同步发电机励磁自动控制系统毕业设计

上传人:仙*** 文档编号:27768307 上传时间:2021-08-20 格式:DOC 页数:40 大小:841KB
收藏 版权申诉 举报 下载
同步发电机励磁自动控制系统毕业设计_第1页
第1页 / 共40页
同步发电机励磁自动控制系统毕业设计_第2页
第2页 / 共40页
同步发电机励磁自动控制系统毕业设计_第3页
第3页 / 共40页
资源描述:

《同步发电机励磁自动控制系统毕业设计》由会员分享,可在线阅读,更多相关《同步发电机励磁自动控制系统毕业设计(40页珍藏版)》请在装配图网上搜索。

1、辽宁科技大学本科毕业设计(论文) 第 I 页 同步发电机励磁自动控制系统设计 摘 要 随着电力行业不断发展和机组单机容量的增大,对机组的要求是越来越高,不仅仅 是机组的可用率、运行效率和安全性,对机组的可靠性与经济性也提出了更高的要求。 励磁系统作为发电机的核心控制系统,它的运行状态直接影响发电机运行可靠性与经 济性。因此,保证励磁系统安全、可靠的工作是十分重要的。对励磁系统进行状态监 测与诊断不仅能够提高设备维护的经济性,还能显著提高系统的可靠性。在本论文中, 通过分析了同步发电机励磁系统的工作原理,运用飞升曲线法建立了励磁控制系统的 动态数学模型,运用工程设计法设计出闭环控制系统的调节器。

2、组建了同步发电机励 磁自动控制系统,完成系统调试。实验结果表明该数学模型和控制算法是合理的。然 后分析了同步发电机自励励磁系统的不足,提出一种新型斩波控制励磁系统。分析了这 种系统的工作原理,建立了各个环节的数学模型,利用工程设计法设计出相应的调节器, 根据反馈控制原理组建了自励自动控制系统。仿真结果证明了本文提出控制方案的可 行性,为励磁改造和优化提供了一定的理论指导意义。 关键词:同步发电机;飞升曲线法;工程设计法 辽宁科技大学本科毕业设计(论文) 第 II 页 Design of automatic control system for synchronous generator exc

3、itation Abstract With the power industry will continue to development and unit capacity increasing, the requirement of the unit is more and more high. Not only is the unit availability, operation efficiency and safety of, also put forward higher requirements on the unit reliability and economy. As t

4、he core control system of generator, the operation state of the excitation system directly influences the reliability and the economy of generator.Therefore, it is very important to guarantee the safety and reliability of the excitation system. The state monitoring and diagnosis of excitation system

5、 can not only improve the economic performance of the maintenance, but also improve the reliability of the system.In this paper, through the analysis of the working principle of the excitation system of synchronous generator, using upwards curve method to establish the dynamic mathematical model of

6、excitation control system, a closed loop control system of the regulator using the engineering design method is adopted to design. The automatic control system of generator excitation is established, and the system is debugged.Experimental results show that the model and control algorithm are reason

7、able.And then analyzes the lack of self excitation of synchronous generator excitation system, puts forward a new type of chopper control excitation system. Analysis of the working principle of this system, all aspects of the mathematical model are established, and the engineering design method desi

8、gn corresponding regulator, according to the feedback control principle of formation of the automatic control system of self. The experimental results prove the feasibility of the proposed control scheme, and provide some theoretical guidance for the excitation and optimization. Key words:synchronou

9、s generator; soaring curve; engineering design 辽宁科技大学本科毕业设计(论文) 第 III 页 目录 摘要 .I Abstract.II 1 绪论 .1 1.1 励磁系统概述 .2 1.2 励磁系统的分类 .2 1.2.1 直流励磁机系统 .2 1.2.2 他励交流励磁机系统 .2 1.2.3 静止并励励磁系统 .2 1.3 励磁系统状态监测发展前景 .3 2 励磁系统的建模分析 .4 2.1 建模方法简介 .4 2.2 飞升曲线法简介 .5 2.3 本次实验的方法及数据处理 .7 3 控制器的设计 .10 3.1 PID 励磁控制 .10 3.

