,其

36、结果降低了效率。 而D类功放采用了很多种不同的形式,一些是数字输入,还有一些是模拟输入,在这里我们将集中讨论一下模拟输入。 上面图1显示的是半桥D类功放的基本功能图,其中给出了每级的波形。电路运用从半桥输出的反馈来补偿母线电压的变化。那末D类功放是如何工作的呢?D类功放的工作原理和PWM的电源是相同的,我们假设输入信号是一个标准的音频信号,而这个音频信号是正弦波,典型频率从20Hz到20kHz范围。这个信号和高频三角或锯齿波形相比可以产生PWM信号。这个PWM信号被用来驱动功率级,产生放大的数字信号,最后一个低通过滤波器被用在这个信号上来滤掉PWM载波频率,重新得到正弦波音频信号。2、 从拓扑

37、结构对比-看线性和D类不同 值此将讨论线性功放(A类和AB类)和D类数字功放的不同之处。这两者之间主要的不同是效率,这也是为什么要发明D类功放的原因。线性功放就其性能而言具有固有的线性,但是即使是AB功放其效率也只有50%,而D类功放的效率很高,在实际的设计中达90%。 增益-线性功放增益不受母线电压影响而变化,然而D类功放的增益是和母线电压成比例的。这就意味着D类功放的电源抗扰比率是0dB,而线性的PSRR(电源供应抑制比率)就很好。在D类功放中普遍用反馈来补偿母线电压变化。 能量流向-在线性功放中,能量是从电源到负载,虽然在全桥D类功放中也是这样,但半桥D类功放还是不同的,因为能量可以双向

38、流动而导致“母线电压提升”现象产生,这样会造成母线电容被从加载来的能量充电。这个主要发生在低频上,如低于100Hz是这样。3、 D类功放与Buck降压转换器类拓扑差异 在D类功放和同步降压转换器拓扑原理作如图3所示。这两个电路之间的主要不同有三:其一、对于同步降压转换器,其基准电压来自反馈电路的慢慢变化的稳定电压;而D类功放的参考信号是一个不断变化的音频信号。也就是说,同步降压转换器的占空比是相对稳定的,而D类以围绕50%占空比不断地改变。其二、在同步降压转换器中负载电流的方向总是朝着负载,即电感电流为单向。但是在D类功放中电流是朝着两个方向的,即电感电流为双向。最后的不同是MOSFET的优化

39、方式。同步降压转换器对于高低端的晶体管有着不同的优化,较长的周期需要较低的Rds(on),而较短的周期需要低的Qg(栅极电荷),即两个开关作用不同。但D类功放对两个MOSFET有着相同的优化方式。高低端器件有相同的Ras(on),即两个开关作用相同。4、 D类功放中MOSFET的选择 在功放中要达到高性能的关键因素是功率桥电路中的开关。在开关过程中产生的功率损耗、死区时间和电压、电流瞬时毛刺等都应该尽可能的最小化来改善功放的性能。因此,在这种功放中开关要做到低的电压降,快速的开关时间和低杂散电感。 由于MOSFET开关速度很快,对于这种功放它是你最好的选择。它是一个多数载流子器件,相对于IGB

40、T和BJT它的开关时间比较快,因而在功放中有比较好的效率和线性度。而MOSFET的选择是基于功放规格而定。因而在选择器件以前要知道输出功率和负载阻抗(如100W 8),功率电路拓扑(如半桥梁或全桥),调制度(如89%90%)。5、 MOSFET中的功率损耗 功率开关中的损失在AB线性功放和D类功放之间是截然不同的。首先看一下在线性AB功放中的损耗,其损耗可以定义如下:K是母线电压与输出电压的比率。对于线性功放功率器件损耗,可以简化成下面的公式:需要说明的是AB功放功率损耗与输出器件参数无关。现在一起看一下D类功放的损失,在输出器件中的全部损耗如下:Ptotal=Psw+Pcond+PgdPsw

