成人高考(专升本笔记)高等数学一【已排版】

上传人:仙*** 文档编号:33123023 上传时间:2021-10-16 格式:DOC 页数:14 大小:503.02KB
收藏 版权申诉 举报 下载
成人高考(专升本笔记)高等数学一【已排版】_第1页
第1页 / 共14页
成人高考(专升本笔记)高等数学一【已排版】_第2页
第2页 / 共14页
成人高考(专升本笔记)高等数学一【已排版】_第3页
第3页 / 共14页
资源描述:

《成人高考(专升本笔记)高等数学一【已排版】》由会员分享,可在线阅读,更多相关《成人高考(专升本笔记)高等数学一【已排版】(14页珍藏版)》请在装配图网上搜索。

1、专业好文档(一)数列的极限1.数列按一定顺序排列的无穷多个数称为数列,记作,其中每一个数称为数列的项,第n项。为数列的一般项或通项,例如(1)1,3,5,(2)(3)(4)1,0,1,0,都是数列。在几何上,数列可看作数轴上的一个动点,它依次取数轴上的点。2.数列的极限定义对于数列,如果当时,无限地趋于一个常数A,则称当n趋于无穷大时,数列以常数A为极限,或称数列收敛于A,记作 否则称数列没有极限,如果数列没有极限,就称数列是发散的。数列极限的几何意义:将常数A及数列的项依次用数轴上的点表示,若数列以A为极限,就表示当n趋于无穷大时,点可以无限靠近点A。(二)数列极限的性质定理1.1(惟一性)

2、若数列收敛,则其极限值必定惟一。定理1.2(有界性)若数列收敛,则它必定有界。注意:这个定理反过来不成立,也就是说,有界数列不一定收敛。定理1.3(两面夹定理)若数列,满足不等式且。定理1.4若数列单调有界,则它必有极限。下面我们给出数列极限的四则运算定理。定理1.5 (1)(2)(3)当时,(三)函数极限的概念1.当时函数的极限(1)当时的极限定义 对于函数,如果当x无限地趋于时,函数无限地趋于一个常数A,则称当时,函数的极限是A,记作或(当时)如需精美完整排版,请QQ:67460666 手机 137 8381 6366联系(2)当时的左极限定义 对于函数,如果当x从的左边无限地趋于时,函数

3、无限地趋于一个常数A,则称当时,函数的左极限是A,记作或例如函数 当x从0的左边无限地趋于0时,无限地趋于一个常数1.我们称:当时,的左极限是1,即有 (3)当时,的右极限定义 对于函数,如果当x从的右边无限地趋于时,函数无限地趋于一个常数A,则称当时,函数的右极限是A,记作或又如函数 当x从0的右边无限地趋于0时,无限地趋于一个常数-1 。因此有这就是说,对于函数 当时,的左极限是1,而右极限是 -1,即但是对于函数,当时,的左极限是2,而右极限是2。 显然,函数的左极限、右极限与函数的极限之间有以下关系:如需精美完整排版,请QQ:67460666 手机 137 8381 6366联系定理1

4、.6 当时,函数的极限等于A的必要充分条件是这就是说:如果当时,函数的极限等于A,则必定有左、右极限都等于A。反之,如果左、右极限都等于A,则必有。这个结论很容易直接由它们的定义得到。以上讲的是当时,函数的极限存在的情况,对于某些函数的某些点 处,当时,的极限也可能不存在。2.当时,函数的极限(1)当时,函数的极限定义 对于函数,如果当时,无限地趋于一个常数A,则称当 时,函数的极限是A,记作或(当时)(2)当时,函数的极限定义 对于函数,如果当时,无限地趋于一个常数A,则称当 时,函数的极限是A,记作这个定义与数列极限的定义基本上一样,只不过在数列极限的定义中一定表示,且n是正整数;而在这个

5、定义中,则要明确写出,且其中的x不一定是整数。如函数,当时,无限地趋于常数2,因此有(3)当时,函数的极限定义 对于函数,如果当时,无限地趋于一个常数A,则称当时,的极限是A,记作又如函数,当时,无限地趋于常数2,因此我们说,当时,函数的极限是2,即有由上述,时,函数极限的定义,不难看出:时,的极限是A,这表示当且仅当以及时,函数有相同的极限A。但是对函数来讲,因为有,即虽然当时,的极限存在,当时,的极限也存在,但这两个极限不相同,我们只能说,当时,的极限不存在。例如函数,当时,无限地趋于常数1:当时,也无限地趋于同一个常数1,因此称当时的极限是1,记作如需精美完整排版,请QQ:6746066

