采煤机毕业设计外文翻译电牵引采煤机的开关磁阻电动机

上传人:1888****888 文档编号:38393026 上传时间:2021-11-06 格式:DOC 页数:12 大小:1.03MB
收藏 版权申诉 举报 下载
采煤机毕业设计外文翻译电牵引采煤机的开关磁阻电动机_第1页
第1页 / 共12页
采煤机毕业设计外文翻译电牵引采煤机的开关磁阻电动机_第2页
第2页 / 共12页
采煤机毕业设计外文翻译电牵引采煤机的开关磁阻电动机_第3页
第3页 / 共12页
资源描述:

《采煤机毕业设计外文翻译电牵引采煤机的开关磁阻电动机》由会员分享,可在线阅读,更多相关《采煤机毕业设计外文翻译电牵引采煤机的开关磁阻电动机(12页珍藏版)》请在装配图网上搜索。

1、英文原文Switched Reluctance Motors Drive for theElectrical Traction in ShearerH. ChenCollege of Information and Electrical EngineeringChina University of Mining & Technology, Xuzhou 221008, ChinachenhaocumtAbstractThe paper presented the double Switched Reluctance motors parallel drive system for the el

2、ectrical traction in shearer. The system components, such as the Switched Reluctance motor, the main circuit of the power converter and the controller, were described. The control strategies of the closed-loop rotor speed control with PI algorithm and balancing the distribution of the loads with fuz

3、zy logic algorithm were given. The tests results were also presented. It is shown that the relative deviation of the average DC supplied current of the power converter in the Switched Reluctance motor 1 and in the Switched Reluctance motor 2 is within 10% Keywords- switched reluctance; motor control

4、; shearer; coal mine; electrical drive I. INTRODUCTIONThe underground surroundings of the coal mines are very execrable. One side, it is the moist, high dust and inflammable surroundings. On the other side, the space of roadway is limited since it is necessary to save the investment of exploiting co

5、al mines so that it is difficult to maintain the equipments. In the modern coal mines, the automatization equipments could be used widely. The faults of the automatization equipments could affect the production and the benefit of the coal mines. The shearer is the mining equipment that coal could be

6、 cut from the coal wall. The traditional shearer was driven by the hydrostatic transmission system. The fault ratio of the hydrostatic transmission system is high since the fluid in hydrostatic transmission system could be polluted easily. The faults of the hydrostatic transmission system could affe

7、ct the production and the benefit of the coal mines directly. The fault ratio of the motor drive system is lower than that of the hydrostatic transmission system, but it is difficult to cool the motor drive system in coal mines since the motor drive system should be installed within the flameproof e

8、nclosure for safety protection. The motor drive system is also one of the pivotal parts in the automatization equipments. The development of the novel types of the motor drive system had been attached importance to by the coal mines. The Switched Reluctance motor drive could become the main equipmen

9、ts for adjustable speed electrical drive system in coal mines 1, because it has the high operational reliability and the fault tolerant ability 2. The Switched Reluctance motor drive made up of the double-salient pole Switched Reluctance motor, the unipolar power converter and the controller is firm

10、 in the motor and in the power converter. There is no brush structure in the motor and no fault of ambipolar power converter in the power converter 34. The Switched Reluctance motor drive could be operated at the condition of lacked phases fault depended on the independence of each phase in the moto

11、r and the power converter 5. There is no winding in the rotor so that there is no copper loss in the loss and there is only little iron loss in the rotor. It is easy to cool the motor since it is not necessary to cool the rotor. The shearer driven by the Switched Reluctance motor drive had been deve

12、loped. The paper presented the developed prototype. II. SYSTEM COMPONENTSThe developed Switched Reluctance motors drive for the electrical traction in shearer is a type of the double Switched Reluctance motors parallel drive system. The system is made up of two Switched Reluctance motors, a control

13、box installed the power converter and the controller. The adopted two Switched Reluctance motors are all three-phase 12/8 structure Switched Reluctance motor, which were shown in Figure 1. The two Switched Reluctance motors were packing by the explosion-proof enclosure, respectively. The rated outpu