41、是开关损耗 Pcond是导通损耗, Pgd是栅极驱动损耗 从上式可看于D类功放的输出损耗是根据器件的参数来定的,即基于Qg(栅极电荷)、Rds(on)(静态漏源通态电阻)、Coss(MOSFET的输出电容)和tf(MOSFET下降时间),所以减少D类功放损耗应有效选择器件, D类功放的功率损耗和K的函数关系。6、 半桥和全桥结构拓扑的对比 和普通的AB类功放相似,D类功放可以归类成两种拓扑,分别是半桥和全桥结构。每种拓扑都各有利弊。简而言之,半桥简单,而全桥在音频性能上更好一些,全桥拓扑需要两个半桥功放,这样就需要更多的元器件。尽管如此,桥拓扑的固有差分输出结构可以消除谐波失真和直流偏置,就像

42、在AB功放中一样。一个全桥拓扑允许用更好的PWM调制方案,比如量化几乎没有错误的三水平PWM方案。 在半桥拓扑中,电源面临从功放返回来的能量而导致严重的母线电压波动,特别是当功放输出低频信号到负载时。能量回流到电源是D类功放的一个基本特性。在全桥中的一个臂倾向于消耗另一个臂的能量。所以就没有可以回流的能量。7、 不完美失真和噪音产生 一个理想的D类功放没有失真,在可听波段没有噪音且效率足100%。然而,实际的D类功放并不完美并且会有失真和噪音。其不完美是由于D类功放产生的失真开关波形造成的。原因是:从调制器到开关级由于分辨率限制和时间抖动而导致的PWM信号中的非线性。加在栅极驱动上的时间误差,

43、如死区时间,开通关断时间,上升下降时间。开关器件上的不必要特征,比如限定电阻,限定开关速度或体二极管特征。杂散参数导致过度边缘的震荡。由于限定的输出电阻和通过直流母线的能量的反作用而引起得电源电压波动*输出LPF中的非线性。 一般来讲,在栅极信号中的开关时间误差是导致非线性的主要原因。特别是死区时间严重影响了D类功放的线性。几十纳秒少量的死区时间很容易就产生1%以上的THD(总谐波失真)。8、 死区时间为死区时间(或称延时时间)对失真的影响示意图。D类输出级中的工作模式可以根据输出波形如何跟随输入时间可归类成三个不同的区域。在这三个不同的工作区,输出波形跟随高低端输入信号的不同边缘而变化的。

44、让我们检查一下第一个操作区,在这里电流比电感器波纹电流还大时,输出电流就从D类功放流向负载。高端器件在低端器件开通之前关断,输出节点就会被转到负母线。这个过程与低端器件开通时间无关,它是通过从解调电感的换向电流自动造成的。因此输出波形与嵌入到低端器件开通前的死区时间无关。因此PWM波形只被嵌入到高端栅极信号的死区短路了,而造成所希望的输入占空比的轻微电压增益降低。 有个相似的情况发生在负工作区,输出电流从加载流向D类功放。电流高于电感波纹电流。在这种情况下,输出波形的时间并没有受嵌入高端开通沿的死区时间的影响,而总是允许低端输入时间。因此,PWM波形只被嵌入到低端器件栅极信号的死区时间短路。

45、在以前描述的两个操作模式中存在一个区域,在这个区域中输出时间与死区时间是独立的。当输出电流小于电感波纹电流时,输出时间跟随每个输入的关断沿。因为在这个区域,是ZVS(零电压开关)操作状态,因此在中间区域就不会有失真。 当输出电流随着音频输入信号的不同而变化时,D类功放将改变它的操作区,这样每个都会有细小的不同增益。在音频信号的周期中的这三个不同区域增议会歪曲输出波形。死区时间如何影响THD性能的,一个40nS死区时间可以产生2%的THD。这个可以通过减小死区时间到15nS提高到0.2%。这个标志着更好线性与高低端开关器件转换过程的重要性。9、 音频性能测量 有着AESl7网络过滤器的音频测量仪

46、器是很必需的。当然,像传统音频分析器HP8903B,加上合适的前级低通滤波器也可以使用。在这里需要重要考虑的是D类功放的输出信号在其波形上仍然含有大量的开关载波频率,这样就造成错误的读取。这些分析器也许很难防止D类功放的载波泄露。10、防止直通 尽管如此,一个狭窄的死区时间在大量生产中是很危险的。因为一旦高低端晶体管被同时打开,那么直流母线的电压就会被晶体管短路,大量的直通电流将开始流动,这便会导致器件损坏。我们应该注意到有效的死区时间对每个功放是不同的,与元件参数和芯片温度有关。对于一个D类功放的可靠设计来讲确保死区时间总是正的而决不是负的来防止晶体管进入直通,这是非常重要的。11、关于电源

