基于单片机的直流调速系统的设计毕业论文

上传人:1777****777 文档编号:37945521 上传时间:2021-11-05 格式:DOC 页数:52 大小:1.15MB
收藏 版权申诉 举报 下载
基于单片机的直流调速系统的设计毕业论文_第1页
第1页 / 共52页
基于单片机的直流调速系统的设计毕业论文_第2页
第2页 / 共52页
基于单片机的直流调速系统的设计毕业论文_第3页
第3页 / 共52页
资源描述:

《基于单片机的直流调速系统的设计毕业论文》由会员分享,可在线阅读,更多相关《基于单片机的直流调速系统的设计毕业论文(52页珍藏版)》请在装配图网上搜索。

1、 毕业设计说明书 基于单片机的直流调速系统的设计 系 、 部: 电气与信息工程学院 专 业: 电气工程及其自动化 2013届毕业设计课题任务书院(系):电气与信息工程学院 专业:电气工程及其自动化 指导教师学生姓名课题名称基于单片机的直流调速系统的设计内容及任务 分析单片机对直流电机进行速度测量应用的基本原理,并用单片机产生PWM波来控制直流电机的可逆调速,从而实现了对普通直流电机的转速测量和转速调节。研究以单片机AT89S52和IR2110控制的直流电机脉宽调制调速系统。利用AT89S52芯片可以进行低成本直流电动机控制系统的设计,并且能够简化系统构成、降低系统成本、增强系统性能、以满足更多

2、应用场合的需要。拟达到的要求或技术指标要求:(1)设计一个单闭环调速系统,通过外接键盘及按钮实现直流电机正转、反转及速度调节控制。(2)直流电机转速调节范围为30-50转/秒,实时测量电机的实际转速,并要求在LED数码管上显示出来。(3)选择可以构成闭环系统的方案、选择所需器件和模块、以及IGBT管组成桥式斩波电路。(4)要求系统实现对电机的正转、反转、急停、加速、减速的控制,以及PWM的占空比在LED上的实时显示。(5)对直流电机模型进行PID控制分析。(6)对直流电机进行MATLAB仿真和分析。摘 要本文主要研究了利用AT89S52单片机控制PWM信号从而实现对直流电机转速进行控制的方法。

3、文章介绍了AT89S52的详细参数,并对PWM信号的原理、产生方法、以及如何通过软件编程对PWM信号占空比进行调节,从而控制其输入信号波形等均作了阐述。设计分为两个部分,硬件部分和软件部分。对于硬件部分首先从总体上做了设计,也就是以AT89S52为中心来组成硬件部分,其辅助部分包括了显示电路、测量电路、键盘电路;对于软件部分则选择了使用模块化的设计思路,根据本设计的要求以及它要实现的功能编写了属于每个模块部分的流程图。并且说明了软件的设计方式和思路。此外,本文中还采用了芯片IR2110作为直流电机正转调速功率放大电路的驱动模块,并且把它与延时电路相结合完成了在主电路中对直流电机的控制。在软件方

4、面,文章中详细介绍了PID运算程序,初始化程序等的编写思路和具体的程序实现。本系统中使用了光电编码器对输出的转速进行了测量,并且作为反馈值输入到单片机进行PID运算,从而实现了对输出速度的控制。关键词: PWM信号;IR2110;PID运算ABSTRACT This article mainly introduces the method to generate the PWM signal by using AT89S52 single-chip computer to control the speed of a D.C. motor. It also clarifies the prin

5、ciples of PWM and the way to adjust the duty cycle of PWM signal. The design is divided into two parts,hardware and software part.For the hardware part,the AT89S52 is the center form of the hardware part,the auxiliary part includes display circuit,measuring circuit,keyboard circuit;Software adopts m

6、odular design concept.write each modular flow chart.Discusses the design thought and method of software.In addition, IR2110 has been used as an actuating device of the power amplifier circuit which controls the speed of rotation of D.C. motor. Whats more, is used in this system to measure the speed

7、of D.C. motor. In software, the article introduced the PID operation procedures, such as initial program and the writing of the thought and specific program realization .The result of the measurement is sent to A/D converter after passing the filtering circuit, and finally the feedback single is sto

8、red in the single-chip computer and participates in a PIDcalculation. Key words: PWM signal;IR2110;PID calculation目录摘要ABSTRACT目录1 绪论11.1直流电机的发展及设计背景11.2直流电机调速原理21.3 系统方案与分析31.4总体硬件电路设计42 PWM脉宽调制原理52.1 PWM调速原理52.2 PWM 调速方法52.3 PWM 实现方式63硬件部分73.1单片机的选型73.2驱动电路83.2.1 芯片IR2110性能及特点83.2.2 IR2110的引脚图以及功能9

9、3.2.3 元器件的选择比较、选型103.3 H桥双极性主电路103.4检测回路133.4.1 光电编码器143.4.2 M/T法测速原理153.5 键盘及显示电路163.5.1键盘/显示芯片8279简介163.5.2键盘设计163.5.3显示器设计173.6电源电路184系统软件设计204.1 PWM实现方式204.1.1 定时器/计数器204.1.2 PWM产生程序214.2 系统程序设计224.2.1主程序及系统初始化模块224.2.2 中断程序设计224.2.3 中断子程序模块234.3键盘/显示模块设计234.4数字PID控制器254.4.1 PID控制器原理254.4.2 数字PI