14、t power of one motor is 40 KW at the rotor speed 1155 r/min, and the adjustable speed range is from 100 r/min to 1500r/min. Figure 1.Photograph of the two three-phase 12/8 structure Switched Reluctance motorThe power converter consists of two three-phase asymmetric bridge power converter in parallel

15、. The IGBTs were used as the main switches. Three-phase 380V AC power source was rectificated and supplied to the power converter. The main circuit of the power converter was shown in Figure 2Figure 2. Main circuit of the power converter. In the controller, there were the rotor position detection ci

16、rcuit, the commutation circuit, the current and voltage protection circuit, the main switches gate driver circuit and the digital controller for rotor speed closed-loop and balancing the distribution of the loads. III. CONTROL STRATEGYThe two Switched Reluctance motor could all drive the shearer by

17、the transmission outfit in the same traction guide way so that the rotor speed of the two Switched Reluctance motors could be synchronized. The closed-loop rotor speed control of the double Switched Reluctance motors parallel drive system could be implemented by PI algorithm. In the Switched Relucta

18、nce motor 1, the triggered signals of the main switches in the power converter are modulated by PWM signal, the comparison of the given rotor speed and the practical rotor speed are made and the duty ratio of PWM signal are regulated as follows, where, is the given rotor speed, is the practical roto

19、r speed, is the difference of the rotor speed, is the increment of the duty ratio of PWM signal of the Switched Reluctance motor 1 at k time, is the integral coefficient, is the proportion coefficient, ek is the difference of the rotor speed at k time, ek-1 is the difference of the rotor speed at k-

20、1 time, D1(k) is the duty ratio of PWM signal of the Switched Reluctance motor 1 at k time, and D1(k-1) is the duty ratio of PWM signal of the Switched Reluctance motor 1 at k-1 time. The output power of the Switched Reluctance motor drive system is approximately in proportion to the average DC supp

21、lied current of the power converter as follows, where, P2 is the output power of the Switched Reluctance motor drive system, Iin is the average DC supplied current of the power converter. In the Switched Reluctance motor 2, the triggered signals of the main switches in the power converter are also m

22、odulated by PWM signal. The balancing the distribution of the loads between the two Switched Reluctance motors could be implemented by fuzzy logic algorithm. In the fuzzy logic regulator, there are two input control parameters, one is the deviation of the average DC supplied current of the power con

23、verter between the two Switched Reluctance motors, and the other is the variation of the deviation of the average DC supplied current of the power converter between the two Switched Reluctance motors. The output control parameter is the increment of the duty ratio of the PWM signal of the Switched R

24、eluctance motor 2. The block diagram of the double Switched Reluctance motors parallel drive system for the electrical traction in shearer was shown in Figure 3. Figure 3. Block diagram of the double Switched Reluctance motors parallel drive system for the electrical traction in shearerThe deviation

25、 of the average DC supplied current of the power converter between the two Switched Reluctance motors at the moment of ti is where, Iin1 is the practical average DC supplied current of the power converter in the Switched Reluctance motor 1 at the moment of ti, Iin2 is the practical average DC suppli

26、ed current of the power converter in the Switched Reluctance motor 2 at the moment of ti. The variation of the deviation of the average DC supplied current of the power converter between the two Switched Reluctance motors at the moment of ti is where, ei-1 is the deviation of the average DC supplied

27、 current of the power converter between the two Switched Reluctance motors at the moment of ti-1. The duty ratio of the PWM signal of the Switched Reluctance motor 2 at the moment of ti is where, D2(i) is the increment of the duty ratio of the PWM signal of the Switched Reluctance motor 2 at the mom

28、ent of ti and D2(i-1) is the duty ratio of the PWM signal of the Switched Reluctance motor 2 at the moment of ti-1. The fuzzy logic algorithm could be expressed as follows, where, E is the fuzzy set of the deviation of the average DC supplied current of the power converter between the two Switched R

