通用变频器选型、安装、测量与接线规范

上传人:仙*** 文档编号:35293464 上传时间:2021-10-26 格式:DOC 页数:57 大小:1.63MB
收藏 版权申诉 举报 下载
通用变频器选型、安装、测量与接线规范_第1页
第1页 / 共57页
通用变频器选型、安装、测量与接线规范_第2页
第2页 / 共57页
通用变频器选型、安装、测量与接线规范_第3页
第3页 / 共57页
资源描述:

《通用变频器选型、安装、测量与接线规范》由会员分享,可在线阅读,更多相关《通用变频器选型、安装、测量与接线规范(57页珍藏版)》请在装配图网上搜索。

1、通用变频器选型、安装、测量与接线规范 变频器的选型变频器的正确选择对于控制系统的正常运行是非常关键的。选择变频器时必须要充分了解变频器所驱动的负载特性。人们在实践中常将生产机械分为三种类型?押 恒转矩负载、恒功率负载和风机、水泵负载。恒转矩负载:负载转矩与转速无关,任何转速下总保持恒定或基本恒定。例如传送带、搅拌机,挤压机等摩擦类负载以及吊车、提升机等位能负载都属于恒转矩负载。变频器拖动恒转矩性质的负载时,低速下的转矩要足够大,并且有足够的过载能力。如果需要在低速下稳速运行,应该考虑标准异步电动机的散热能力,避免电动机的温升过高。恒功率负载:机床主轴和轧机、造纸机、塑料薄膜生产线中的卷取机、开

2、卷机等要求的转矩,大体与转速成反比,这就是所谓的恒功率负载。负载的恒功率性质应该是就一定的速度变化范围而言的。当速度很低时,受机械强度的限制,不可能无限增大,在低速下转变为恒转矩性质。负载的恒功率区和恒转矩区对传动方案的选择有很大的影响。电动机在恒磁通调速时,最大容许输出转矩不变,属于恒转矩调速;而在弱磁调速时,最大容许输出转矩与速度成反比,属于恒功率调速。如果电动机的恒转矩和恒功率调速的范围与负载的恒转矩和恒功率范围相一致时,即所谓“匹配”的情况下,电动机的容量和变频器的容量均最小。风机、泵类负载:在各种风机、水泵、油泵中,随叶轮的转动,空气或液体在一定的速度范围内所产生的阻力大致与速度的次

3、方成正比。随着转速的减小,转速按转速的次方减小。这种负载所需的功率与速度的次方成正比。当所需风量、流量减小时,利用变频器通过调速的方式来调节风量、流量,可以大幅度地节约电能。由于高速时所需功率随转速增长过快,与速度的三次方成正比,所以通常不应使风机、泵类负载超工频运行。西门子公司可以提供不同类型的变频器,用户可以根据自己的实际工艺要求和运用场合选择不同类型的变频器。在选择变频器时因注意以下几点注意事项: 根据负载特性选择变频器,如负载为恒转矩负载需选择 变频器,如负载为风机、泵类负载应选择 变频器。 选择变频器时应以实际电机电流值作为变频器选择的依据,电机的额定功率只能作为参考。另外应充分考虑

4、变频器的输出含有高次谐波,会造成电动机的功率因数和效率都会变坏。因此,用变频器给电动机供电与用工频电网供电相比较,电动机的电流增加而温升增加左右。所以在选择电动机和变频器时,应考虑到这中情况,适当留有裕量,以防止温升过高,影响电动机的使用寿命。 变频器若要长电缆运行时,此时应该采取措施抑制长电缆对地耦合电容的影响,避免变频器出力不够。所以变频器应放大一档选择或在变频器的输出端安装输出电抗器。 当变频器用于控制并联的几台电机时,一定要考虑变频器到电动机的电缆的长度总和在变频器的容许范围内。如果超过规定值,要放大一档或两档来选择变频器。另外在此种情况下,变频器的控制方式只能为控制方式,并且变频器无

5、法保护电动机的过流、过载保护,此时需在每台电动机上加熔断器来实现保护。 对于一些特殊的应用场合,如高环境温度、高开关频率、高海拔高度等,此时会引起变频器的降容,变频器需放大一档选择。 使用变频器控制高速电机时,由于高速电动机的电抗小,高次谐波亦增加输出电流值。因此,选择用于高速电动机的变频器时,应比普通电动机的变频器稍大一些。 变频器用于变极电动机时,应充分注意选择变频器的容量,使其最大额定电流在变频器的额定输出电流以下。另外,在运行中进行极数转换时,应先停止电动机工作,否则会造成电动机空转,恶劣时会造成变频器损坏。 驱动防爆电动机时,变频器没有防爆构造,应将变频器设置在危险场所之外。 使用变

6、频器驱动齿轮减速电动机时,使用范围受到齿轮转动部分润滑方式的制约。润滑油润滑时,在低速范围内没有限制;在超过额定转速以上的高速范围内,有可能发生润滑油用光的危险。因此,不要超过最高转速容许值。变频器驱动绕线转子异步电动机时,大多是利用已有的电动机。 绕线电动机与普通的鼠笼电动机相比,绕线电动机绕组的阻抗小。因此,容易发生由于纹波电流而引起的过电流跳闸现象,所以应选择比通常容量稍大的变频器。一般绕线电动机多用于飞轮力矩较大的场合,在设定加减速时间时应多注意。变频器驱动同步电动机时,与工频电源相比,降低输出容量,变频器的连续输出电流要大于同步电动机额定电流与同步牵入电流的标幺值的乘积。对于压缩机、

7、振动机等转矩波动大的负载和油压泵等有峰值负载情况下,如果按照电动机的额定电流或功率值选择变频器的话,有可能发生因峰值电流使过电流保护动作现象。因此,应了解工频运行情况,选择比其最大电流更大的额定输出电流的变频器。变频器驱动潜水泵电动机时,因为潜水泵电动机的额定电流比通常电动机的额定电流大,所以选择变频器时,其额定电流要大于潜水泵电动机的额定电流。当变频器控制罗茨风机时,由于其起动电流很大,所以选择变频器时一定要注意变频器的容量是否足够大。选择变频器时,一定要注意其防护等级是否与现场的情况相匹配。否则现场的灰尘、水汽会影响变频器的长久运行。单相电动机不适用变频器驱动。 变频器的安装与接线规范:安