6、6 手机 137 8381 6366联系其几何意义如图3所示. (四)函数极限的定理定理1.7 (惟一性定理)如果存在,则极限值必定惟一。定理1.8 (两面夹定理)设函数,在点的某个邻域内(可除外)满足条件且有 。注意:上述定理1.7及定理1.8对也成立。 下面我们给出函数极限的四则运算定理定理1.9 如果 则(1) (2) (3)当 时,上述运算法则不难推广到有限多个函数的代数和及乘积的情形,并有以下推论:推论 (1)(2) (3) 用极限的运算法则求极限时,必须注意:这些法则要求每个参与运算的函数的极限存在,且求商的极限时,还要求分母的极限不能为零,另外,上述极限的运算法则对于的情形也都成

7、立。如需精美完整排版,请QQ:67460666 手机 137 8381 6366联系(五)无穷小量和无穷大量1、无穷小量(简称无穷小)定义 对于函数,如果自变量x在某个变化过程中,函数的极限为零,则称在该变化过程中,为无穷小量,一般记作在微积分中常用希腊字母来表示无穷小量。这里说的自变量x在某个变化过程中是指当 或,或,或,或,或中的一个。为了简单起见,我们没有专门再提出数列,而把它归入函数之中,并且有时将数列与函数统称为变量。定理1.10 函数以A为极限的必要充分条件是:可表示为A与一个无穷小量之和。注意:(1)无穷小量是变量它不是表示量的大小,而是表示变量的变化趋势是变量无限趋于零的。(2

8、)一个变量是否为无穷小量是与自变量的变化趋势紧密相关的。在不同的变化过程中,同一个变量可以有不同的变化趋势,例如,。所以,当时,是无穷小量;而当时,就不是无穷小量。因此称为无穷小量时,必须指出自变量的变化趋势。否则是毫无意义的。(3)很小很小的数不是无穷小量,越变越小的变量也不一定是无穷小量,例如当x越变越大时,就越变越小,但它不是无穷小量。(4)无穷小量不是一个数,但0是无穷小量中惟一的一个数,这是因为。 2.无穷大量(简称无穷大)定义 如果当自变量(或)时,的绝对值可以变得充分大(也即无限地增大),则称在该变化过程中,为无穷大量。记作。2.无穷小量与无穷大量的关系无穷小量与无穷大量之间有一

9、种简单的关系,见以下的定理。定理1.11 在同一变化过程中,如果为无穷大量,则为无穷小量;反之,如果为无穷小量,且,则为无穷大量。例如当时,是无穷大量,而当时,是无穷小量。当时,是无穷小量,而当 时,是无穷大量。如需精美完整排版,请QQ:67460666 手机 137 8381 6366联系3.无穷小量的基本性质性质1 有限多个无穷小量的代数和仍是无穷小量;性质2 有界函数(变量)与无穷小量的乘积是无穷小量;特别地,常量与无穷小量的乘积是无穷小量。性质3 有限多个无穷小量的乘积是无穷小量。性质4 无穷小量除以极限不为零的变量所得的商是无穷小量。 4.无穷小量的比较定义 设是同一变化过程中的无穷

10、小量,即 (1)如果则称是比较高阶的无穷小量,记作;(2)如果则称是与同阶的无穷小量;(3)如果 则称与是等价无穷小量,记为;(4)如果则称是比较低价的无穷小量。记作 例如:因为,所以称与x是等价无穷小量(当时)。因为,所以称与x是同阶无穷小量(当时)。因为,所以称是比较高阶的无穷小量(当时)。两个等价无穷小量可以互相代换,且有下列性质:如果当()时,均为无穷小量,又,且存在,则这个性质常常使用在极限运算中,它能起到简化运算的作用。但是必须注意:等价无穷小量代换只能在极限的乘除运算中使用。常用的等价无穷小量代换有:当时, x; x; x;x ;x ;x; ; 对这些等价无穷小量的代换,应该更深