29、eluctance motors, EC is the fuzzy set of the variation of the deviation of the average DC supplied current of the power converter between the two Switched Reluctance motors, and U is the fuzzy set of the increment of the duty ratio of the PWM signal of the Switched Reluctance motor 2. The continuous

30、 deviation of the average DC supplied current of the power converter between the two Switched Reluctance motors could be changed into the discrete amount at the interval -5, +5, based on the equations as follows, The continuous variation of the deviation of the average DC supplied current of the pow

31、er converter between the two Switched Reluctance motors could also be changed into the discrete amount at the interval -5, +5, based on the equations as follows, The discrete increment of the duty ratio of PWM signal of the Switched Reluctance motor 2 at the interval -5, +5 could be changed into the

32、 continuous amount at the interval -1.0%, +1.0%, based on the equations as follows, There is a decision forms of the fuzzy logic algorithm based on the above principles, which was stored in the programme storage cell of the controller. While the difference of the distribution of the loads between th

33、e two Switched Reluctance motors could be got, the duty ratio of PWM signal of the Switched Reluctance motor 2 will be regulated based on the decision forms of the fuzzy logic algorithm and the distribution of the loads between the two Switched Reluctance motors could be balanced. IV. TESTED RESULTS

34、The developed double Switched Reluctance motors parallel drive system prototype had been tested experimentally. Table I gives the tests results, where is the relative deviation of the average DC supplied current of the power converter in the Switched Reluctance motor 1, is the relative deviation of

35、the average DC2 supplied current of the power converter in the Switched Reluctance motor 2, and, TABLE I.TESTS RESULTS OF PROTOTYPEIt is shown that the relative deviation of the average DC supplied current of the power converter in the Switched Reluctance motor 1 and in the Switched Reluctance motor

36、 2 is within 10% . V. CONCLUSIONThe paper presented the double Switched Reluctance motors parallel drive system for the electrical traction in shearer. The novel type of the shearer in coal mines driven by the Switched Reluctance motors drive system contributes to reduce the fault ratio of the shear

37、er, enhance the operational reliability of the shearer and increase the benefit of the coal mines directly. The drive type of the double Switched Reluctance motors parallel drive system could also contribute to enhance the operational reliability compared with the drive type of the single Switched R

38、eluctance motor drive system. REFERENCES 1 H. Chen, G. Xie, “A Switched Reluctance Motor Drive System for Storage Battery Electric Vehicle in Coal Mine,” Proceedings of the 5th IFAC Symposium on Low Cost Automation, pp.95-99, Sept. 1998. 2 H. Chen, X. Meng, F. Xiao, T. Su, G. Xie, “Fault tolerant co

39、ntrol for switched reluctance motor drive,” Proceedings of the 28 Annual Conference of the IEEE Industrial Electronics Society, pp.1050-1054, Nov. 2002. 3 R. M. Davis, W. F. Ray, R. J. Blake, “Inverter drive for switched reluctance motor:circuit and component ratings,” IEE Proc. B, vol.128, no.3, pp

40、. 126-136, Sept. 1981. 4 D. Liu, et al., Switched Reluctance Motor Drive. Beijing: Mechanical Industry Press, 1994. 5 H. Chen, J. Jiang, C. Zhang, G. Xie, “Analysis of the four-phase switched reluctance motor drive under the lacking one phase fault condition,” Proceedings of IEEE 5th Asia-Pacific Co

41、nference on Circuit and Systems, pp.304-308, Dec. 2000. 中文译文电牵引采煤机的开关磁阻电动机摘要:本章介绍了电牵引采煤机双重开关磁阻电动机的并联驱动系统。该系统由开关磁阻电动机,功率变换器电路和控制器组成。给出了由通过采用比例积分算法的调节转子速度的闭环回路和模糊逻辑算法实现的负荷的均衡分布组成的控制策略。介绍了实验结果。开关磁阻电动机1和开关磁阻电动机2的功率变换器的平均直流的相对误差为。关键词:开关磁阻;电动控制;采煤机;煤矿;电传动 .介绍 煤矿的地下环境是非常恶劣的。一方面由于它是潮湿的,高粉尘的,和易燃的环境。另一方面,为了节约