8、装环境:为了变频器能稳定地工作,必须确保变频器的运行环境满足其所规定的容许环境。 安装场所:?雪 电气室应湿汽少、无水浸?雪 无爆炸性、燃烧性或腐蚀性气体和液体,粉尘少?雪 维修检查容易进行?雪 应备有通风口或换气装置以排出变频器产生的热量 使用条件:?雪 变频器的运行温度多为:或,要注意变频器柜体的通风性。?雪 变频器的周围湿度为以下。周围湿度过高,存在电气结缘降低和金属部分的腐蚀问题。如果受安装场所的限制,变频器不得已安装在湿度高的场所,变频器的柜体应尽量采用密封结构。为防止变频器停止时结露,有时装置需加对流加热器。?雪 变频器周围不应有腐蚀性、爆炸性或燃烧性气体以及粉尘和油雾。变频器的安

9、装周围如有爆炸性和燃烧性气体,由于变频器内有易产生火花的继电器和接触器,所以有时会引起火灾或爆炸事故。有腐蚀性气体时,金属部分产生腐蚀,影响变频器的长期运行。如果变频器周围存在粉尘和油雾时,这些气体在变频器内附着、堆积将导致结缘降低;对于强迫风冷的变频器,由于过滤器堵塞将引起变频器内温度异常上升,致使变频器不能稳定运行。?雪 变频器的耐振性应机种的而不同,振动超过变频器的容许值时,将产生部件紧固部分松动以及继电器和接触器等的可动部分的器件误动作,往往导致变频器不能稳定运行。对于机床、船舶等事先能预见的振动场合,应考虑变频器的振动问题。?雪 变频器的标高多规定在以下。标高高则气压下将,容易产生结

10、缘破坏。另外标高高冷却效果也下降,必须注意温升。变频器接线:在各种工厂和设备采用变频调速时,在变频器的电源侧和电机侧都会产生 谐波干扰,对供电电网和变频器周围的其他电气设备要产生干扰。另外为了确保变频器长期可靠的运行,变频器的接线是非常重要的。 什么是?即是“电磁兼容性”。它是指电气设备在电磁环境中良好的工作能力,并且不能产生在此环境中工作的其它设备所不能接受的电磁干扰。噪声发射和抗扰度决定于与电气设备有关的两个特性噪声发射和抗扰度。规定噪声发射和抗扰度的极限值取决于电气设备应用时所处的环境。一般分为第一类环境(民用环境)和第二类环境(工业环境)。民用环境即当电气设备接至公共电源系统时对噪声发

11、射具有严格规定,但可以要求有较低的抗扰度;相反,在工业环境中,对电气备的抗扰度要求很高,但对噪声发射要求却较低。如果电气设备是系统的一个组成部分,它不要求一开始就满足有关发射和抗扰度的任何要求,但是整个系统必须符合相关电磁兼容的要求。一般来说,电气设备必须同时具有对高频和低频干扰的抑制能力。其中高频干扰主要包括静电放电()、脉冲干扰和发射性频率的电磁场等;而低频干扰主要是指电源电压波动、欠压和频率不稳定等。变频器及其电磁兼容性通常变频器能够运行在一个可能存在着较高电磁干扰()工业环境中,此时即是噪声发射源,可能又是噪声接受器。() 变频器作为噪声发射源寄生电容存在于电机电缆和电机内部,因此变频

12、器的输出电压波形的开关翼部通过寄生电容产生一个高频脉冲噪声电流,使变频器成为一个噪声源。 由于噪声电流的源是变频器,因此它一定要流回变频器。图中为大地阻抗,为动力电缆与地之间的阻抗。噪声电流流过此二阻抗所造成的电压降将影响到同一电网上的其它设备,造成干扰。此外,变频器的整流部分也会产生低频谐波,导致电网电压产生畸变。如果高频噪声电流有一条正确的通道,则高频噪声是可以得到抑的。如果使用非屏蔽电机电缆,则高频噪声电流以一个不确定的路线流回变频器,并在此回路中产生高频分量压降,影响其它设备。为使高频噪声电流能沿确定路线流回变频器,需要采用屏蔽电机电缆。电缆屏蔽层必须连接到变频器外壳和电机外壳上。当高

13、频噪声电流必须流回变频器时,屏蔽层形成一条最有效的通道。虽然,噪声电流不会在上出现压降,但是在电源阻抗上还会出压降影响其他电气设备。为此,无线电干扰抑制滤波器应安装在变频器的输入端?熏 这样一来流会电源的噪声电流会大大减少。()变频器作为噪声接受器 将影响减为最小的措施 西门子公司所有变频器设计为运行在一个可能存在着较高的电磁干扰()工业环境中。通常,好的安装经验可以确保变频器安全和无故运行。然而,如果遇到问题,请参考以下的建议及相关措施。()确保传动柜中的所有设备接地良好,使用短和粗的接地线连接到公共接地点或接地母排上。特别重要的是,连接到变频器的任何控制设备(比如一台)要与其共地,同样也要

14、使用短和粗的导线接地。最好采用扁平导体(例如金属网)?熏因其在高频时阻抗较低。电机电缆的地线应直接连接到相应变频器的接地端子()()安装变频器时,建议安装板使用无漆镀锌钢板,以确保变频器的散热器和安装板之间有良好的电气连接。()为有效的抑制电磁波的辐射和传导,变频器的电机电缆必须采用屏蔽电缆,屏蔽层的电导必须至少为每相导线芯的电导的。()控制电缆最好使用屏蔽电缆。一般来说,控制电缆的屏蔽层应直接在变频器的内部接地,另一侧通过一个高频小电容(例如)接地。当屏蔽层两端的差模电压不高和连接到同一地线上时,也可以将屏蔽层的两端直接接地。信号线和它的返回线绞合在一起,能减小感性耦合引起的干扰。绞合越靠近