47、吸收能量 另外一个在D类功放中引起明显降额的原因是母线充电,当半桥拓扑在给负载输出低频时可以看到。要时刻记住,D类功放的增益与母线电压直接成比例关系。因此,母线电压波动产生失真,而D类功放中的电流流动是双向的,则就存在了从功放返回到电源时期。大量流回到电源的能量来自于输出LPF的电感存储的能量。通常,电源没有办法吸收从负载回流过来的能量。因此,母线电压上升,造成电压波动。母线电压上升并不是发生在全桥拓扑上,因为从开关桥臂同储到由源的能源熔会在另一个桥臂消耗掉。12、对EMI(电磁辐射)的考虑 在D功放设计中的EMI(电磁辐射)是很麻烦的,像在其他开关应用中一样。EMI的主要来源之一是来自从高到

48、低流动的MOSFET二极管的反向恢复电荷,和电流直通很相象。在嵌入到阻止直通电流的死区过程中,在输出LPF中的电感电流打开体二极管。在下一个阶段中,当另外一端的MOSFET在死区未打开时,体晶体管保持导通状态,除非储存的大量少数载波被完全复合。这个反向的恢复电流趋向于形成一个很尖的形状,和由于PCB板和封装杂散电感因起步希望的震荡。因此,PCB布线设计对减小EMI和系统可靠性至关重要的。13、D类功放中MOSFET选择的其他考虑*选择合适的封装和结构功放的THD、EMI和效率,还受FET的体二极管影响。缩短体二极管恢复时间(工R的并联肖特基二级管的FET);降低反向恢复电流和电荷,能改善THD

49、;EMI和效率。*FET结壳热阻要尽可能小,以保证结温低于限制。保证较好可靠性和低的成本条件下,工作在最大结温。用绝缘包封的器件是直接安装还是用裸底板结构垫绝缘材料,依赖于它的成本和尺寸。 14、D类功放参考设计 拓扑:半桥,选用IR2011S(栅极驱动IC,最高工作电压200V,Io+/-为1.0A/1.0A,Vout为10-20V,ton/off为80&60ns,延时匹配时间为20ns);IRFB23N15D (MOSFET功率管ID=23A,R DS=90m,Qg=37nC Bv=150V To-220封装),开关频率:400KHz(可调),额定输出:200W+200W4欧,THD:0.

50、03%-1mhz半功率*频率响应:5Hz-40KHz(-3dB),电源:220v50V,尺寸:4.0“5.5”15、结论 如果我们在选择器件时很谨慎,并且考虑到精细的设计布线,因为杂散参数有很大的影响,那么目前高效D类功放可以提供和传统的AB类功放类似的性能。半导体技术不断创新使得效率提高,功率密度增加和较好的音响效果,增加了D类功放的运用。3.4 D类音频功率放大器的热耗散分析多媒体产品设计师必须提供高质量的音频效果,包括高输出扬声器模式。这些地方更需要系统的音频放大器。线性放大器的效率为50%,所以输出功率的稍许增加,就会导致电流损耗大幅度的增大以及过度的热耗散,从而导致需要大体积的散热片

51、。在汽车音响系统中,空间和成本都是非常宝贵的,因而这些热耗散因素的花费是相当昂贵的。然而,D类放大器在输出功率为最大值时有最大的功耗。播放音乐时,放大器达到输出功率峰值的时间很短,因而降低了RMS输出功率。这一特征使其可以使用一个比线性放大器小得多的散热片,因而成为用于汽车OEMs的极大优势。主单位可以在不需要昂贵的外部放大器的情况下提供额外的输出通道。另外,有相当高的音质,封装和热发生器的成本降至最低,并且在电源上有所节省。D类输出晶体管在一个从全“开”到全“关”的开关模式下运行,在线性区域花费很少的时间,所以用于热损耗的功率非常少。如果晶体管的电阻很低,通过它们的压降小,会更进一步地降低功