10、2 励磁调节器的 PID 算法 .10 3.3 调节器的工程设计方法 .11 3.3.1 工程设计方法的基本思路 .12 3.3.2 典型型系统 .12 3.3.3 典型型系统 .14 3.4 励磁控制系统的设计 .16 3.4.1 PID 电压调节器参数整定 .16 4 开关式自并励励磁系统的硬件设计 .18 辽宁科技大学本科毕业设计(论文) 第 IV 页 4.1 同步发电机励磁自动控制策略 .18 4.2 控制器的设计与应用 .18 4.2.1 PWM 调制器 .18 4.2.2 驱动电路 .22 4.3 机械功率输出部分的设计与应用 .23 4.4 开关式并励励磁系统功率主回路的设计与应

11、用 .25 4.4.1 降压斩波电路简介 .25 4.4.2 功率回路分析 .27 4.5 检测控制单元 .28 5 励磁自动控制系统的仿真及结果分析 .29 5.1 动态特性试验 .29 5.2 直流电源起励方式 .29 5.2.1 起励流程 .30 5.2.2 国家相关标准 .30 5.2.4 MATLAB 仿真图 .31 5.3 抗扰动特性试验 .31 结 论 .33 致 谢 .34 参考文献 .35 辽宁科技大学本科毕业设计(论文) 第 1 页 1 绪论 现实生活中,越来越多的同步发电机系统应用于像电站、工厂、舰船等独立供电系 统之中。对于系统的建模、计算、仿真受到了许多学者和专家的关

12、注。由于同步电机 数学模型建立的抽象性以及计算求解过程的复杂性,给人们的分析研究带来了一定的 困难。 随着新技术,新工艺和新器件的涌现和使用,发电机的励磁方式逐渐发展并得以完 善。在研究自动调节励磁装置方面,还不断研制并且推广使用了许多新型的调节装置。 采用微机计算机用软件实现的自动调节励磁装置已经成为主流趋势,并且有其显著优 点。目前很多国家都在研制和试验用微型机计算机辅以相应的外部硬件设备构成完善 的数字自动调节励磁装置,使其达到实现自适应最佳调节的目的。 同步发电机能够将机械能转换为交流电能。老式的自备电站油机发电机组内,同步 发电机的励磁广泛采用直流发电机提供励磁电流来发电。这种传统的

13、励磁方式,是通 过整流子进行交流电变为直流电的过程,并且向励磁绕组提供励磁电流只能通过整流 子的铜环和炭刷。因此,对维护和保障安全运行方面都带来了诸多问题。为了改进这 种励磁方式,过去主要发展了带静止硅整流器的自励恒压的同步发电机,但这种发电 机依然存在炭刷和滑环,并且产生无线电磁干扰,仍需要经常维护,没能从根本上解 决存在的问题。现代的同步发电机,通过改进和发展,广泛采用同轴交流无刷励磁机 和旋转整流器的无刷同步发电机,避免了碳刷使用造成的弊端。 日常所述的励磁系统都是对大型发电机组而言的。对于小机组来讲,特别是本设计 所针对的单台未并网运行的小型同步发电机,仅用于对发电机机端电压恒定的研究

14、。 因此,本设计所用的系统采用励磁电流闭环控制,即在当负载发生变化时,通过斩控 电路调节励磁电流的大小,确保机端电压的恒定。此外,因为并未使发电机并网发电, 因此本文所设计的系统未加功率因数和无功功率调节功能。 本系统在设计之初,考虑到可实现性及可靠性,控制策略采用 PID 控制,功率器件 采用全控型器件 IGBT,主电路为电网经自耦器和三相不控整流桥及 IGBT 给发电机励磁 绕组供电。系统控制部分由 SG3525 搭建的模拟控制器和 M57962 搭建的驱动电路组成。 辽宁科技大学本科毕业设计(论文) 第 2 页 1.1 励磁系统概述 同步发电机组的励磁系统主要由两部分组成:一部分是励磁功