15、端子越好。模拟信号的传输线应使用双屏蔽的双绞线。不同的模拟信号线应该独立走线,有各自的屏蔽层,以减少线间的耦合。不要把不同的模拟信号置于同一个公共返回线。低压数字信号线最好使用双屏蔽的双绞线,也可以使用单屏蔽的双绞线。低压数字信号线最好使用双屏蔽的双绞线,也可以使用单屏蔽的双绞线。模拟信号和数字信号的传输电缆应该分别屏蔽和走线。不要将和信号共用同一条电缆!()布线电机电缆应独立于其它电缆走线,其最小距离为。同时应避免电机电缆与其它电缆长距离平行走线,这样才能减少变频器输出电压快速变化而产生的电磁干扰。如果控制电缆和电源电缆交叉,应尽可能使它们按度角交叉。同时必须用合适的夹子将电机电缆和控制电缆

16、的屏蔽层固定到安装板上。()如果变频器运行在一个对噪声敏感的环境中,可以采用滤波器 减小来自变频器的传导和辐射干扰。同时为达到最优的效果,确保滤波器与安装板之间应有良好的接触。()进线电抗器用于降低由变频器产生的谐波,同时也可用于增加电源阻抗,并帮助吸收附近设备投入工作时产生的浪涌电压和主电源的电压尖峰。进线电抗器串接在电源和变频器功率输入端之间。如果还使用了滤波器,则进线电抗器应串接在滤波器和变频器之间。确保传导柜中的接触器有灭弧功能,交流接触器采用抑制器,直流接触器采用“飞轮”二极管,装入绕组中。压敏电阻抑制器也是很有效的。在开关感性元件时,产生的瞬变电压有时可以高达,频率可达? 必须对通

17、过变频器上的继电器控制的接触器采取灭弧措施?变频器的测量方法:变频器各部分的电压、电流的测定方法:测定位置和测定仪表的接线变频器的电源测、输出测的电压和电流因为含有谐波成分,所以测量仪表和测定回路不同,所得的数据也不同。请用下表指定的仪表对下图回路进行测量。测定位置和测定仪表略(可向作者索取):变频器日常的维护和检修:变频器是以半导体元件为中心构成的静止装置。由于温度、湿度、灰尘、振动等使用环境的影响,以及其零部件常年累月的变化,为了确保变频器的正常运行,必须对变频器进行日常检查和定期检查。详情表略可向作者索取。(西门子自动化与驱动集团标准传动部技术支持工程师)张登山变频器的运转指令方式一(转

18、)变频器的运转指令方式是指如何控制变频器的基本运行功能,这些功能包括启动、停止、正转与反转、正向电动与反向点动、复位等。 与变频器的频率给定方式一样,变频器的运转指令方式也有操作器键盘控制、端子控制和通讯控制三种。这些运转指令方式必须按照实际的需要进行选择设置,同时也可以根据功能进行相互之间的方式切换。1操作器键盘控制操作器键盘控制是变频器最简单的运转指令方式,用户可以通过变频器的操作器键盘上的运行键、停止键、点动键和复位键来直接控制变频器的运转。操作器键盘控制的最大特点就是方便实用,同时又能起到报警故障功能,即能够将变频器是否运行或故障或报警都能告知给用户,因此用户无须配线就能真正了解到变频

19、器是否确实在运行中、是否在报警(过载、超温、堵转等)以及通过led数码和lcd液晶显示故障类型。按照前面一节的内容,变频器的操作器键盘通常可以通过延长线放置在用户容易操作的5m以内的空间里。同理,距离较远时则必须使用远程操作器键盘。在操作器键盘控制下,变频器的正转和反转可以通过正反转键切换和选择。如果键盘定义的正转方向与实际电动机的正转方向(或设备的前行方向)相反时,可以通过修改相关的参数来更正,如有些变频器参数定义是“正转有效”或“反转有效”,有些变频器参数定义则是“与命令方向相同”或“与命令方向相反”。对于某些生产设备是不允许反转的,如泵类负载,变频器则专门设置了禁止电动机反转的功能参数。

20、该功能对端子控制、通讯控制都有效。2端子控制2.1基本概念端子控制是变频器的运转指令通过其外接输入端子从外部输入开关信号(或电平信号)来进行控制的方式。这时这些由按钮、选择开关、继电器、plc或dcs的继电器模块就替代了操作器键盘上的运行键、停止键、点动键和复位键,可以在远距离来控制变频器的运转。图1端子控制原理在图1中,正转fwd、反转rev、点动jog、复位reset、使能enable在实际变频器的端子中有三种具体表现形式:(1)上述几个功能都是由专用的端子组成,即每个端子固定为一种功能。在实际接线中,非常简单,不会造成误解,这在早期的变频器中较为普遍。(2)上述几个功能都是由通用的多功能

21、端子组成,即每个端子都不固定,可以通过定义多功能端子的具体内容来实现。在实际接线中,非常灵活,可以大量节省端子空间。目前的小型变频器都有这个趋向,如艾默生td900变频器。(3)上述几个功能除正转和反转功能由专用固定端子实现,其余如点动、复位、使能融合在多功能端子中来实现。在实际接线中,能充分考虑到灵活性和简单性于一体。现在大部分主流变频器都采用这种方式。2.2正转和反转由变频器拖动的电动机负载在实现正转和反转功能非常简单,只需改变控制回路(或激活正转和反转)即可,而无须改变主回路。(a)控制方法一(b)控制方法二图2正反转控制原理常见的正反转控制有两种方法,如图2所示。fwd代表正转端子,r

22、ev代表反转端子,k1、k2代表正反转控制的接点信号(“0”表示断开、“1”表示吸合)。图2(a)的方法中,接通fwd和rev的其中一个就能正反转控制,即fwd接通后正转、rev接通后反转,若两者都接通或都不接通,则表示停机。图2(b)的方法中,接通fwd才能正反转控制,即rev不接通表示正转、rev接通表示反转,若fwd不接通,则表示停机。这两种方法在不同的变频器里有些只能选择其中的一种,有些可以通过功能设置来选择任意一种。但是如变频器定义为“反转禁止”时,则反转端子无效。变频器由正向运装过渡到反向运转,或者由反向运转过渡到正向运转的过程中,中间都有输出零频的阶段,在这个阶段中,设置一个等待