42、开采成本,巷道空间是有限,以至于设备很难维护。自动化设备在现代化煤矿已经得到广泛应用。自动化设备的故障会直接影响到煤矿的产量和效益。采煤机是采煤的主要矿山设备。传统的滚筒采煤机是通过液压传动系统传动的。液压传动系统的故障率很高,因为液压传动系统的液体很容易受环境污染。液压传动系统的故障直接影响到煤矿的产量和效率。电传动系统比液压传动系统的故障率低。但是,矿井中电机传动系统的散热性差,是因为为了煤矿安全,电机传动系统被封装在防爆的外壳内。电机传动系统是自动化设备的重要组成部分。电机传动系统的小说类型的发展对煤矿很重要。开关磁阻电动机传动是煤矿调速传动系统的主要设备,由于它的高工作可靠性和高容错能

43、力。由双极点开关磁阻电动机,单级功率变换器和控制器组成的开关磁阻电动机传动是电动机和功率变换器的核心。电动机没有毛刷,功率变换器没有双极功率变换器的故障。开关磁阻电动机传动可以在缺相的情况下运行,它是依靠电动机和功率变换器相位独立性来实现的。转子上没有绕组,以至于转子上没有铜损和很小的铁损。因为不需要冷却转子,所以很容易冷却电动机。由开关磁阻电动机传动的采煤机正在不断发展。本章介绍了发展的样机。系统组成电牵引采煤机的开关磁阻电动机传动是一个双重开关磁阻电动机并联传动系统。这个系统是由两个开关磁阻电动机,一个控制箱,这个控制箱是安装在功率变换器和控制器上。采用的开关磁阻电动机是三相12/8结构的

44、开关磁阻电动机,如图一所示。双重开关磁阻电动机分别包装在防爆外壳内。电动机的额定功率是40KW,转速是1155r/min,调速范围是100r/min1500r/min。图一:三相12/8结构的开关磁阻电动机功率变换器是由两个三相不对称桥式变换器并列组成。IGBTs是电路的主要开关元件。经整流后三相交流380V电源提供给功率变换器。功率变换器的主要电路如图二所示。图二:功率变换器的主要电路控制器由转子位置检测电路,整流电路,电流和电压保护电路,主要开关的门极驱动电路和闭环调速数字控制器和负荷均衡分配组成。.控制方法采用同一个牵引方法,双重开关磁阻电动机通过传送设备用来驱动采煤机,来确保双重开关磁

45、阻电动机的转子速度同步运行。并联驱动的双重开关磁阻电动机的闭环转子调速回路可以通过比例积分算法来实现。在开关磁阻电动机1中,功率变换器主要开关的触发信号是通过PWM信号调制的。比较给定的转子速度和实际的转子速度,PWM的占空比调节如下:其中,是给定的转子速度,是实际的转子速度,是转子速度的差。在k时刻内,开关磁阻电动机1PWM信号占空比的增量。 是积分系数, 比例系数,转子速度在K时间内的差。转子速度在K-1时间内的差, 在k时刻内,开关磁阻电动机1PWM信号占空比,在k-1时刻内,开关磁阻电动机1PWM信号占空比。开关磁阻电动机传动系统的输出功率和功率变换器的电流成正比,如下所示:其中,是开

46、关磁阻电动机传动系统的输出功率,功率变换器的平均直流电流。在开关磁阻电动机2中,功率变换器主要开关的触发信号是通过PWM信号调制的。双重开关磁阻电动机之间的负荷均衡分布是通过模糊逻辑算法来实现的。在模糊逻辑调节器中有两个输入控制参数,一个是双重开关磁阻电动机之间的功率变换器的平均电流的偏差,另一个是双重开关磁阻电动机之间的功率变换器的平均直流电流的偏差的变化。输出控制参数是开关磁阻电动机2 PWM信号占空比的增量。电牵引采煤机双重开关磁阻电动机并列传动系统的方框图见图三所示。 图三: 电牵引采煤机并列传动系统的方框图功率变换器平均直流电流在双重开关磁阻电动机之间的偏差在时刻为:其中,在时刻,功