15、率单元,它向同步发 电机励磁绕组提供可调的直流励磁电流;另一部分是励磁调节器,它根据系统的运行 情况及性能要求,自动调节励磁电流。 1.2 励磁系统的分类 从 20 世纪 50 年代至今,励磁系统可大致分为以下三类。 1.2.1 直流励磁机系统 在电力系统发展初期,一般由同步发电机同轴的直流发电机提供励磁电流,即所谓 的直流励磁机励磁系统。随着发电机容量的不断增加,所需的励磁电流也相应增大, 直流机的机械整流子在换流方面遇到了困难,限制了它的容量和转速(极限容量和转 速的乘积有一上限值,超过这一数值,直流电机的设计与制造就会极度困难) 。 1.2.2 他励交流励磁机系统 随着大功率半导体器件制

16、造工艺的成熟与完善,励磁功率单元可采用交流发电机和 半导体整流元件组成新的交流励磁系统。由于励磁电源取自与同步发电机同轴的交流 励磁机,故称之为他励。整流器件可根据不同需求采用二极管或可控硅,整流器既可 旋转也可静止。 1.2.3 静止并励励磁系统 静止自并励励磁系统是由接在机端或电网的励磁变压器经过整流器直接给励磁绕组 提供电能的。与其他励磁方式相比,静止励磁系统有许多优点,如励磁系统接线较为 容易、设备构成较为简单、无转动部分、维护费用小、可缩短发电机主轴长度、可靠 性高。从控制角度上讲,用晶闸管整流器控制转子电压,可获得较快的响应速度。 静止自并励励磁系统尤其适用于系统内有升压变压器的单

17、元中,主电路的接线方式 是将励磁变压器接在发电机的出口端,由于发电机引出线是封闭总线。因此,在励磁调 节器控制发电机端电压恒定输出的条件下,机端电压引出线故障的可能性极小,励磁 电源的可靠性显著提高。但在电动机组起动时机端存在残压,故会产生起励问题。 励磁变压器亦可接在电网上,则无需考虑起励时的残压,因为机组起动时整流桥和励 磁调节器已能正常供电。本文采用励磁变压器接至电网的静止自并励励磁方式,如图 1.1 所示。 辽宁科技大学本科毕业设计(论文) 第 3 页 图 1.1 静止自并励励磁系统结构图 1.3 励磁系统状态监测发展前景 随着励磁系统状态监测研究工作的深入,励磁监测与分析系统应具有如

18、下前景和特 点: (1)对励磁系统工况试验的特征量进行实时监测,得出其性能指标,看是否满足国 家的相关标准,以此来判断励磁系统的部分功能是否正常,为励磁系统的正常工作提 供基础。 (2)状态监测系统不仅要求对励磁系统进行实时的监测,判断其稳态及暂态运行 情况,还要能能预测故障并对可能出现的故障进行精确的定位。 (3)励磁状态监测系统应该具有高可靠的监测与诊断能力,并具有一定的容错能 力。 (4)励磁系统状态监测系统不仅要考虑自身的原因,还应结合机组的其他部件统 一对机组可能出现的问题进行分析。 辽宁科技大学本科毕业设计(论文) 第 4 页 2 励磁系统的建模分析 2.1 建模方法简介 对于被控

19、对象而言,建立其数学模型的方法有机理法建模 1和实验法建模 1两大类。 机理法建模又称数学分析法建模,通过研究过程的运动规律,经过分析研究,建立起 相应的数学表达式(数学模型)。机理法建模就是把研究过程视为一个白匣子,这个白 匣子必然存在一个固有的传递函数,因此根据设备参数进行机理分析得到输入量与输 出量之间的动态关系就能使人们对整个过程有一个相对感性的认识。在设计白匣子阶 段就可以建立数学模型,这对新系统的设计和研发具有重要意义,也是机理建模法的 优势之一。建立数学模型时,首先要确定数学模型的种类,然后建立相关参数的数学 表达式。对于一些简单的生产过程(系统)或对象,通过对其工作机理的分析,