10、D控制器流程图265系统的MATLAB仿真295.1 系统的建模与参数设置295.2电机Matlab仿真31结 束 语34参考文献35致 谢36附 录371 绪论1.1直流电机的发展及设计背景 直流电机问世已有一百四十多年的历史。在设计和制造技术上有很大进步, 新材料、新技术的应用以及整流电源的普及, 促进了一般工业用直流电机的不断扩大, 品种的日益繁多。从小至数瓦, 大到万余千瓦, 广泛地用于冶金、矿山、煤炭、起重运输、机床制造、纺织印染等各个部门中, 特别是近几年电子计算技术广泛应用在直流电机设计制造中。从直流电动机的演变历史, 也可以纵观直流电动机的发展历史和动向、从四十年代后期到五十年

11、代的前期, 直流电动机的电源主要是采用M-G电动发电机组,六十年代初, 电动发电机组电源已被水银整流器逐渐代替, 到六十年代后期, 由于可控硅整流装置的出现, 并得到迅速发展, 可控硅整流电源已占统治地位。由于直流电源供电方式的不断更新换代, 特别是在最近的十几年期问, 进一步促使了直流电动机的单机功率、转速不断提高, 目前朝着高速、大功率方向发展。另外, 由于绝缘技术和分析技术的进步, 直流电动机已迅速向小型轻量, 低惯量方面发展。 时代在进步,各种各样的深入研究和技术也得到不断地发展和进步,理所当然,许许多多的科研成果和更多非常好的性能和品质直流电机产品得以出现。也就是在这个时候,1985

12、年,一些具有创新意识的好公司像美国的Ingersol铣床公司利用自身的优势生产出了HVM600高速加工中心,它的优势在于进给速度最大值可达76.2m/min,这是其他产品很难超越的,因为这其中使用了永磁同步直线电机。随着时间的推移,直线电机速度的最大值不断变化,但时间定格在1997年时,直线电机速度的最大值已经能够达到150200 m/min,能够做到这一点是20多家在汉诺威12.EMO展览会上展出自己家公司生产研发的直线电机传动装置,其中做的比较突出的是法国Renault automation公司的加工中心和德国Trumpf公司的激光机床。由于现代技术不断发展使得控制技术、冷却技术以及许多的

13、新型磁性材料不断地被研制出来,从这些最被看好有未来的产品中我们能够得出,直线电机正在广泛的被应用于高速度机床的进给机构中。如今,直流调速受到了很大的冲击,原因在于变频技术的横空出世,使得交流调速的优势得以展现,但这并不影响一个非常重要的位置属于直流调速系统,原因在于从全局来看的话,考虑到我们国家在这方面的一些实际情况,另外还出现了直流调速系统的全数字化,使得可靠性及精度在直流调速系统得到了很大的提高。稳速对于直流调速系统转速控制十分重要,因为这是个最难实现的指标,相对于调速、加速或减速这两方面来讲,稳速的指标在于要求以一个稳定的转速运动,转速的波动要控制在很小的范围内,要有一定能够应对不同的干

14、扰的能力,工业上,能够很好地实现调速、加速或减速这两方面的功能,但是对于稳速精度的功能的实现还是有一定的困难。电机在各行各业发挥着重要的作用,而电机转速是电机重要的性能指标之一,因而测量电机的转速和电机的调速,使它满足人们的各种需要,更显得重要,而且随着科技的发展,PWM调速成为电机调速的新方式。 随着技术的高速进步,越来越多的行业开始采用控制系统的自动化,现代化生产变得越来越重要的是主流开始变为电气传动采用直流驱动控制。直流电动机之所以能在传动领域统治地位中占有重要的一席之地,原因在于它不仅控制性能好,调节方法简单,而且能够大范围平滑调速,转速调节非常灵活。现在社会生产中,只要是工厂自动化设

15、备,不管是机器人还是数控机床都在广泛应用直流电动机。稍加思索我们就会知道,随着社会生产规模的继续加大,直流电机各方面的性能和直流电机的需求量都会需要提出一些新的要求,那就是更好的性能,更大规模的需求量。因此,对直流电机控制系统进行高可靠性的,高性能的研究工作对现实生活具有非常重要的意义。1.2直流电机调速原理直流电机电路模型如图1-1 所示,磁极、间装着一个可以转动的铁磁圆柱体,圆柱体的表面上固定着一个线圈。当线圈中流过电流时,线圈受到电磁力作用,从而产生旋转。根据左手定则可知,当流过线圈中电流改变方向时,线圈的方向也将改变,因此通过改变线圈电路的方向实现改变电机的方向。直流电机模型见图1-1