23、时间,即称为“正反转死区时间”,如图3所示。图3正反转死区时间2.3二线制和三线制控制模式所谓三线制控制,就是模仿普通的接触器控制电路模式,当按下常开按钮sb2时,电动机正转启动,由于x多功能端子自定义为保持信号(或自锁信号)功能,松开sb2,电动机的运行状态将能继续保持下去;当按下常闭按钮sb1时,x与com之间的联系被切断,自锁解除,电动机停止运行。如要选择反转控制,只需将k吸合,即rev功能作用(反转)。三线制控制模式的“三线”是指自锁控制时需要将控制线接入到三个输入端子,与此相对应的就是以上讲述的“二线制”控制模式。三线制控制模式共有两种类型,如下图4a和图4b。两者的唯一区别是右边一

24、种可以接收脉冲控制,即用脉冲的上升沿来替代sb2(启动),下降沿来替代sb1(停止)。在脉冲控制中,要求sb1和sb2的指令脉冲能够保持时间达50ms以上,否则为不动作。(a)控制方法一(b)控制方法二图4三线制端子控制2.4点动端子控制的点动命令将比键盘更简单,它只要在变频器运行的情况下(无论正转还是反转),都能设置单独的两个端子来实现正向点动和反向点动,其点动运行频率、点动间隔时间以及点动加减速时间跟键盘控制和通讯控制方式下相同,均可在参数内设置。2.5操作器stop键的功能在进行端子控制时,变频器的操作器键盘的大部分运转功能键都没有作用,但对于“stop”键却还可以选择是否有效。至于“s

25、top”键是否有效必须基于用户的具体情况:(1)如果变频器拖动的电动机在其运行过程中不允许随意停机,只能通过现场停止按钮由现场人员进行停机操作时,则需定义操作器“stop”键无效;(2)如果现场控制按钮离开变频器本体较远,而一旦出现变频器异常情况或电动机异常,用户可以从变频器的操作器键盘直接停机的话,或者需要定义操作器键盘“stop”键为紧急停止按钮,则需定义操作器“stop”键有效;(3)许多变频器的操作器“stop”键与“reset”常常为同一个键,而且用户需要在变频器异常停机后,需要在故障出现时直接从操作器键盘复位,则同样需定义操作器“stop”键有效。2.6数字量输入端子数字量输入端子

26、是用于控制输入变频器运行状态的信号,这些信号包括待机准备、运行、故障以及其他与变频器频率有关的内容。这些数字开关量信号,除固定端子(正转、反转和点动)外,其余均为多功能数字量输入端子。常见的数字量输入端子都采用光电耦合隔离方式,且应用了全桥整流电路,如下图5,pl是数字量输入fwd正转、rev反转、xi多功能输入端子的公共端子,流经pl端子的电流可以是拉电流,也可以是灌电流。图5数字量输入结构示意数字量输入端子与外部接口方式非常灵活,主要有以下几种:(1)干接点方式。它可以使用变频器内部电源,也可以使用外部电源930vdc。这种方式常见于按钮、继电器等信号源。(2)源极方式。当外部控制器为np

27、n型的共发射极输出的连接方式时,为源极方式。这种方式常见于接近开关或旋转脉冲编码器输入信号,用于测速、计数或限位动作等。(3)漏极方式。当外部控制器为pnp型的共发射极输出的连接方式时,为源极方式。这种方式的信号源与源极相同。多功能数字量输入端子的信号定义包括多段速度选择、多段加减速时间选择、频率给定方式切换、运转命令方式切换、复位和计数输入等。综合各类变频器的输入定义,具体有以下主要参数:2.6.1带切换或选择功能的输入信号(1)多段速选择。通过选择这些功能的端子on/off组合,最多可以定义4种(二个输入端子)或8种(二个输入端子)或16种(四个输入端子)速度的运行曲线。(2)多种加减速时

28、间的选择。通过选择相应数字量输入端子的on/off组合,最多可以定义2种(一个输入端子)或4种(二个输入端子)的加减速时间值。(3)多种频率给定方式的选择。通过选择相应数字量输入端子的on/off组合,可以选择操作器键盘给定、接点给定、模拟量给定、脉冲给定、通讯给定的一种,或者进行运行时的切换选择。有些变频器还增加了提供同一种给定方式下不同通道的选择功能,如一台变频器通常有23模拟量通道、2个脉冲输入通道以及几个接点通道,为了在同一频率给定方式下不同通道的输入选择,就必须进行第二次选择。(4)运转命令方式的选择。通过选择相应数字量输入端子的on/off组合,可以选择操作器键盘控制、端子控制和通

29、讯控制的切换或选择。有些变频器还能提供强制信号电平,保证运行命令的及时性。(5)多段闭环pid给定值的选择。通过选择相应数字量输入端子的on/off组合,最多可以定义2种(一个输入端子)或4种(二个输入端子)或8种(三个输入端子)的闭环给定值。2.6.2计数或脉冲输入信号多功能输入端子能够接受脉冲输入信号,这些脉冲信号可以用于计数,也可以用于复位等命令,具体可定义为以下内容:(1)计数器清零信号。即对变频器的内置计数器进行清零操作。(2)计数器触发信号。该使能信号允许变频器对该数字量输入端子进行计数,脉冲的最高频率大约在几百个赫兹左右,掉电时可以存储记忆当前计数值。(3)外部复位输入。当变频器

30、发生故障报警后,通过该端子的定义,对变频器故障进行复位,其作用与操作器键盘的reset复位键一致。(4)摆频状态复位。当选择变频器的摆频功能时,无论是自动投入还是手动投入,闭合该端子将清楚变频器内部记忆的摆频状态信息。断开该端子,摆频重新开始。(5)简易程序控制方式下的停机状态复位。在简易程序控制下的停机状态中,该功能端子有效时将清楚简易程序停机时记忆的运行阶段、运行时间、运行频率等信息。(6)三线制定义。具体可以见前面章节。(7)接点给定方式。可以在定义频率给定方式为接点给定后,定义两个端子为up或down功能。2.6.3其他运行输入信号(1)变频器运行禁止。该端子有效时,运行中的变频器则自