20、应用 一些已知的定律、原理,如能量守恒定律、基尔霍夫定律、材料力学原理等,经过推 演和简化建立起能够描述过程动态性的基本方程式,从而确定过程(系统)输出量、 输入量和其他变量(参数)间的关系。但是,对于许多复杂的过程和抽象的对象,由 于对有些内部结构和工作原理了解得还不够彻底,不可能准确地表示出各变量之间的 关系。一般情况下,机理推导出的代数、微分方程往往比较复杂,此时就要作一些假 设和简化以获得实用的数学模型。 机理建模通常按以下步骤实施: (1)确定模型类型,根据使用目的确定系统的输出量和输入量; (2)通过对过程结构和内部机理的研究,在不影响模型动、稳态性能的前提下,进行 必要的假设和简

21、化; (3)在符合生产工艺和现实条件的基础上,列出动态方程; (4)通过一定的数学计算、推演,消去中间变量,得到只包括输入量和输出量的传递 函数。 (5)在满足控制理论的前提下,对模型进行检验,必要时还需对模型进行线性化表示。 实验建模是根据系统的实测传递函数,避开系统的内在机理,根据发电机励磁系统的 输入/输出数据,经过数学处理后,建立一个从外部特性上来描述其动态性质的数学模 型。此类数学模型中的参数没有现实的物理意义,但是它能很精确地表示出系统的动 辽宁科技大学本科毕业设计(论文) 第 5 页 态性质。实验建模通常比机理建模简单,精度高,通用性强,对于控制复杂的对象 (生产工艺过程)具有较

22、大的优势。 用实验法测定被控对象的动态性能,在被控对象上施加不同形式的扰动信号,再以 时域、频域和相关分析法进行进一步地分析整理。其中以时域法效果最为直接,适用 范围广泛,其主要内容是:给对象施加一个参数确定的扰动信号,记录其动态响应曲 线,然后根据该曲线分析其各项参数并求出其传递函数。为了获得数学模型,可输入 阶跃、脉冲、斜坡等信号,测试系统的响应,得到相关信号的响应图像,进行合理的 数据处理,获得准确的模型。 2.2 飞升曲线法简介 给被控对象施加一个阶跃信号,然后记录其输入/输出的实验曲线,得到的响应曲 线即飞升曲线 2。飞升曲线能直观地描述出系统的动态性能,因此可参照响应曲线经 过数学

23、计算整合成系统的传递函数。 阶跃实验的操作过程很简单,即系统在稳定状态下,通过人为方式使调节器产生一 次阶跃扰动。与此同时,记录下输入/输出变量的动态数据,然后根据该曲线求出系统 的传递函数。 根据响应曲线来建立系统的数学模型,首先要通过曲线的图像来确定模型的结构。 大多数系统的动态性是不振荡的,具有一定的自平衡能力。所以可将动态过程近似为 一阶/一阶滞后、二阶/二阶滞后这样的环节加以分析处理,对于高阶系统可以根据数 学推论近似成二阶加滞后来分析。即 (2.1)00()1KWsT (2.2)00()sse (2.3)0012()KsTs (2.4)0012()sWse 辽宁科技大学本科毕业设计

24、(论文) 第 6 页 对于少数无自平衡能力的系统,可用以下环节来近似描述。即 (2.5)01()aWsT (2.6)0()sase (2.7)001()sTs (2.8)001()sWse 由此可知,只需确定系统的放大系数 、时间常数 和滞后时间 ,就能得到被控0K0T 对象的传递函数。 如图 2.1 所示,当阶跃响应曲线 产生阶跃的瞬间,即 时,其曲线斜率为最xt t 大,然后逐渐减少,直至达到稳态值 ,则响应曲线可以用式(2.1)的一阶惯性y 环节来描述,因而只需确定 、 即可。0KT 图 2.1 阶跃响应曲线 图 2.1 相对阶跃响应曲线a b 设过程输入阶跃信号的幅值为 ,由图 2-1