11、一层的理解为:当0时其余类似。例如当时,当时,sin 。如需精美完整排版,请QQ:67460666 手机 137 8381 6366联系(六)两个重要极限1.重要极限I 属三角函数的型的极限问题该公式可以用下面更直观的结构式表示2、重要极限属型的幂指型的极限问题其中e是个常数,叫自然对数的底,它的值为:e=2.718 281 828 495 045其结构式可表示为(七)求极限的方法1.利用极限的四则运算法则求极限;2.利用两个重要极限求极限;3.利用无穷小量的性质求极限;4.利用函数的连续性求极限;5.利用洛必达法则求未定式的极限;6.利用等价无穷小代换定理求极限。四则运算法则:limf(x)

12、=Alimg(x)=Blimf(x)g(x)=limf(x)limg(x)=ABlimf(x)g(x)= limf(x)limg(x)=ABlim K(x)=K lim f(x)=KAlim=(B0)如需精美完整排版,请QQ:67460666 手机 137 8381 6366联系limf(x)=limf(x)n=An 基本极限公式(1)limc=c(2),(3),(4)1.约分,求极限答 答02.当时型的极限答3 计算极限答0一般地,有计算极限 答3.无穷小的性质求极限等于A.0B. C.1D.2 答A4.第个重要极限等于A.0B.C.1D.3答D等于A.0B.1 C. D. 答A若存在,且,

13、则 答 1如需精美完整排版,请QQ:67460666 手机 137 8381 6366联系5.第个重要极限求极限答 等于()A.B.e C. D. 答D计算答e6.求极限的逆问题(1)当时,己知极限值求函数式中待定系数例1.若,求a,b的值.答 型未定式.a=3,b=-2。(2)当x时,己知极限值求函数式中待定系数(一)27若,求a,b的值.答 型a=-1,b=1.设,则K=_。答7.无穷小量当x0时,下列函数为无穷小的是()A. B.C. D.2x-1答 B当x0时,是x的()A.高阶无穷小 B.低阶无穷小C.同阶无穷小,但不等价 D.等价无穷小答C当x0时,与为等价无穷小,则必有a=_。答

14、 如需精美完整排版,请QQ:67460666 手机 137 8381 6366联系第二节函数的连续性复习考试要求(1)理解函数在一点处连续与间断的概念,理解函数在一点处连续与极限存在的关系,掌握判断函数(含分段函数)在一点处连续性的方法(2)会求函数的间断点。(3)掌握在闭区间上连续函数的性质,会用介值定理推证一些简单的命题。(4)理解初等函数在其定义区间上的连续性,会利用连续性求极限主要知识内容(一)函数连续的概念1、函数在点处连续定义1设函数y=f(x)在点的某个邻域内有定义,如果当自变量的改变量趋近于0时,相应的函数也趋近于0,即或则称函数y=f(x)在点处连续。函数y=f(x)在点连续

15、也可作如下定义。定义2设函数y=f(x)在点的某一邻域内有定义,如果当时,函数y=f(x)的极限值存在,且等于处的函数值,即则称函数y=f(x)在点连续,此时有定义3设函数y=f(x),如果,则称函数f(x)在点处左连续;如果,则称函数f(x)在点处右连续。由上述定义2可知如果函数y=f(x)在点处连续,则f(x)在点处左连续也右连续。2、函数在区间a,b上连续定义如果函数f(x)在区间a,b上的每一点x处都连续,则称f(x)在区间a,b上连续,并称f(x)为a,b上的连续函数。这里,f(x)在左端点a连续,是指满足关系:在右端点b连续,是指满足关系:即f(x)在左端点a处是右连续,在右端点b

16、处是左连续。可以证明:初等函数在其定义的区间内都连续。3、函数的间断点定义:如果函数f(x)在点处不连续则称点为f(x)一个间断点。如需精美完整排版,请QQ:67460666 手机 137 8381 6366联系由函数在某点连续的定义可知,如果f(x)在点处有下列三种情况之一,则点是f(x)一个间断点。(1)在点处,f(x)没有定义;(2)在点处,f(x)的极限不存在;(3)虽然在点处f(x)有定义,且存在,但。(二)函数在一点处连续的性质由于函数的连续性是通过极限来定义的,因而由极限的运算法则,可以得到下列连续函数的性质。定理(四则运算)设函数f(x),g(x)在处皆连续,则在处连续在处连续