31、由停车,若是在待机状态,则禁止起动。本功能主要用于需要安全联动的场合。(2)外部停机命令。该端子有效时,则无论变频器处于什么运转模式状态或是什么运转给定通道中,都会按照预先定义的停机方式进行停机。它与(1)的区别在于停机方式不同,后者只能是自由停车。(3)外部设备故障的常开或常闭信号输入。通过该端子可以输入外部设备的故障信号,便于变频器对外部设备进行故障监视。变频器在接到外部设备故障信号后,可显示“外部故障”。该故障信号可以是常开,也可以是常闭输入方式。(4)外部中断的常开或常闭信号输入。变频器在运行过程中,接到外部中断信号后,封锁输出,以零频运行。一旦外部中断信号解除,变频器自动转为跟踪起动

32、,恢复运行。其输入信号也可以是常开和常闭两种输入方式。它与(3)的区别在于外部中断不会引起变频器的报警,中断解除后还能正常运行。(5)停机直流制动输入指令。用外部控制端子对停机过程中的电动机实施直流制动,实现电动机的紧急停车和精确定位。(6)简易程序控制暂停指令。用于对运行中的简易程序控制实现暂停控制,该端子有效时则以零频运行,简易程序控制不计时;该端子命令无效后,变频器自动转为跟踪起动,继续简易程序运行。(7)加减速禁止指令。保持电动机不受任何外来信号的影响,除停机命令外,维持当前转速运转。(8)正转点动和反向点动。通过端子的on/off动作,让变频器按点动频率运行的功能,按照运行方式的衍变

33、逻辑,点动功能优先于其他运行方式。常见的数字量输入信号是继电器触点、按钮开关等,这些触点在闭合时容易发生颤动。又由于变频器内部接受信号的都是晶体管电路,反映速度极快。因此,输入触点的颤动有可能使变频器内部的接受电路反复接受信号而导致误动作。为此,有的变频器设置了防止输入信号颤动的功能。如西门子440系列变频器中,功能码p0724为“1”时,表示防颤动时间为2.5ms;为“2”时,表示防颤动时间为8.2ms:为“3”时,表示防颤动时间为12.3ms。变频器的频率给定方式二(转)5脉冲给定脉冲给定方式即通过变频器的特定的高速开关端子从外部输入脉冲序列信号进行频率给定,并通过调节脉冲频率来改变变频器

34、的输出频率。不同的变频器对于脉冲序列输入都有不同的定义,以安川vsg7为例:脉冲频率为032kkhz,低电平电压为0.00.8v,高电平电压为3.513.2v,占空比为3070。这里进行举例说明一下脉冲给定的参数设置。现在有一个变频系统,其需求如下:(1)使用端子输入的脉冲信号来设置给定频率;(2)输入信号范围为1khz20khz;(3)要求1khz输入信号对应设定频率为50hz,20khz输入信号对应设定频率为5hz。根据上述要求,参数设置要点如下:(1)设置频率给定方式为脉冲给定;(2)选择多功能输入端子为脉冲信号输入(如脉冲信号端子固定则无需选择,如安川vsg7的rp端子);(3)设置脉

35、冲最大输入频率为20khz;(4)定义频率给定曲线首坐标点的数值,即最小脉冲给定值的百分比为1khz20khz1005,以及最小脉冲数对应的频率值50hz;(5)定义频率给定曲线尾坐标点的数值,即最大脉冲给定值的百分比为100,以及最大脉冲数对应的频率值5hz。6通讯给定6.1基本概念通讯给定方式就是指上位机通过通讯口按照特定的通讯协议、特定的通讯介质进行数据传输到变频器以改变变频器设定频率的方式。上位机一般指计算机(或工控机)、plc、dcs、人机界面等主控制设备。上位机和变频器之间传输数据的方式主要有两种:(1)串行方式。它每次只传送二进制的一位,主要优点是连线少,一般只有2根或3根,缺点

36、是传送速度较低;(2)并行方式。它每次可传送一个完整的字符,传送速度快,但所需的连线较多,一般需要8根或16根,成本相应就高了许多。由于上位机与变频器之间的距离一般不会太远,对传输速度的要求也不是很高,因此在通常情况下都采用串行传输方式。上位机和变频器之间进行通讯的主要方式也有两种:(1)异步方式。每个字符前有一个起始位,表示该字符已经开始;当数据传输完毕后,设置一个奇偶校验位进行奇偶校验;最后,又设置一个停止位,表示该字符已经结束。异步传输的优点是灵活性好,便于处理实时性较强的串行数据;缺点是传输速度较低。(2)同步方式。它可以同时传输一个包含许多个字符的“数据块”,只需在每个数据块前面设置

37、通讯双方共同规定的同步符号“syn字符1”和“syn字符2”即可。同步方式的优点是不必要在每个字符的前后设置标志符号(起始位和停止位),从而节省了时间,提高了传输速度;缺点是必须采用同步脉冲来协调,从而灵活性较差。上位机和变频器之间的传递方法也有两种:(1)全双工方式。数据在上位机和变频器之间的发送和接收可以同时进行。(2)半双工方式。每台设备都只能做一件事情,或接收,或发送,而不能同时发送或接收。每次发送或接收时,都需要进行发送和接收之间的换向。上位机和变频器之间的传输速度通常用“波特率”来表示,其定义如下:每秒钟传送二进制位的位数,单位是bit/s。6.2通讯参数设置只有设置正确的通讯参数

38、才能确保上位机和变频器之间的通讯正常,也才能保证通讯给定方式的准确性。通讯参数一般包含以下几个主要内容:(1)波特率选择。一般的变频器通讯波特率可以选择300bps、600bps、1200bps、2400bps、4800bps、9600bps、19200bps、38400bps等。(2)数据格式。常见的数据位包括一个起始位、八个数据位、一个停止位,校验位则可以分别设置位奇校验、偶校验和无校验三种。(3)接线方式。包括直接电缆连接rs-232/rs-485和调制解调器modem(rs-232),其中设置为调制解调器modem(rs-232)时,每当变频器上电时,将通过变频器的通讯口(rs-232