25、 的阶跃响应曲线可定出其稳态值0 xa ,则 、 可以按如下步骤求得。y0KT 1)放大系数 阶跃响应曲线的稳态值 与阶跃信号幅值 之比,即0 y0 x 辽宁科技大学本科毕业设计(论文) 第 7 页 (2.9)0yKx 2)时间常数 先求相对阶跃响应曲线值,即阶跃响应曲线值 除以稳态值0T yt 为所求y (2.10)ytt 根据一阶系统的特征可知 (2.11)01 tTyte 将式(2.11)移项整理,可得 (2.12)01tIny 为了简化计算,在该曲线上选择 , , 三点1.632t20.865t30.95yt 点,按上式计算 (2.13)110.632ttTIn (2.14)0 20.

26、5.8tttI (2.15)330 11.95ttTIn 在相对曲线上找 0.632,0.865,0.950 所对应的时间 ,既得时间常数 ,23t01Tt , 。根据典型一阶系统参数特性可知 ,故得出经验公式:02.5Tt031t 1t (5%误差带) (2.16) 13st (2%误差带) (2.17)4 2.3 本次实验的方法及数据处理 在本次实验中,我们采用了实验建模法对励磁控制系统进行了分析,系统原理图 如图 2.2 所示: 辽宁科技大学本科毕业设计(论文) 第 8 页 图 2.2 励磁控制系统原理图 采用飞升曲线法进行实验建模的具体做法为,在系统未加励磁的稳定状态下突加 励磁给定观

27、察系统的动态曲线,得到系统的动态响应曲线为图 2.3: 图 2.3 励磁控制系统阶跃响应曲线 飞升曲线法的实验结果为: , ,过渡时间常数为 。29Vy03.7x250msst 将励磁控制系统简化为一阶惯性环节,为 。0()1KWsT 根据同步发电机的额定参数: 额定功率 - ;额定励磁电流 3.54 ;P2.0kA 辽宁科技大学本科毕业设计(论文) 第 9 页 额定电压 - ; 额定励磁电压 50 ;U40VV 额定电流 -3.61 ; 额定频率 -50 。AfHZ 在实验过程中突加的给定励磁电压为额定值,所以根据式 2-8 得出,励磁控制系 统的放大系数 ,根据过度时间为 35 倍的 ,现

28、选 4 倍的 则得出励磁控制07.8K0T0T 系统的时间常数为 0.0625 。本文将同步发电机近似为一阶惯性环节,所以传递函数s 的结果为 (2.19)7.806251Gss 对执行机构的数学模型建立,我们将执行机构的数学模型近似为一阶惯性环节如式 2.20 (2.20)PWM1KsT 根据整流电源电压为 50V 以及执行机构时间常数的特点得出其传递函数为: 50.1Gss (2.21) 辽宁科技大学本科毕业设计(论文) 第 10 页 3 控制器的设计 3.1 PID 励磁控制 PID 励磁控制原理 3如图 3.1 所示,该系统输入信号为发电机端电压的偏差值。 PID 励磁控制器各环节的工

29、作过程大致为:比例环节放大机端电压的偏差值,偏差量一 旦产生,控制器立即进行控制,使偏差稳定至零,以保持机端电压的恒定。但比例环 节不能消除稳态误差,稳态误差主要与放大系数有关,放大系数越大,偏差越小;通 常消除稳态误差主要在系统内添加积分环节,提高系统的无差度只要系统存在积分环 节,误差调节就不断的进行,直至输出量消除误差。但是积分作用太强会使系统超调 加大,通常选取一个比较合适的积分时间常数来进行调节。微分环节根据机端电压偏 差的变化速度,来进行控制动作,具有超前调节作用,可以减少电压调节中的动态偏 差,能够缩短调节时间。PID 励磁控制原理图如图 3.1。 图 3.1 PID 励磁控制原