16、。 图1-1 直流电动机电路模型 不同励磁方式的直流电动机机械特性曲线有所不同。但是对直流电动机的转速有以下公式: (1-1)式 -电枢供电电压(V) -电枢电流(A) -励磁磁通(Wb) -电枢回路总电阻() -电势系数,为电磁对数,为电枢并联支路数,为导体数。 直流电动机转速的控制方法可分为两类:励磁控制法与电枢电压控制法。励磁控制法控制磁通,容易因磁场饱和而受到影响。所以常用的控制方法是改变电枢端电压调速的电枢电压控法。其中脉宽调制(PWM)就是保持频率不变,通过控制占空比来改变“占空比”的百分比,从而改变电枢电压的大小,实现对电动机转速的控制。1.3 系统方案与分析本文主要研究了利用A

17、T89S52单片机,通过PWM方式来改变电压的占空比实现直流电机速度的控制。文章中采用了通过编程实现PWM信号的发生,然后通过IR2110来驱动电机。利用光电编码器测得电机速度,把电压信号反馈给单片机,在内部进行PID运算,输出控制量完成闭环控制,实现电机的调速控制。 单片机直流电机调速简介:单片机直流调速系统可实现对直流电动机的平滑调速。PWM是通过控制固定电压的直流电源开关频率,改变电枢两端电压的大小,从而使电压变为要求的一种控制方法。在调整系统中,PWM的作用表现为控制电动机的转速。控制过程为在固定频率的前提下,即保持周期不变的情况下,根据设计要求来接通和断开电源,通过改变“接通”和“断

18、开”时间的长短。从而使输出的平均电压发生变化,也就是因为改变了电枢电压的“占空比”,从而实现了控制平均电压的大小。因此,“开关驱动装置”也是PWM一个别称。本系统以AT89S52单片机为核心,通过单片机控制,C语言编程实现对直流电机的平滑调速。 本系统以单片机系统为依托,根据PWM调速的基本原理,以直流电机电枢上电压的占空比来改变平均电压的大小,从而控制电动机的转速为依据,实现对直流电动机的平滑调速,并通过单片机控制速度的变化。本文所研究的直流电机调速系统主要是由硬件和软件两大部分组成。硬件部分是前提,是整个系统执行的基础,它主要为软件提供程序运行的平台。而软件部分,是对硬件端口所体现的信号,

19、加以采集、分析、处理,最终实现控制器所要实现的各项功能,达到控制器自动对电机速度的有效控制。1.4总体硬件电路设计系统总体设计框图直流电机AT89S52单片机(速度的测量计算、输入设定及系统控制)转速检测驱动电路键盘控制LED显示PWM 图1-2 直流电机PWM调速系统设计方框图2 PWM脉宽调制原理2.1 PWM调速原理PWM脉冲宽度调制技术就是通过对一系列脉冲的宽度进行调制,来等效地获得所需要波形(含形状和幅值)的技术。下式是占空比计算公式: (2-1) 式中表示一个周期内开关管导通的时间,表示一个周期的时间。占空比表示了在一个周期里,开关管导通的时间与周期的比值,变化范围为。由上式可知,

20、当电源电压不变的情况下,电枢的端电压的平均值为,因此占空比如果变化的话就可以改变端电压的平均值,从而达到调速的目的,这就是PWM调速原理。如图所示: 图2-1 PWM信号的占空比 根据上图,假如是一直接通电源的话,电机的转速为最大,设为。现在我们可以通过改变占空比来获得不同的转速,因为。所以取不同的占空比就能得到不同的转速,即通过占空比来达到调速的目的。2.2 PWM 调速方法调速原理如图2-1所示。通过控制脉冲占空比来改变电机的电枢电压。通常有3种方法改变占空比: (1)定宽调频法:就是使的宽度保持不变,改变的宽度,此时周期(即频率)也发生了变化,也就是所谓的宽度的大小不变,调整频率的大小;

21、 (2)调宽调频法:就是使的宽度保持不变,改变的宽度,此时的周期(即频率)也发生了变化,也就是所谓的调整宽度的大小和调整频率的大小; (3)定频调宽法:就是使(即频率)的宽度保持不变,改变的宽度,此时的宽度也会发生变化,也就是所谓的保持频率不变,调整宽度的大小。从以上三种方法的分析中,选择哪种方法将影响系统的性能,一二种方法比较类似,都是通过改变周期(即频率)的大小来控制占空比,但这样会出现一个问题,一旦系统的固有频率和选择的控制频率比较靠近时,就会引起不必要的振荡,一般很少采用,所以本系统用的是第三种方法。因此,只要控制好脉冲的通电时间,就可以很容易实现控制转速。2.3 PWM 实现方式方案

22、一:采用定时器做为脉宽控制的定时方式,这一方式产生的脉冲宽度极其精确,误差只在几个us。方案二:采用软件延时方式,这一方式在精度上不及方案一,特别是在引入中断后,将有一定的误差。故采用方案一。本设计采用单闭环系统,之所以会选择闭环还没采用开环,原因在于闭环相对于开环具有一些比较突出的一些优点,闭环的主要特点在于存在反馈控制,反馈控制的作用表现为如果被控制量偏离给定值,这样的偏差就会被反馈控制通过自己的修正作用去消除。从这一角度看,它具有抑制干扰的能力,对元件特性变化不敏感,并能改善系统的响应特性。由于闭环系统的这些优点因此选用闭环系统。 如图2-2,通过单片机控制器产生PWM矩形波,PWM矩形