17、若,则在处连续。定理(复合函数的连续性)设函数u=g(x)在处连续,y=f(u)在处连续,则复合函数y=fg(x)在处连续。在求复合函数的极限时,如果u=g(x),在处极限存在,又y=f(u)在对应的处连续。则极限符号可以与函数符号交换。即定理(反函数的连续性)设函数y=f(x)在某区间上连续,且严格单调增加(或严格单调减少),则它的反函数也在对应区间上连续,且严格单调增加(或严格单调减少)。(三)闭区间上连续函数的性质在闭区间a,b上连续的函数f(x),有以下几个基本性质。这些性质以后都要用到。定理(有界性定理)如果函数f(x)在闭区间a,b上连续,则f(x)必在a,b上有界。定理(最大值和

18、最小值定理)如果函数f(x)在闭区间a,b上连续,则在这个区间上一定存在最大值M和最小值m。定理(介值定理)如果函数f(x)在闭区间a,b上连续,且其最大值和最小值分别为M和m,则对于介于m和M之间的任何实数c,在a,b上至少存在一个,使得推论如果函数f(x)在闭区间a,b上连续,且f(a)与f(b)异号,则在a,b内至少存在一个点,使得,(四)初等函数的连续性由函数在一点处连续的定理知,连续函数经过有限次四则运算或复合运算而得的函数在其定义的区间内是连续函数。又由于,基本初等函数在其定义区间内是连续的,可以得到下列重要结论。定理:初等函数在其定义的区间内连续。如需精美完整排版,请QQ:674

19、60666 手机 137 8381 6366联系利用初等函数连续性的结论可知:如果f(x)是初等函数,且是定义区间内的点,则例1.点的连续性的逆问题(1)设,当x0时,F(x)=f(x)。若F(x)在点x=0处连续,则F(0)等于_。A.-1 B.0 C.1 D.2 答C(2)设在x=0处连续,则a=_。 答0例2.求间断点(1)点x=1是函数的()。A.连续点 B.可去间断点C.跳跃间断点 D.无穷间断点 答B(2)点x=0是函数的()。A.连续点 B.可去间断点C.第二类间断点D.第一类间断点,但不是可去间断点 答A例3.证明五次代数方程在区间(1,2)内至少有一个实根.例4.设函数f(x

20、)在a,b上连续,且f(a)a,f(b)b.求证:在开区间(a,b)内至少存在一点,使. 证明:令F(x)=f(x)-x,则有F(a)= f(a)-a0F(b)= f(b)-b0故由零值定理可知,至少存在一点,使.即在开区间(a,b)内至少存在一点,使. (剩余六章略) 完整版请QQ:67460666 TEL:137 8381 6366 索取The torch will not be lit on the International Space StationOur goal here is to make it look spectacular, Mr Kotov said earlier.

21、Wed like to showcase our Olympic torch in space. We will try to do it in a beautiful manner. Millions of people will see it live on TV and they will see the station and see how we work.The Olympic torch has been carried into space twice before - in 1996 and 2000 - but it has never left a spaceship.

22、It will not be lit aboard the space station as this would consume oxygen and pose a risk to the crew.The Sochi torch will then be returned to Earth and used to light the Olympic cauldron in February next year.It is all part of the elaborate preparations for Russias first Olympics since the Soviet er

23、a. It is also the most expensive one so far, costing around $50bn (31bn; 1,620bn roubles).The run-up to the games has been marred by controversy over a new Russian law that restricts the spread of information about homosexuality, as well as allegations by rights groups that authorities have rounded

24、up migrant workers who helped build the Games venues in Sochi.In yet another minor setback, the flame has gone out several times since the torch relay began last month. The world may have many problems, from climate change to armed conflict, natural disasters, poverty and the oppression of women and

25、 minorities - but where does population growth fit into this catalogue of woes?With the population of the world at seven billion and rising, many fear a shortage of resources as well as a shortage of space. Swedish professor Hans Rosling, however, says its time for a reality check.When pollsters got

26、 1,000 British people to take Roslings ignorance survey in May this year, the results suggested they knew less about the world than chimpanzees, he says.Take a version of the test in this quiz, compare your results with the British respondents, then read Hans Roslings five reasons the world is in better shape than we think.

展开阅读全文
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

相关资源

更多
正为您匹配相似的精品文档
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!