30、理图 3.2 励磁调节器的 PID 算法 比例积分微分(PID)控制是依据经典控制理论频域法进行设计的一种校正方 法,该方法技术成熟,应用广泛,可改善系统的动静态性能。 PID 控制规律 4可用下列微分方程表示: (3.1) 1()()()p DdetyKetetTT 式中 PID 调节器比例环节的放大系数p PID 调节器的积分时间常数T 辽宁科技大学本科毕业设计(论文) 第 11 页 PID 调节器的微分时间常数DT PID 调节器的输出电压 U 由比例积分微分环节叠加而成。 PID 调节器的传递函数为 : (3.2)1()pDTsWsK 式中, 为比例系数, 与比例带 成反比例关系,即

31、; 为控制输PKPP1K 出, 为积分时间常数。T PID 调节器各参数与控制性能之间的关系: (1)比例调节系数 对系统性能的影响。对稳态特性的影响:加大比例控制 ,PK PK 在系统稳定的情况下,可以减小稳态误差,提高控制精度,但加大 只减小误差,却P 不能完全消除稳态误差。对动态特性的影响:比例控制 加大,会使系统的动作灵敏、PK 响应速度快。 偏大,振荡次数变多,调节时间加长,当 太大时,系统会趋于不稳P 定。若 太小,又会使系统的响应缓慢。 (2)积分时间常数 对控制性能的影响。对稳态特性的影响:积分控制能对系统IT 的稳态误差进行有效的抑制,提高系统的控制精度。若 太大,积分作用太

32、弱,对稳IT 态误差不起作用。对动态特性的影响:积分时间常数 偏小,积分作用较强,振荡次 数较多,影响系统的稳定性。故选取合适的时间常数 十分关键。I (3)微分时间常数 对控制性能的影响。对稳态特性的影响:引入微分环节,能在DT 误差产生的瞬间,按误差的变化趋势进行一个超前的校正,有助于增加系统的稳定性。 对动态性能的影响:微分时间常数 的增加,可以改善系统的动态性能指标,如:减D 少超调量,缩短上升时间等。但微分环节会放大系统噪声,对系统的抗干扰能力造成 影响。 3.3 调节器的工程设计方法 在工程设计中调节器的设计须满足生产过程的要求。针对单环系统通常借助伯德 图设计校正装置。设计之前,

33、都应先求出该闭环系统的初始开环对数频率特性,再根 据实际要求的性能指标确定校正后系统的频率特性 ,经过反复试凑,才能确定其结构 并计算各项参数。为了解决系统的稳、准、快和抗干扰等方面矛盾,通常经过反复试 凑,这需要熟练的设计技巧,体现出建立简便实用工程设计法的重要性。 现代的电力拖动控制系统,系统内部都是由惯性很小的电子设备构成的(电机除 辽宁科技大学本科毕业设计(论文) 第 12 页 外) 。如果经过适当的简化,近似假设处理,那么整个系统可大致近似为低阶系统,通 过运算放大器或微型处理器可以实现比例、积分、微分等控制环节的要求,于是控制 系统简化或近似成少数典型的低阶结构就成为了可能。如果对

34、典型系统有了充分的认 识,运用它们的频率特性进行合理化判断,掌握它们的数据与系统参数,总结成公式 或图表,则在设计时,只要参照实际系统数据参数来校正或简化成为典型系统,就可 以利用现成的公式和图表来进行参数计算。这样,设计过程就变得更加轻松了,为建 立工程设计法提供了可能性。 调节器工程设计法 5应遵循的原则是:设计概念清晰、易懂,给出简明的计算公 式,指出参数调整的范围,考虑到饱和非线性控制的情况,必要时也需给出计算公式。 从而使调节器适用于各种可以简化成典型系统的反馈控制系统。如果对动态性能的精 度比较高,可参考“模型系统法” 。对于复杂的不可能简化成典型系统的情况,可采用 高阶系统或多变