23、波经过驱动电路的放大对直流电机进行PWM控制,由速度传感器对电机进行测速,并将测得的速度反馈到输入端即让反馈信号与给定量进行比较。从而达到对直流电机的较为精确的控制。被控量单片机控制器光电编码器直流电机驱动电路+_r给定量PWM矩形波速度反馈y+ 图2-2直流电机PWM调速系统原理图3硬件部分3.1单片机的选型 综合各方面考虑本次设计采用低功耗、高性能CMOS8位微控制器AT89S52。它具有8K 在系统可编程Flash 存储器。使用Atmel 公司高密度非易失性存储器技术制造,与工业80C51 产品指令和引脚完全兼容。片上Flash允许程序存储器在系统可编程,亦适于常规编程器。在单芯片上,拥

24、有灵巧的8 位CPU 和在系统可编程Flash,使得AT89S52在众多嵌入式控制应用系统中得到广泛应用。 AT89S52主要性能:1、与MCS-51单片机产品兼容 2、8K字节在系统可编程Flash 存储器 3、1000次擦写周期4、全静态操作:0Hz-33MHz 5、三级加密程序存储器 6、32个可编程I/O口线 7、三个16位定时器/计数器 8、8个中断源 9、全双工UART串行通道 10、低功耗空闲和掉电模式 11、掉电后中断可唤醒 12、看门狗定时器 13、双数据指针 14、掉电标识符 AT89S52引脚图图3-1 单片机引脚图 AT89S52 有6个中断源:两个外部中断(INT0

25、和INT1),三个定时中断(定时器0、1、2)和一个串行中断。这些中断每个中断源都可以通过置位或清除特殊寄存器IE中的相关中断允许控制位分别使得中断源有效或无效。IE还包括一个中断允许总控制位EA,它能一次禁止所有中断。 AT89S52内部包括了3个16位可编程定时器/计数器及看门狗定时器。16个触发器构成了定时器/计数器的16位,因此可以算出为它的最大计数模值。当定时器还是当计数器用,或者当计数器用时它的计数范围,或者当定时器用时它的定时范围,都可以通过它们的工作方式指令来设置,这就是通常所说的可编程。这种可编程是通过TMOD控制器来完成的。3.2驱动电路功率放大驱动芯片有多种,其中较常用的

26、芯片有IR2110和EXB841,但由于IR2110具有双通道驱动特性,且电路简单,使用方便,价格相对EXB841便宜,具有较高的性价比,且对于直流电机调速使用起来更加简便,因此该驱动电路采用了IR2110集成芯片,使得该集成电路具有较强的驱动能力和保护功能。3.2.1 芯片IR2110性能及特点 IR2110是美国国际整流器公司(International Rectifier Company )于1990年前后推出的,它采用了两种技术,分别是无门锁CMOS技术和高压集成电路,它相当于是IGBT和大功率MOSFET的专用驱动集成电路,正是因为具有这种优势,他被广泛应用于马达调速、电源变换等功率

27、驱动领域。这个电路芯片的特点是成本低,偏值电压高( 600V),集成度高(可驱动同一桥臂两路) ,体积小(DIP14 ),响应快( ton/tof= 120/94 ns),而且驱动能力强, 内设欠压封锁,易于调试,除此之外,它还拥有外部保护封锁端口。为了使得驱动电源路数目较其他IC驱动大大减小,它的上管驱动采用外部自举电容上电。只需一路10一20V电源,2片IR2110驱动2个桥臂就能应对4管构成的全桥电路,这样做的优点很多,提高了系统的可靠性,降低了产品成本,大大减小了控制变压器的体积和电源数目。 3.2.2 IR2110的引脚图以及功能图3-2 IR2110管脚图 IR2110使用了两种工

28、艺,分别是闩锁抗干扰CMOS工艺和HVIC,不管是高端还是低端,他们的输出通道都是独立的;但是与标准的CMOS输出比较起来,它的逻辑输入是兼容的;并且自举电路用于浮置电源,500V是它工作电压可以达到的最大值,du/dt=50V/ns,当条件为小于等于15V时,只有1.6mW是它的静态功耗;1020V的电压范围为输出的栅极驱动电压,515V的电压范围就是它的逻辑电源电压,存在电压偏移的是逻辑电源,5V5V就是它的电压偏移范围。CMOS施密特触发被应用于IR2110输入,滞后欠压锁定存在于两路。正是因为采用了推挽式驱动所以使得大于等于2A成为它的输出峰值电流,如果1000pF就是它的负载时,那么

29、25ns就是它的开关时间。120ns为两路匹配传输导通延时,94ns为关断延时。可以承受反向电流的是IR2110的脚10,它最大能够承受2A的反向电流。 图3-3 IGBT驱动电路3.2.3 元器件的选择比较、选型本设计采用IGBT,IGBT作为大功率的电路驱动器件,具有以下优点: (1)IGBT在正常工作时,导通电阻较低,增大了器件的电流容量。 (2)IGBT的输出电流和跨导都大于相同尺寸的功率MOSFET。 (3)较宽的低掺杂漂移区(n-区)能够承受很高的电压,因而可以实现高耐压的器件。 (4)IGBT利用栅极可以关断很大的漏极电流。 (5)与MOSFET一样,IGBT具有很大的输入电阻和

