模电课程设计报告音频功率放大电路

上传人:仙*** 文档编号:36470934 上传时间:2021-10-31 格式:DOC 页数:13 大小:171.50KB
收藏 版权申诉 举报 下载
模电课程设计报告音频功率放大电路_第1页
第1页 / 共13页
模电课程设计报告音频功率放大电路_第2页
第2页 / 共13页
模电课程设计报告音频功率放大电路_第3页
第3页 / 共13页
资源描述:

《模电课程设计报告音频功率放大电路》由会员分享,可在线阅读,更多相关《模电课程设计报告音频功率放大电路(13页珍藏版)》请在装配图网上搜索。

1、 模电课程设计论文 论文题目: 音频功率放大电路 课程名称 模拟电子技术基础课程设计 2012年12月25日目 录 一设计题目 .二设计任务目的与要求 .三原理电路设计 .方案比较 .整体电路框图 . 单元电路设计及元器件选择 . 输出波形图 .系统的电路总图: . 四、电路调试过程与结果: .五课程设计的总结与体会 . 一、设计题目:音频功率放大电路二、设计任务目的与要求:要求:设计并制作用晶体管和集成运算放大器组成的音频功率放大电路,负载为扬声器,阻抗8。指标:频带宽50HZ20kHZ,输出波形基本不失真;电路输出功率大于8W;输入灵敏度为100mV,输入阻抗不低于47K。三、原理电路设计

2、:方案比较:利用运放芯片TDA7294和各元器件组成音频功率放大电路, 待机和静音功能有保护电路,电源分别接+39v和-39v,输出功率可以达到70w。优点:有短路保护和过热保护电路,低噪声和低失真,高输出功率。缺点:由于输出功率较大,对各器件的要求都比较高,还要考虑到散热的问题,成本高。 利用运放芯片TDA2030和各元器件组成音频功率放大电路,有保护电路,电源只需接+19v,另一端接地,负载是阻抗为8的扬声器,输出功率大于8w。通过比较,方案的输出功率有70w,能用在HiFi家用音响、有源音响、高性能电视机,但其输入要求比较苛刻,添加了实验难度。而方案的要求不高,并能满足设计要求,所以选取

3、方案来进行设计。整体电路框图:TDA2030元器件和电源元器件和接地信号输入三极管信号输出单元电路设计及元器件选择:单元电路设计:功率放大器按输出级静态工作点的位置可分为甲类、乙类和甲乙类三种;若按照输出级与负载的耦合方式,甲乙类又可分为电容耦合 (OTL 耦合)、直接耦合(OCL 电路)和变压器耦合三种。变压器耦合容易实现阻抗匹配,但体积大, 较笨重。又OCL电路电源输入要求较高,所以采用OTL电路。采用单电源的OTL电路不需要变压器中间抽头,但需要在输出端接上大电容,且低频特性不如OCL好。根据“虚短”、“虚断”的原理,利用电阻的比值,可求得电路所需的放大倍数,其中可加入一个电位器替代反馈

4、电阻,这样就能够实现电路放大倍数的调整。因为功率放大电路是追求在电源电压确定的情况下,输出尽可能大的功率,可以采取OTL电路来实现。为了提高转换功率,我们要对电路进行改善,这主要围绕功率放大电路频率响应的改善和消除非线性失真来改进电路,因此要用到若干个电阻电容来保护电路。OTL电路会产生交越失真,为了消除这种失真,应当设置合适的静态工作点,使电路中的两只放大管均工作在临界导通或微导通的状态,这可以通过加入两个二极管来实现,因为二极管具有单向导电性。或者将两个有一定对称性的NPN和PNP三极管的基极分别和TDA2030的两个电源输入端相连。最后在输出端,还要加一个大电容来保证电路的低频性良好。在

5、接有感性负载扬声器时还要加入一个电阻和一个电容来减少电路的自激振荡,确保高频稳定性。元器件选择:如下面的系统原理图所示,C2为输入耦合电容,应选取较小的电解电容;R1、R、R3和C7的作用是组成运放TDA2030的输入偏置电路,取R1=R2=R3,可计算得TDA2030正向输入端的电压为0.5VCC,而电容C7的作用是可以稳定这个电位。另外,R3是为了防止输入信号被C7短接到地而设的。C6是高频退耦电容,应选用较小的陶瓷电容或独石电容;C3是滤波电容,应选用较大的电解电容。C4、R4、和R11构成交流负反馈,控制交流增益,对于音频信号,可以近似地认为C4短路,所以功放的增益为11+R11(有效