39、)对调制解调器modem做一次初始化操作,以便调制解调器在接收到电话线路3次振铃后自动响应,实现由拨号线路组成的远程控制线路。(4)通讯地址。用来标志变频器本体的地址,其中有一个为广播地址,可以接受和执行上位机的广播命令,而不会应答上位机。(5)通讯超时检出时间。当通讯口信号消失后,其持续时间超过通讯超时设置后,变频器即判断为通讯故障。(6)变频器应答延时。它指变频器通讯口在接收并解释执行上位机发送过来的命令后,直到返回应答帧给上位机所需要的延迟时间。6.3通讯故障及处理通讯超时故障检出后,变频器将按照预先设置的动作模式进行操作。常见的动作模式有故障跳闸并停机、报警并维持现有频率运行、报警并按

40、限定频率运行。7给定方式的叠加7.1基本概念给定方式的叠加是指在主给定通道频率的基础上再加上辅助给定通道频率作为变频器的设定频率。其叠加方式不是简单的加法运算,还可以融合多种叠加运算公式。7.2叠加运算公式不同给定方式的叠加是指在主给定通道频率的基础上再加上辅助给定通道频率作为变频器设定频率。8给定方式的切换给定方式的切换是指通过多功能端子的不同组合来实现不同给定方式之间的切换。在下面的列表1显示中,通过多功能输入端子x1、多功能输入端子x2、多功能输入端子x3,不同的输入状态可以实现最多达7种给定方式之间的切换(on表示信号接通、off表示信号断开)。表1频率给定方式的切换表1中的操作器键盘

41、给定1为键盘电位器、操作器键盘给定2为数字键盘;模拟量给定1为模拟量通道1信号、模拟量给定2为模拟量通道2信号。当然,表1中给出的只是其中一种切换类型,具体的切换类型必须参照不同变频器的型号和具体的参数而定。变频器的频率给定方式一(转)变频器的频率给定方式1引言 在使用一台变频器的时候,目的是通过改变变频器的输出频率,即改变变频器驱动电动机的供电频率从而改变电动机的转速。如何调节变频器的输出频率呢?关键是必须首先向变频器提供改变频率的信号,这个信号,就称之为“频率给定信号”。所谓频率给定方式,就是调节变频器输出频率的具体方法,也就是提供给定信号的方式。变频器常见的频率给定方式主要有:操作器键盘

42、给定、接点信号给定、模拟信号给定、脉冲信号给定和通讯方式给定等。这些频率给定方式各有优缺点,必须按照实际的需要进行选择设置,同时也可以根据功能需要选择不同频率给定方式之间的叠加和切换。2操作器键盘给定操作器键盘给定是变频器最简单的频率给定方式,用户可以通过变频器的操作器键盘上的电位器、数字键或上升下降键来直接改变变频器的设定频率。操作器键盘给定的最大优点就是简单、方便、醒目(可选配led数码显示和中文lcd液晶显示),同时又兼具监视功能,即能够将变频器运行时的电流、电压、实际转速、母线电压等实时显示出来。如果选择键盘数字键或上升下降键给定,则由于是数字量给定,精度和分辨率非常高,其中精度可达最

43、高频率0.01%、分辨率为0.01hz。如果选择操作器上的电位器给定,则属于模拟量给定,精度稍低,但由于无需像外置电位器的模拟量输入那样另外接线,实用性非常高。变频器的操作器键盘通常可以取下或者另外选配,再通过延长线安置在用户操作和使用方便的地方。一般情况下,延长线可以在5m以下选用,对于距离较远则不能简单地加长延长线,而是必须需要使用远程操作器键盘。图1艾默生变频器远程操作器连线图1所示为艾默生td系列变频器的远程操作器连线示意。该远程操作器型号为tdo-rc02,与其变频器td2000/2100系列操作器键盘的外观、基本操作方法以及显示风格等基本一致。它是采用内置rs-485通讯方式实现远

44、程操作控制的,工作电压为直流24v,在距离只有几十米的范围内可以采用变频器内部直流电源,若超过50m以上或者变频器内部直流电源另有他用,可以选用10w左右的标准直流24v电源。由于采用通讯方式实现远程操作控制,所以该操作器的安装距离可以在数百米范围内正常工作,并且通过采用不同的通讯地址对多达32台变频器进行远控操作。这些操作内容包括正反转运行、电动运行、停机、功能码设置、功能码参数查看、运行参数查看、故障复位等。3接点信号给定接点信号给定就是通过变频器的多功能输入端子的up和down接点来改变变频器的设定频率值。该接点可以外接按钮或其他类似于按钮的开关信号(如plc或dcs的继电器输出模块、常

45、规中间继电器)。具体接线如图2所示。图2接点信号给定注意以下几点:(1)多功能输入端子需分别设置为up指令或down指令中的其中一个,不能重复设置,也不能只设置一个,更不能将up/down指令和保持加减速停止指令被同时分配。(2)端子的up/down速率必须被正确设置,速率单位为hz/s。有了正确的速率设置,即使up上升接点一直吸合,变频器的频率上升也不会一下子窜到最高输出频率,而是按照其上升速率上升。(3)是否断电保持频率功能必须设置,如设置为“断电保持有效”时,当变频器电源切断后频率指令被记忆,接通电源运行指令再次输入时,变频器自动加速运行到被记忆的频率为止。如设置“断电保持无效”时,当变

46、频器电源切断后频率指令不被记忆,接通电源运行指令再次输入时,变频器按参数数值不同运行到某一固定频率(0hz或其他,该参数依赖于变频器的型号)。图3为接点给定的时序示意图。图3接点给定的时序示意图4模拟量给定4.1基本概念模拟量给定方式即通过变频器的模拟量端子从外部输入模拟量信号(电流或电压)进行给定,并通过调节模拟量的大小来改变变频器的输出频率。模拟量给定中通常采用电流或电压信号,常见于电位器、仪表、plc和dcs等控制回路。电流信号一般指020ma或420ma。电压信号一般指010v、210v、010v、05v、15v、05v等。电流信号在传输过程中,不受线路电压降、接触电阻及其压降、杂散的