30、较小的输入电容,则驱动功率低,开关速度高。虽然当IGBT关断(栅极电压降为0)时,IGBT的漏极电流也就相应地不能马上关断,即漏极电流波形有一个较长时间的拖尾关断时间较长(1050ms),所以IGBT的工作频率较低。但这本设计中IGBT仍然是本设计驱动的最理想器件。 IGBT型号选择:(1)IGBT承受的正反向峰值电压: (3-1)考虑到2-2.5倍的安全系数,可选IGBT的电压为900V。 (2)IGBT导通时承受的峰值电流: (3-2) 额定电电压按220V供电电压、额定功率10kVA容量算。在计算出(或测出)最大电压后,再留有20%30%的裕量,选用的IGBT型号为三菱公司的CT60AM

31、-18F,其耐压值为900V,最大峰值电流30A,完全满足设计要求。3.3 H桥双极性主电路 从上面的原理可以看出,产生高压侧门极驱动电压的前提是低压侧必须有开关的动作,在高压侧截止期间低压侧必须导通,才能够给自举电容提供充电的通路。因此在这个电路中,VT1、VT4或者VT2、VT3是不可能持续、不间断的导通的。我们可以采取双PWM信号来控制直流电机的正转以及它的速度。 将IC1的HIN端与IC2的LIN端相连,而把IC1的LIN端与IC2的HIN端相连,这样就使得两片芯片所输出的信号恰好相反。在HIN为高电平期间,VT1、VT4导通,在直流电机上加正向的工作电压。其具体的操作步骤如下:电源经

32、VT1至电动机的正极经过整个直流电机后再通过VT4到达零电位,完成整个的回路。此时直流电机正转。在HIN为低电平期间,LIN端输入高电平,VT2、VT3导通,在直流电机上加反向工作电压。其具体的操作步骤如下:电源经VT3至电动机的负极经过整个直流电机后再通过VT2到达零电位,完成整个的回路。此时,直流电机反转。因此电枢上的工作电压不是单极性的矩形脉冲波形,而是双极性矩形脉冲波形,电动机的转速和转向是由矩形脉冲电压的平均值来决定的,原因在于存在着机械惯性的缘故。设PWM波的周期为,HIN为高电平的时间为,这里忽略死区时间,那么LIN为高电平的时间就为。HIN信号的占空比为。设电源电压为V,那么电

33、枢电压的平均值为: (3-3) 定义负载电压系数为, 那么;当T为常数时,改变HIN为高电平的时间,也就改变了占空比,从而达到了改变的目的。在0-1之间变化,因此在1之间变化。如果我们联系改变,那么便可以实现电机正向的无级调速。当时,,此时电机的转速为0;当时,为正,电机正转;当时,,电机正转全速运行。 图3-4 桥式可逆PWM变换器电路双极式控制可逆PWM变换器的四个驱动电压波形如图3-5所示。图3-5 PWM变换器的驱动电压波形 他们的关系是:。在一个开关周期内,当时,晶体管、饱和导通而、截止,这时。当时,、截止,但、不能立即导通,电枢电流经、续流,这时。在一个周期内正负相间,这是双极式P

34、WM变换器的特征,其电压、电流波形如图2所示。电动机的正反转体现在驱动电压正、负脉冲的宽窄上。当正脉冲较宽时,则的平均值为正,电动机正转,当正脉冲较窄时,则反转;如果正负脉冲相等,平均输出电压为零,则电动机停止。 双极式控制可逆PWM变换器的输出平均电压为 (3-4)如果定义占空比,电压系数则在双极式可逆变换器中调速时,的可调范围为01相应的。当时,为正,电动机正转;当时,为负,电动机反转;当时,电动机停止。但电动机停止时电枢电压是正负脉宽相等的交变脉冲电压,它并不等于零,从这里也可以看出电流也是交变的。因为存在正负脉宽相等条件,对交变电流的平均值而言,它的值也等于零,因而平均转矩是不产生,双

35、极式控制有个很大的缺点就是它会徒然增大电动机的损耗。虽然这个缺点无法避免,但是它的好处还是很明显的,那就是高频微震电流存在于电动机停止时,正是因为这一点,正、反向时静摩擦死区被有效的消除了,“动力润滑”的作用因此而得名。 双极式控制的桥式可逆PWM变换器有以下优点: 1)可使电动机在四象限运行。 2)低速平稳性好,每个开关器件的驱动脉冲仍较宽,有利于保证器件的可靠导通。 3)电流一定连续。 4)电动机停止时有微震电流,能消除静摩擦死区。3.4检测回路 检测回路利用光电编码器将转速直接转换成数字信号送入单片机进行处理。3.4.1 光电编码器 编码器是一种转换装置,它能把直线位移或角位移转换成电信