47、率变换器在开关磁阻电动机1中实际平均直流电流,在时刻,功率变换器在开关磁阻电动机2中实际平均直流.双重开关磁阻电动机在时刻的功率变换器平均直流电流的偏差的变量为:其中, 是双重开关磁阻电动机在时刻的功率变换器平均电流的偏差。 开关磁阻电动机2在时的PWM信号的占空比为: 其中,在时刻的PWM信号占空比的增量,是开关磁阻电动机2在时刻的PWM信号的占空比。 模糊逻辑算法用以下来表示:其中,为模糊集合开关磁阻电动机间的功率变换器的平均直流电流的相对误差,为模糊集合开关磁阻电动机间的功率变换器的平均直流电流的相对误差的变量,为模糊集合中开关磁阻电动机2 PWM信号占空比的增量。开关磁阻电动机间的功率

48、变换器的平均直流电流的相对误差在-,+区间内的连续偏差可以转变为分散偏差。公式如下:开关磁阻电动机间的功率变换器的平均直流电流的相对误差在区间内的连续变量可以转变为分散变量。公式如下:在区间-,+内,开关磁阻电动机的功率变换器信号的占空比的分散增量可以转变为在区间-.,+.内的连续增量,公式如下:根据上面的原理,这里是模糊逻辑算法的一个判定形式。模糊逻辑算法是存储在控制器的程序存储单元内。当检测到双重开关磁阻电动机负荷分配差异的时候,开关磁阻电动机中的占空比将被调节,这是根据模糊逻辑算法的判定形式,从而,双重开关磁阻电动机负荷分配将会达到平衡状态。.实验结果发展的双重开关磁阻电动机并联传动系统

49、样机已经通过实验测量得到了。表一给出了测试结果,其中为开关磁阻电动机的功率变换器的平均直流电流的相对误差,为开关磁阻电动机的功率变换器的平均直流电流的相对误差,即:表一:样机的实验结果该表显示了开关磁阻电动机1和开关磁阻电动机2的功率变换器的平均直流的相对误差为结论本章介绍了电牵引采煤机双重开关磁阻电动机的并联驱动系统。开关磁阻电动机驱动系统驱动了矿井中的小型采煤机有助于减少采煤机的故障率,提高了采煤机的工作可靠性,直接增加了煤矿的效益。相对于单级开关磁阻电动机的驱动,双重开关磁阻电动机并联传动系统的驱动也有助于提高工作可靠性。REFERENCES 1 H. Chen, G. Xie, “A

50、Switched Reluctance Motor Drive System for Storage Battery Electric Vehicle in Coal Mine,” Proceedings of the 5th IFAC Symposium on Low Cost Automation, pp.95-99, Sept. 1998. 2 H. Chen, X. Meng, F. Xiao, T. Su, G. Xie, “Fault tolerant control for switched reluctance motor drive,” Proceedings of the

51、28 Annual Conference of the IEEE Industrial Electronics Society, pp.1050-1054, Nov. 2002. 3 R. M. Davis, W. F. Ray, R. J. Blake, “Inverter drive for switched reluctance motor:circuit and component ratings,” IEE Proc. B, vol.128, no.3, pp. 126-136, Sept. 1981. 4 D. Liu, et al., Switched Reluctance Motor Drive. Beijing: Mechanical Industry Press, 1994. 5 H. Chen, J. Jiang, C. Zhang, G. Xie, “Analysis of the four-phase switched reluctance motor drive under the lacking one phase fault condition,” Proceedings of IEEE 5th Asia-Pacific Conference on Circuit and Systems, pp.304-308, Dec. 2000.

展开阅读全文
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!