47、热电效应以及感应噪声等影响,抗干扰能力较电压信号强。但由于电流信号电路比较复杂,故在距离不远的情况下,仍以选用电压给定为模拟量信号居多。变频器通常都会有2个及以上的模拟量端子(或扩展模拟量端子),有些端子可以同时输入电压和电流信号(但必须通过跳线或短路块进行区分),因此对变频器已经选择好模拟量给定方式后,还必须按照以下步骤进行参数设置:(1)选择模拟量给定的输入通道;(2)选择模拟量给定的电压或者电流方式及其调节范围,同时设置电压/电流跳线,注意必须在断电时进行操作;(3)选择模拟量端子多个通道之间的组合方式(叠加或者切换);(4)选择模拟量端子通道的滤波参数、增益参数、线性调整参数。4.2频

48、率给定曲线所谓频率给定曲线,就是指在模拟量给定方式下,变频器的给定信号p与对应的变频器输出频率f(x)之间的关系曲线f(x)=f(p)。这里的给定信号p,既可以是电压信号,也可以是电流信号,其取值范围在10v或20ma之内。一般的电动机调速都是线性关系,因此频率给定曲线可以简单地通过定义首尾两点的坐标(模拟量,频率)即可确定该曲线。如图4(a)所示,定义首坐标为(pmin,fmin)和尾坐标(pmax,fmax),可以得到设定频率与模拟量给定值之间的正比关系。如果在某些变频器运行工况需要频率与模拟量给定成反比关系的话,也可以定义首坐标为(pmin,fmax)和尾坐标(pmax,fmin),如图

49、4(b)所示。(a)正比关系(b)反比关系图4频率给定曲线这里必须注意以下几点:(1)如果根据频率给定曲线计算出来的设定频率如果超出频率上下限范围的话,只能取频率上下值,因此,频率上下限值优先考虑;(2)在一些变频器参数定义中,模拟量给定信号p或设定频率f是采用百分比赋值,其百分比的定义为模拟量给定百分比p%=p/pmax100和设定频率百分比ff/fmax100;(3)在一些变频器参数定义中,频率给定曲线不是直接描述出来,而是通过最大频率、偏置频率和频率增益表达。4.3模拟量给定的滤波和增益参数模拟量的滤波是为了保证变频器获得的电压或电流信号能真实地反映实际值,消除干扰信号对频率给定信号的影

50、响。滤波的工作原理是数字信号处理,即数字滤波。滤波时间常数就是特指模拟量给定信号上升至稳定值的63所需要的时间(单位为s)。滤波时间的长短必须根据不同的数学模型和工况进行设置,滤波时间太短,当变频器显示“给定频率”时有可能不够稳定而呈闪烁状;滤波时间太长,当调节给定信号时,给定频率跟随给定信号的响应速度会降低。一般而言,出于对抗干扰能力的考虑,需要增加滤波时间常数;处于对响应速度快的考虑,需要降低滤波时间常数。模拟量通道的增益参数与上面的频率增益不一样,后者主要是为定义频率给定曲线的坐标值,前者则是在频率给定曲线既定的前提下,降低或者提高模拟量通道的电压值或者电流值。4.4模拟量给定的正反转控

51、制一般情况下,变频器的正反转功能都可以通过正转命令端子或反转命令端子来实现。在模拟量给定方式下,还可以通过模拟量的正负值来控制电动机的正反转,即正信号(010v)时电动机正转、负信号(10v0)时电动机反转。如图5所示,10v对应的频率值为fmax,10v对应的频率值为fmax。图5模拟量的正反转控制和死区功能在用模拟量控制正反转时,零界点即0v时应该为0hz,但实际上真正的0hz很难做到,且频率值很不稳定,在频率0hz附近时,常常出现正转命令和反转命令共存的现象,并呈“反反复复”状。为了克服这个问题,预防反复切换现象,就定义在零速附近为死区。对于死区,不同类型的变频器定义都会有所不同。一般有

52、以下两种:(1)线段型。如图中所示,如定义(1v,1v)为死区,则模拟量信号在(1v,1v)范围时按零输入处理,(1v,10v)对应(0hz,最大频率),(1v,10v)对应(0hz,负的最大频率)。(2)滞环回线型。在变频器的输出频率定义一个频率死区(fdead,fdead),这样一来配合着电压死区(udead,udead)就围成了滞环回线。模拟量的正反转控制功能还有一种就是在模拟量非双极性功能的情况下(也就是说电压不为负的单极性模拟量)也可以实现,即定义在给定信号中间的任意值作为正转和反转的零界点(相当于原点),高于原点以上的为正转,低于原点以下的为反转。同理,也可以相应设置死区功能,实现

53、死区跳跃。但是,在这种情况下,却存在一个特殊的问题,即万一给定信号因电路接触问题或其他原因而丢失,则变频器的输入端得到的信号为0v,其输出频率将跳变为反转的最大频率,电动机将从正常工作状态转入高速反转状态。十分明显,在生产过程中,这种情况的出现将是十分有害的,甚至有可能损坏生产机械。对此,变频器设置了一个有效的“零”功能。就是说,让变频器的实际最小给定信号不等于0,而当给定信号等于0时,变频器的输出频率则自动降至0速。5转矩控制方式 5.1基本概念采用矢量控制方式的通用变频器不仅可在调速范围上与直流电动机相媲美,而且可以控制异步电动机产生的转矩。5.2转矩控制功能结构图9转矩控制功能框图转矩控

54、制根据不同的数学算法其功能结构也不同,图9是一种典型的采用矢量方式实现的转矩控制功能框图。先是根据转矩设定值计算出转差频率,并与变频器获得的反馈速度(一般用编码器pg)或是直接推算的电动机速度相加,在速度限制下输出同步频率。很显然,在转矩控制方式下,速度调节器asr并不起直接作用,也无法控制速度。转矩控制时,变频器的输出频率自动跟踪负载速度的变化,但输出频率的变化受设定的加速和减速时间影响,如需要加快跟踪的速度,需要将加速和减速时间设得短一些。转矩分正向转矩和反向转矩,其设定可以通过模拟量端子的电平来决定,该转矩方向与运行指令的方向(即正转和反转)无关。当模拟量信号为010v时,为正转矩,即电