36、号。前者成为码尺,后者称码盘。编码器如果按照读出方式来分的话可以分为非接触式和接触式两种。非接触式的接受敏感元件是磁敏元件或光敏元件,光敏元件时常常使用以不透光区和透光区来表示代码的状态是“0”还是“1”;接触式采用电刷输出,一电刷接触绝缘区或导电区来表示代码的状态是“0”还是“1”。同理,编码器如果按照工作原理来分的话可分为绝对式和增量式两种。绝对式编码器的特点为一个确定的数字码对应每一个位置,因此它的示值与测量的中间过程无关,而只与测量的起始和终止位置有关。增量式编码器与绝对式编码器原理一点也不相同,它的原理是将位移转换成周期性的电信号,再把这个电信号转变成计数脉冲,然后用脉冲的个数来表示

37、位移的大小。通过比较增量式和绝对式的特点及优缺点,我们可以确定本设计可以采用增量式光电编码器来采样转速信号,如图3-6所示。增量式编码器最大的优势是专门用来测量转动角位移的累计量。下面我们这里以三相编码器为例来介绍增量式编码器的结构及其工作原理。图3-6 编码器原理图圆盘上有规则地刻有不透光和透光的线条是增量式光电编码器非常显著地特点,在圆盘两侧分别安放光敏元件和发光元件。一旦当圆盘随电机旋转时,光敏元件输出的脉冲是这样形成的,光敏元件接受的光增量会随透光线条同步变化,它输出的波形经过整形后便形成了脉冲。码盘上有向标志,每转一圈z相输出一个脉冲。码盘提供相位相差90的两路脉冲信号,并以此来判断

38、旋转方向。复位计数器采用编码盘输出的z相脉冲,每转一圈复位一次计数器。将A、B两相脉冲中任何一相输入计数器中,均可使计数器进行计数。用D触发器的输出信号Q来判断编码盘的旋转方向。D触发器的时钟端和D输入端分别接整形后的A、B两相输出信号,采用A相脉冲的上升沿来触发D触发器的CLK端。电机的转动方向是这样确定的,由于A、B两相的脉冲相位相差90,当电机反转时,A相脉冲超前B相脉冲90,则D触发器总是在B脉冲为低电平时触发,这时Q输出端输出为低电平。当电机正转时,B相脉冲超前A相脉冲90,触发器总是在B脉冲为高电平时触发,这时D触发器的输出端Q输出为高电平。为了在较宽的速度范围内获得快速和高精度的

39、数字测速,选用转速传感器时本设计采用每转1024线的光电编码器,它产生的测速脉冲频率与电机转速有固定的比列关系,微机对该频率信号采用M/T法测速处理。之所以要保证转速检测的快速性和精度,是因为转速检测的快速性和精度对电机调速系统的静、动态性能影响极大。3.4.2 M/T法测速原理 M/T法测速原理是在对时钟脉冲的个数进行计数的同时对光电编码器输出的测速脉冲数也进行计数。原理如图3-7:图3-7 M/T法测速原理测速时间由测速脉冲来同步,即由图3-7电路实现等于整个脉冲周期。设从图3-7上a点开始,计数器分别对和计数,到达b点,预计的测速时间到,微机发出停机指令,但因为不一定恰好等于整数个编码输

40、出脉冲周期,所以计数器仍对时钟脉冲计数,直到c点时,可以利用下一个转速脉冲上升沿(即c点)触发数字测速硬件电路使计数器停止计数。这样,代表了个测速脉冲周期的时间。设时钟脉冲频率为,光电编码器每转发出p个脉冲,则电机转速的计算公式为: (3-5) 由于M/T法的计数值和都随着转速的变化而变化,高速时,相当于M法测速,最低速时,自动进入T法测速。因此,M/T法测速能适用的转速范围比较大,是目前广泛应用的一种测速方法。希望在低速获得高精度测速值,于是利用光码盘A,B两相输出在相位上互差90的二路脉冲经异或门二倍频再送入的计数器。这时,转速计算公式修改为: (3-6) 3.5 键盘及显示电路键盘在单片

41、机应用系统中能实现向单片机输入数据、传诵命令等功能,是人工干预单片机的主要手段.单片机应用系统中,键盘扫描只是CPU的工作内容之一。CPU在忙于各项工作任务时,如何兼顾键盘的输入,取决于键盘的工作方式。键盘的工作方式的选取应根据实际应用系统中CPU工作的忙、闲情况而定。其原则是既要保证能及时响应按键操作,又要不过多占用CPU的工作时间。3.5.1键盘/显示芯片8279简介键盘/显示模块的核心控制器采用Intel公司的8279。如图12所示。它是一种专用智能芯片,能够实现段式数码显示和键盘输入控制。正是因为它具有这两种功能,它能减轻CPU的负担,并且可以大大简化单片机控制系统的软硬件设计,所以本