6、部分)/R48w。也满足“电路输出功率大于8W”条件。测量输入灵敏度为100mV时的输入阻抗:在信号输入端接上两个万用表,分别测量输入端的电压和电流,得Ui75.59mV,Ii746.57nA,所以输入阻抗为Ri=Ui/Ii=101K47K,明显也满足“输入灵敏度为100mV,输入阻抗不低于47K”的条件。五、总结和体会:方案和作品的优点为:焊接板排版较为缜密,焊接没有跳线;作品所用元器件较少,电源输入要求较低,频带宽4.924HZ73.813kHZ,输出波形基本不失真,电路输出功率大于8W,输入灵敏度为100mV,输入阻抗高于47K,能够基本实现设计的任务要求;电路中有TDA2030的保护电

7、路,另外在输出部分能对扬声器的相位进行补偿,从而能够较少电路的自激振荡,确保高频稳定性;作品用了TIP31C和TIP32C组成的推挽放大电路,能够较少TDA2030的功耗,使TDA2030的发热量减少;电位器R11能够实现电路增益的调整。缺点有:功率不是很高,最大输出功率只有8.9W;TIP31C和TIP32C的功耗都比较大,集电极电流输出不是很大;2.2mf的电解电容存在电感,电路的低频特性不是很好;针对3个缺点各自的改进方案:缺点1:采用双电源供电的OCL电路或者用LM1875或TDA7294等运放和元器件搭建的电路;缺点2:2SA1444、2SC3694的功耗只有30W左右,而集电极的输

8、出电流可达15A,每只管的耐压值也为100V,可用这两只管代替TIP31C和TIP32C。缺点3:把电路换成OCL电路;心得体会: 时间总是过得很快,经过一个月的课程设计的学习,我已经自己能制作一个高保真音频功率放大器,这其中的兴奋是无法用言语表达的。为了尽快完成模电的课程设计,我充分利用课余时间,一天也没歇息。虽然大一学过了模电,但毕竟那时理论没有跟实际联系起来,所以很多知识都忘了。相关知识缺乏给学习它带来很大困难,为了尽快掌握它的用法,我重新找出了模电书仔细地复习功率放大的相关知识。一边学理论知识,一边上网照着原理图学习视频一步一步做,终于知道了如何操作。刚开始我借来了一份高保真音频功率放

9、大器的电路原理图,但离实际应用差距较大,有些器件太老了,很难找到,后来到网上搜索了一下相关内容,顺便到学校图书馆借相关书籍,经过不断比较与讨论,最终敲定了高保真音频功率放大器的电路原理图,并且查找关于元器件的参数情况。为下步实物连接打好基础。在做电路仿真时,我画好了电路原理图,修改好参数后,创建网络列表时系统总是报错,无论我怎样修改都不行,后来请教同学,他们也遇到了同样的困惑。不过,经过了一个晚上的挣扎,终于检查出原来漏连了一条线,真是精力耗尽啊!但这反而高涨了我对这课程设计的热情!接下来,开始了我们的实物焊接阶段。由于之前有接触过焊接,所以以为会比较简单。但事实不是这样的!由于采用了电路板,

10、为了使步线美观、简洁,不想用跳线,所以排版也排了很辛苦,还真是费了我不少精力,经过不断的修改,最终结果还比较另人满意。经过这段课程设计的日子,我发现从刚开始的只会一点理论知识到现在的把理论和实际联系起来,无论是实际动手能力还是电子知识的储备,都觉得有质的飞跃。由于没有接触,开始学得很费力,但到后来就好了。在每次的课程设计中,遇到问题,最好的办法就是问别人,因为每个人掌握情况不一样,不可能做到处处都懂,发挥群众的力量,复杂的事情就会变得很简单。这一点我深有体会,在很多时候,我遇到的困难或许别人之前就已遇到,向他们请教远比自己在那冥思苦想来得快。而且,在这一过程中,我经常上“电子发烧友”等技术论坛

11、,大大开阔了眼界。也开始从模电课程设计走出来,经常自己上网查找资料DIY一些有趣实用的电子电路。从一开始的TDA2030到即将要做的TDA7294功放,我发现自己对功放的热情是越来越高!在调试的时候发现原先的可调电源达不到19V,但这阻止不了我的热情。工欲善其事,必先利其器!经过了一番折腾,我终于做出了25V到37V的可调电源。虽然也去过实验室几次调试,但是觉得有一个可靠的可调电源以后也很有作用。通过这次课程设计,我明白了独立完成好实验的重要性,从头到尾,都是我出主意,然后遇到不懂就问别的同学或上网查找资料来解决中间出现的各种问题。从原理图的最终敲定,到波形的仿真,到元器件的选择与购买,到最后实物的焊接与调试,这都是自己独立完成的结果。这对我的自学能力有很大的帮助。我学会了不依赖别人独立解决自己的问题。尽管现在只是初步学会了高保真音频功率放大器设计,离真正掌握还有一定距离,但学习的这段日子确实令我收益匪浅,不仅仅掌握了模电课程设计的一些方法,而且向自己打开了一道电子的大门。通过这个门,我发现了玩电子的乐趣! 时光荏苒,感谢教给我人生道理的老师。结语:

展开阅读全文
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!