52、耗。有两个晶体管“开”的典型的D类放大器的直流等效电路只是一连串的串联电阻:RON,每个晶体管的输出传导损耗;RP,金属互连线,引线结构和PC板走线的附加电阻;PL,负载电阻。另一个产生功耗的是输出电阻中的开关延迟。整个系统的效率使可以估算如下公式(3.1): (3.1) 例如,假设驱动4低音扩音器的一双通道D类放大器在60的环境中运行,效率为全功率的90%,不需要14V的直流电源,有一个5/W的IC结点电阻(JA)。对于一个正弦信号,输出的峰值电流的极限为公式(3.1): (3.1) 这符合PLOAD PEAK=I2PEAKRL=49W/通道的输出峰值功率,和PLOAD RMS=PLOAD

53、PEAK/2=24.5W/通道的RMS输出功率。采用效率公式(3.2): (3.2)总的热耗散约6W。最高的结点温度与放大器的性能没有直接的关系。但是,结点温度对确定散热片的尺寸则意义重大,因为更高的TJ可处理更高的功耗。模具的温度是TJ=TA+PDISSJA=90,这个值小于器件的最大结点温度150。采用音乐信号的实际例子中,设计师必须考虑信号的平均值的最大振幅(波峰因子)。一个典型的音乐信号的波峰因子为310。以分贝作为单位,就是1020dBPdB=20log10(VPEAK/VREF)。所以为了使音乐信号的最大部分能通过而不失真,相对于一般的功率输出,放大器需要1020dB的动态空间。当

54、D类放大器的工作电压为14V时,可出现98W的峰值。转换为分贝是公式 (3.3): (3.3) 减去波峰因子的限制,可得到不失真输出的平均声音水平: (3.4)转换成RMS输出功率: (3.5)当PPEAK为98W,RMS输出功率为955mW时,总功耗为0.2W,最大结点温度为61。当RMS输出功率为10W时,总功耗为2.2W,最大结点温度为71。因此,一个没有失真的音频CD信号的最大功耗发生在平均声音为4dB时。这些例子表明,正弦信号比真正的音频信号引起的功耗更大。因此,正弦信号可以作为极端热测试的负载,使得放大器因发热而关闭。第4章 高效D类超低音功率放大器LM4651/ LM4652利用

55、美国国家半导体公司(NSC)推出的LM4651/LM4652 Overture TM最新IC和很少的外部元件,即可组成170W高效D类音频功率放大器。LM4651的PWM驱动器与LM4652半桥(H-bridge)功率MOSFET IC所构成的这种简单紧凑的D类超低音(Subwoofer)放大器完全解决了通常仅在AB类放大器中才能看到的保护问题,但效率比AB类放大器有较大提高,而散热器尺寸则比功率电平相同的AB类放大器有所减小,LM4651与LM4652被应用在家庭影院和PC自动(Powered)超低音放大器、汽车音响增强(booster)放大器和自供是(self-powered)扬声器等方面

56、,会取得令人满意的效果。图4-1 LM4651和LM4652的引脚排列4.1 引脚功能LM4651采用28脚塑料封装,图1(a)为LM4651封装顶视图。LM4652采用15脚TO-220塑料封装,分为隔离和非隔离两种形式。其中,采用隔离型的LM4652TF引脚排列如图1(b)所示。LM4651是一种PWM控制/驱动器IC,内置振荡器、PWM比较器、误差放大器、反馈测量放大器、数字逻辑与保护电路及驱动器等,下面列出了LM4651的引脚功能如表4-1和LM4652的引脚功能如表4-2。表4-1 LM4651的引脚功能脚号引脚符号功能描述1OUT1输出到功率MOSFET栅极驱动电路的基准脚1,27

57、BS1,BS2为驱动上面的栅极HG1、HG2提供额外偏置的自举脚3HG1半桥中#1高端栅极驱动输出4HG2半桥中#2高端栅极驱动输出5,15GND模拟地6+6VBYP模拟电路内部调节正电压输出,该脚仅用作内部调整器旁路7+VccIC正电源电压输入8-6VBYP模拟电路内部调节负电压输出,该脚仅用作内部调整器旁路9FBKVo反馈测量放大器输出脚10ERRIN误差放大器反相输入脚。该脚上的输入音频信号与反馈信号相加11ERRVo误差放大器输出脚12TSD热关闭输入脚,连接LM4652的热关闭输出13STBY待机功能输入脚14FBK1反馈测量放大器,该脚必须连接到来自VO1(LM4652脚15)的反