42、设计使用这个芯片。下面是它功能的一些简单介绍: (1)常规情况下,能同时管理64个物理键和16个八段数码管;(2)能按FIFO(先进先出)方式实现8个键值的缓冲; (3)能自动实现按键的“去抖”和重键处理;(4)能以中断或查询两种方式工作; (5)与微处理器接口简单。其引脚定义如下: DB0DB7:双向数据总线 RL0RL7: 检测输入线 SL0SL3: 矩阵扫描线 IRQ:中断请求信号 /RD、/WR:读写选通信号 /CS:片选信号 /BD: 显示消隐信号 CLK:时钟信号 RESET:复位信号 SHIFT: 扩展键位的换档信号,带上拉电阻 CTRL/STB: 控制键输入/选通信号输入,带上

43、拉电阻 A0:命令/状态或数据识别信号A=1,为写命令或读状态; A=0,为数据3.5.2键盘设计采用4*4式键盘,分数字部分和控制部分,如图下表所示。数字部分用来输入给定转速,控制部分用来控制电机的运行。0123456789取消确认测速停车 图3-8显示器图 输入给定转速时应注意的几个问题:(1)转速不足四位时,在前面加拨0凑够四位;(2)转速输入错误时,按取消键,显示器清空,重新输入值;(3)转速输入完成后,按确认键。3.5.3显示器设计 采用共阴极的发光二极管构成可以显示4位十进制的显示器,运行中显示当前的实际转速值。如上图示。8279与单片机、键盘和显示器的外围总接线如图3-9示。 图

44、 3-9显示器/键盘驱动电路由于8279芯片有自动分时扫描功能,所以它可与CPU同时工作,减轻CPU的负担,而且接口方便,显示稳定,程序简单,可靠性高。3.6电源电路 电源电路采用78系列芯片产生+5V、+15V。电路图如图3-10:图3-10 78系列的电源电路 78XX,XX就代表它所输出的电压值,能降低电压4-5V,三端稳压集成电路电子产品非常常见,用的比较多的有负电压输出的79系列和正电压输出的78系列。从名字上可见,稳压用的三端IC集成电路都是统一的标准,引脚输出只有三条,分别是接地端、输出端和输入端。 因为它具有两大比较突出的优势,首先电路内部有过流、过热及调整管的保护电路,其次它

45、所需的外围元件极少,所以采用78/79系列三端稳压IC来组成稳压电源。三端集成稳压电路的输出电压是由该系列集成稳压IC型号中的78或79后面的数字表示的,如7909表示输出电压为负9V,7806表示输出电压为正6V。 另外,集成稳压IC型号中的78或79后面有时还会有一个L或M,如79L24或78M12,字母有它固有的含义,它是用来区别封装形式和输出电流等,其中78M系列最大输出电流为1A,78系列最大输出电流为1.5A,78L系列的最大输出电流为100mA。当然,对于实际应用还有一些事项要稍加注意,比如针对大功率的条件下,必须在三端集成稳压电路上安装足够大的散热器,小功率的话就不需考虑这个问

46、题了。另外,还会出现稳压管温度过高的情况,这时稳压管的稳压性能将变差,此时稳压管损坏也很有可能出现。4系统软件设计4.1 PWM实现方式 调脉宽的方式有三种:定频调宽、定宽调频和调宽调频。我们采用了定频调宽方式,因为采用这种方式,电动机在运转时比较稳定;并且在产生PWM脉冲的实现上比较方便。4.1.1 定时器/计数器 单片机内部的定时器是PWM信号软件实现的核心,就定时器而言,选用不同的单片机,它定时器的特点一般都会不同,就算是相同型号的单片机,如果它选择的定时器工作方式不同,或者选用的晶振不同,那么它定时器的定时初值与定时时间的关系也会不相同。那么,定时器的定时初值与定时时间的关系是第一要确

47、定下来的东西。现在假如定时器/计数器为位,单片机的时钟频率为,那么定时时间与定时器初值的关系为: (4-1) 式中,-个机器周期的时钟数; -定时器定时初值。 一般情况下,机型不同,的值就会不同。在实际的设计过程中,常常是由已选择的具体的机型,然后给出它相应的值。而在本次设计中我们选用的是晶体振荡器的频率为12MZ的单片机,那么它的。综上所述,我们知道要想控制电机的转速,我们需要控制占空比,而要达到控制占空比的目的,我们仅仅只需通过设定不同的定时初值来改变占空比就行了。4.1.2 PWM产生程序#include#define uchar unsigned charuchar num;sbit

48、PWM=P10;void init() TMOD=0x01; TH0=(65536-500)/256; TL0=(65536-500)%256; EA=1; ET0=1; TR0=1;void T0_timer() interrupt 1 TH0=(65536-500)/256; TL0=(65536-500)%256; num+;void main() init(); while(1) if(num=4) PWM=PWM; num=0; 4.2 系统程序设计4.2.1主程序及系统初始化模块 主程序完成系统初始化后,实现刷新显示、键盘处理、与上位计算机和其他外设通信等功能,总的来说,它主要完成