55、动机正转方向的转矩指令(从电动机的输出轴看是逆时针转);当模拟量信号为10v0时,为负转矩,即电动机反转方向的转矩指令(从电动机的输出轴看是顺时针转)。5.3转矩控制和速度控制的切换由于转矩控制时不能控制转速的大小,所以,在某些转速控制系统中,转矩控制主要用于起动或停止的过渡过程中。当拖动系统已经起动后,仍应切换成转速控制方式,以便控制转速。切换的时序图如图10所示。图10转矩控制和转速控制的时序图(1)t1时段:变频器发出运行指令时,如未得到切换信号,则为转速控制模式。变频器按转速指令决定其输出频率的大小。同时,可以预置转矩上限。(2)t2时段:变频器得到切换至转矩控制的信号(通常从外接输入

56、电路输入),转为转矩控制模式。变频器按转矩指令决定其电磁转矩的大小。同时,必须预置转速上限。(3)t3时段:变频器得到切换至转速控制的信号,回到转速控制模式。(4)t4时段:变频器再次得到切换至转矩控制的信号,回到转矩控制模式。(5)t5时段:变频器的运行指令结束,将在转速控制模式下按预置的减速时间减速并停止。如果变频器的运行指令在转矩控制下结束,变频器将自动转为转速控制模式,并按预置的减速时间减速并停止。5.4转矩控制与限转矩功能在转矩控制中,经常会与速度控制下的限转矩功能搞混淆。所谓转矩限定,就是用来限制速度调节器asr输出的转矩电流。定义转矩限定值0.0200为变频器额定电流的百分数;如

57、果转矩限定100,即设定的转矩电流极限值为变频器的额定电流。图11所示为转矩限值功能示意图,f1、f2分别限制电动和制动状态时输出转矩的大小。图11转矩限制功能图再生制动状态运行时,应根据需要的制动转矩适当调整再生制动限定值f2,在要求大制动转矩的场合,应外接制动电阻或制动单元,否则可能会产生过压故障。 对于转矩限制值,一般可以通过两种方式进行设定。一种是通过参数设定,变频器都提供了相应的参数,如安川vsg7的l701到l704可以分别设定四个象限的转矩限定值。另外一种就是通过模拟量输入设定,用输入量的010v或420ma信号对应0200的转矩限值。6dtc方式6.1基本概念直接转矩控制也称之

58、为“直接自控制”,这种“直接自控制”的思想是以转矩为中心来进行磁链、转矩的综合控制。和矢量控制不同,直接转矩控制不采用解耦的方式,从而在算法上不存在旋转坐标变换,简单地通过检测电动机定子电压和电流,借助瞬时空间矢量理论计算电动机的磁链和转矩,并根据与给定值比较所得差值,实现磁链和转矩的直接控制。直接转矩控制技术,是利用空间矢量、定子磁场定向的分析方法,直接在定子坐标系下分析异步电动机的数学模型,计算与控制异步电动机的磁链和转矩,采用离散的两点式调节器(bandband控制),把转矩检测值与转矩给定值作比较,使转矩波动限制在一定的容差范围内,容差的大小由频率调节器来控制,并产生pwm脉宽调制信号

59、,直接对逆变器的开关状态进行控制,以获得高动态性能的转矩输出。它的控制效果不取决于异步电动机的数学模型是否能够简化,而是取决于转矩的实际状况,它不需要将交流电动机与直流电动机作比较、等效、转化,即不需要模仿直流电动机的控制,由于它省掉了矢量变换方式的坐标变换与计算和为解耦而简化异步电动机数学模型,没有通常的pwm脉宽调制信号发生器,所以它的控制结构简单、控制信号处理的物理概念明确、系统的转矩响应迅速且无超调,是一种具有高静、动态性能的交流调速控制方式。与矢量控制方式比较,直接转矩控制磁场定向所用的是定子磁链,它采用离散的电压状态和六边形磁链轨迹或近似圆形磁链轨迹的概念。只要知道定子电阻就可以把

60、它观测出来。而矢量控制磁场定向所用的是转子磁链,观测转子磁链需要知道电动机转子电阻和电感。因此直接转矩控制大大减少了矢量控制技术中控制性能易受参数变化影响的问题。直接转矩控制强调的是转矩的直接控制与效果。与矢量控制方法不同,它不是通过控制电流、磁链等量来间接控制转矩,而是把转矩直接作为被控量,对转矩的直接控制或直接控制转矩,既直接又简化。直接转矩控制对交流传动来说是一个优秀的电动机控制方法,它可以对所有交流电动机的核心变量进行直接控制。它开发出交流传动前所未有的能力并给所有的应用提供了益处。在dtc中,定子磁通和转矩被作为主要的控制变量。高速数字信号处理器与先进的电动机软件模型相结合使电动机的

61、状态每秒钟被更新40,000次。由于电动机状态以及实际值和给定值的比较值被不断地更新,逆变器的每一次开关状态都是单独确定的。这意味着传动可以产生最佳的开关组合并对负载扰动和瞬时掉电等动态变化做出快速响应。在dtc中不需要对电压,频率分别控制的pwm调制器。6.2dtc直接转矩控制的速度控制性能abb的acs800能够对速度进行精确的控制,根据不同的速度精度可以选择无脉冲编码器和有脉冲编码器两种,下表1给出了在使用dtc直接转矩控制时的典型速度性能指标。其中动态速度误差依赖于速度控制器的参数整定,图12为动态速度响应曲线。图12dtc直接转矩控制时的速度响应曲线tn:电动机额定转矩nn:电动机额

62、定速度nact:实际速度nref:设定速度在参数组23中可以对速度控制器进行pid变量设定,速度控制器的原理见图13a,该控制器包含了比例、微分、积分和微分加速度补偿,其经过pid作用后的输出作为转矩控制器的给定信号。 速度控制器的参数内容包括以下几方面:(1)增益参数:定义速度控制器的比例增益,如增益过大可能引起速度波动。(2)积分时间参数:定义速度控制器的积分时间,即在偏差阶跃信号下,控制器输出信号的变化率。积分时间越短,连续偏差值的校正就越快,但是如果太短就会造成控制不稳定。(3)微分时间参数:定义速度控制器的微分时间,即在偏差值发生改变的情况下增加控制器的输出。微分时间越长,在偏差改变的过程中,控制器的输出速度就越快。微分作用使控制对扰动的敏感度增加。(4)

展开阅读全文
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!