58、馈滤波器16OSC开关频率振荡脚,调节电阻从15.5k到0变化,开关频率从75kHz到225kHz变化17Delay延迟时间调整脚18SCKT短路设定脚,最小设定值是10A19FBK2反馈测量放大器脚,该脚必须连接到来知VO2(LM4652的脚7)的反馈滤波器20,21-VDDBYP供数字单元电路使用的调整器输出,该脚仅作旁路用22,23-VEEIC负电源电压24START启动电容输入脚。可调节调制器的诊断时序启动时间25LG1半桥中#1低端栅极驱动器输出26LG2半桥中#2低端栅极驱动器输出28OUT2输出到功率MOSFET栅极驱动器电路的基准脚表4-2 LM4652的引脚功能脚号引脚符号功

59、能描述1GND地端2LG1半桥低端(#1)MOSFET栅极驱动输入3VEE功率MOSFET半桥负电源电压4TSD热关闭识别脚。当芯片超过150时,该脚过渡到6V5NC未连接6LG2半桥低端(#2)MOSFET栅极驱动输入7Vo2半桥-端开关输出脚8NC未连接9NC未连接10HG2半桥高端(#2)MOSFET栅极驱动输入11NC未连接12NC未连接13Vcc功率MOSFET半桥正电源电压14HG1半桥高端(#1)MOSFET栅极驱动输入15VO1半桥-端开输出脚4.2 主要参数及特点4.2.1 主要参数a.极限参数LM4651/LM4652的最高电源电压为22V,其功耗分别为1.5W和32W,最

60、高结温为150,工作温度范围为-40+85。LM4652的最大输出电流为10A。b.电气特性LM4651的总静态电流(在LM4652不连接时的典型值)为36mA,待机状态时的输入电压(典型值)为2V,开关频率范围(在Rosc从15k变为0时)为65200kHz,死区时间为27ns,调制保护时间(典型值)为310ns。LM4652中MOSFET的漏-源极击穿电压为55V,通太电阻(典型值)的0.2,最大漏极电流(ID)为10A,栅极门限电压(典型值)为0.85V。LM4651/LM4652的主要技术参数为:总揩波失真(THD)(在10W、4和10500Hz下)0.3%;输出功率(4、75kHz、

61、10%THD时)为170W; 最大效率(在125W和1%THD下)为85%;待机状态衰减100dB。图4-1 脉冲宽度调制波形4.2.2 主要特点LM4651/LM4652的主要特点如下:具有常规的脉冲宽度调制(LM46451);开关频率外部可控,范围为75200kHz;内含集成误差放大器和反馈放大器;可导通软启动和欠电压闭锁;具有过调制保护(软削波)功能;可进行短路电流限制和热关闭保护;具有自检查保护诊断功能。图4-2 过调保护脉冲图4.2.3 原理和应用电路图4-2为LM4651与LM4652的典型应用及测试电路。该电路有助于人们了解两芯片尤其是LM2651的功能和原理。4.3 系统功能简

62、述LM4651是常规脉冲宽度调制器/驱动器IC。图3所示为输入音频信号与频率远高于音频信号的三角波信号的比较波形。比较器产生一个占空比与音频信号电平成正比的矩形波电压,以驱动LM4652半桥电路中的功率MOSFET,然后将功率MOSFET的脉冲序列(frain)通过LC低通滤波器在滤除高频后施加到扬声器。4.4 待机(Standby)功能LM4651的CMOS兼容性允许通过关闭脉冲宽度波形去关断所有功率MOSFET。由于待机状态关闭了脉冲宽度波形,其音东衰减大于120dB,因 而EMI被限制到最小限度,当脚13不逻辑“1”功5V时,待机功能有效;脚13为逻辑“0”或0V时,待机无效,允许利用输入信号调制。4.5 启动程序和定时LM4651具有内部软启动功能,该软启动功能可保证系统的可靠和协调启动,从而使导通喇叭声(thump)或彭彭声(pop)减到最小。在启动周期内,系统保持待机模式。启动时间的调节可

展开阅读全文
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!