49、一些实时性要求不高的功能,如图4-1。初始化子程序主要是完成一些系统运行参数和变量的初始化和硬件器件工作方式的设定等工作,如图4-2。有键按下吗?系统初始化数据通信刷新显示键处理主程序YN系统初始化设定定时器、PWM、数字测速工作方式参数及变量初始化返回设定I/O、通信接口及显示、键盘工作方式图4-1 主程序流程图 图4-2 初始化子程序 主程序主要要完成的任务是三个方面:变量的初始化、内部定时/计数器T0、T1测速和键盘/显示芯片8279。 此程序共有2个中断源:外部中断0,用于电机故障处理;外部中断1,用于键盘输入处理。 4.2.2 中断程序设计外部中断0模块设计 外部中断0是故障中断,优

50、先级最高。当电机出现问题时向CPU申请中断。响应中断后封锁PWM输出,使电机停转。外部中断1模块设计外部中断1是键盘输入中断,高优先级。当键盘有输入值时,8279向CPU申请中断。读取键值,按其实际功能进行操作。内部定时器T0溢出中断设计转速测定为M/T式编码盘测速,要通过测取给定时间内的编码盘输出的脉冲数。T0用来定时,T1用来计数,T0和T1均工作于方式1。T0定时50ms,单片机的时钟频率为12MHz,机器周期为1us,4.2.3 中断子程序模块 中断服务子程序完成实时性强的功能,如故障保护、PWM生成、状态检测和数字PID调节等,中断服务子程序由相应的中断源提出申请,CPU实时响应。

51、图4-3 转速调节中断子程序框图 图4-4故障保护中断子程序框图 当故障保护引脚的电平发生跳变时申请故障保护中断,而转速调节采用定时中断。两种中断服务中,故障保护中断优先级别最高,转速调节中断级别次之。 4.3键盘/显示模块设计 键盘/显示模块核心控制器件是8279,由软件设置为8字符显示,左端送入,编码扫描键盘,双键互锁,内部时钟频率设置为100KHz。按键操作由终端导入,静态显示方式。选通个位?是否选通个位?是否选通个位?是否选通个位?是否显示个位显示十位显示百位显示千位返回延时延时延时分解速度值到显示缓冲区延时显示完毕?否是图4-5 显示子程序提速N转是否停止记数读计数器值求出此时电机速

52、度值重装记数初值开始记数返回 图4-6测速子程序4.4数字PID控制器4.4.1 PID控制器原理 在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。PID控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。PID控制,实际中也有PI和PD控制。PID控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的。

53、比例(P)控制 比例控制是一种最简单的控制方式。其控制器的输出与输入误差信号成比例关系。当仅有比例控制时系统输出存在稳态误差(Steady-stateerror)。积分(I)控制 在积分控制中,控制器的输出与输入误差信号的积分成正比关系。对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称有差系统(SystemwithSteady-stateError)。为了消除稳态误差,在控制器中必须引入“积分项”。积分项对误差取决于时间的积分,随着时间的增加,积分项会增大。这样,即便误差很小,积分项也会随着时间的增加而加大,它推动控制器的输出增大使稳态误差进一步减小,直到

54、等于零。因此,比例+积分(PI)控制器,可以使系统在进入稳态后无稳态误差。微分(D)控制 在微分控制中,控制器的输出与输入误差信号的微分(即误差的变化率)成正比关系。自动控制系统在克服误差的调节过程中可能会出现振荡甚至失稳。其原因是由于存在有较大惯性组件(环节)或有滞后(delay)组件,具有抑制误差的作用,其变化总是落后于误差的变化。解决的办法是使抑制误差的作用的变化“超前”,即在误差接近零时,抑制误差的作用就应该是零。所以对有较大惯性或滞后的被控对象,比例+微分(PD)控制器能改善系统在调节过程中的动态特性。4.4.2 数字PID控制器流程图 数字PID控制算法可以分为位置式PID和增量式

55、PID控制算法。 将模拟的PID算式 (4-2)用求和的方式代替积分;用增量的方式代替微分.则可作如下近似 (k=0, 1 ,2,.) (4-3) 进行离散处理有 (4-4) 这便是增量式PID算式,由于它的每次输出均与过去有关,计算时要对Ek进行累加,故工作量大。因此一般不用位置式PID。对三式稍作推导即得到下式。 式中 (4-5) (4-6) 由式看出,如果计算机采用恒定的采样周期T,一旦确定了ABC只要使用前三次测量值的偏差,就可以由式求出控制增量。如图4-7所示.开 始计算NK存入46H48H计算ANK存入4CH4EH计算NK存入4CH4EH计算CNK-2存入4FH51H计算ANK+B

56、NK-1存入4CH4EH计算BNK-1存入4FH51H否,取NK整数N降速N转更新NK-1,NK-2是,取NK整数NNK0提速N转返 回AT89C51开始 图4-7 PID流程图保护现场存放计数器T1中的值是否计够20次?累加20次的计数值计算实际转速n=60M/ZTc给出PID运算参数TI、TD、KP调用转速调节器运算保存运算结果将实际转速转换成十进制,送入显示RAM显示返回中断重新设定定时器/计数器的初值并启动重新设定定时器/计数器的初值并启动NY图4-8 调速软件系统框图5系统的MATLAB仿真 本次系统仿真采用控制系统仿真软件MATLAB7.0,使用MATLAB对控制系统进行计算机仿真的主要方法有

展开阅读全文
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!