35、量系统的辅助分析和设计。 3.3.1 工程设计方法的基本思路 工程设计法通常把复杂问题简单化,简化的基本思路需使调节器的设计过程满足 两个条件: (1)在保证系统稳定的前提下,明确调节器的结构,满足设计要求的稳态精度。 (2)确定调节器的动态参数,以满足系统动态性能指标。 在选择调节器时,通常采用近似的典型系统,由于典型系统各项参数指标都已事先 找到,选择参数时只须套用现成的公式和数据就可以达到设计目的,提升了设计工作 的效率。 3.3.2 典型型系统 1典型型系统的基本概念 典型型系统的开环转递函数通常为 (3.3)()1)kKWsT (3.4)2()BKSTs 辽宁科技大学本科毕业设计(论

36、文) 第 13 页 式中 系统的惯性时间常数T 系统的开环增益K 2方块图和伯德图 (a) 闭环系统方块图 (b) 伯德图 图 3.2 典型型系统 典型型系统的闭环方块图如图 a 所示,而图 b 表示它的伯德图。选择它作为典 型的 I 型系统是因为其结构简单,而且波特图的中频段以-20dB/dec 的斜率穿越 0dB 线, 只要参数的选择能保证足够的中频带宽度,系统就一定是稳定的。显然,要做到这一 点,应在选择参数时保证 。c1T 3.典型型系统的性能指标和参数之间的关系 由于本文主要讨论的是直流调速,因此对于自动控制中的复杂推导过程限于篇幅不 详细推导,这里只给出推导出的结论,能用于实际工程

37、中设计。对于几个 值的计算结 果列于表 3.1 中,兼顾快速性与稳定性要求可取 ,将此时系统称为二阶最佳0.7 系统。 表 3.1 典型型系统跟随指标与参数关系表 KT 0.25 0.309 0.39 0.5 0.69 1.0 辽宁科技大学本科毕业设计(论文) 第 14 页 阻尼比 1.0 0.9 0.8 0.707 0.6 0.5 超调量 %0 0.15% 1.5% 4.3% 9.5% 16.5% 截止频率 c0.243/ T 0.296/ T 0.367/ T 0.455/ T 0.596/ T 0.786/ T 相角裕量 ()c 76.3 73.6 69.9 65.6 59.2 51.8

38、 典型型系统跟随指标与参数关系只考虑扰动信号,令输入作用等于零,由自动 控制基本理论可得抗扰性能指标与参数的关系如表 3.2 所示。 表 3.2 典型型系统抗干扰指标与参数关系( )0.7 M 1/5 1/10 1/20 1/30 Cmax / Z 69.4% 82.9% 92.7% 96.7%1mtT 2.8 3.4 3.8 4.0f 16 31 61 91 3.3.3 典型型系统 1基本概念 在各种型系统中,选择一种结构简单而且能保证稳定的结构作为典型型系统, 其开环传递函数为: (3.5)2(1)KsWT 2方块图和伯德图 辽宁科技大学本科毕业设计(论文) 第 15 页 (a)闭环系统方

39、块图 (b)伯德图 图 3.3 典型型系统 典型型系统的闭环方块图如图 a 所示,而图 b 表示它的伯德图,其中频段也是以 的斜率穿越 线。由于分母中 项对应的相频特性是 ,后面还有一个-20dBec0dB2s-180 惯性环节(这往往也是实际系统中必定有的) ,如果不在分子上添加一个比例微分环节 ,就无法把相频特性抬到 线以上,也就不能保证系统稳定。因此要实现系s-180 统稳定,显然应保证 。 3典型型系统的性能指标和参数之间的关系 直接给出结论,分别如表 3.3 和表 3.4 所示; 表 3.3 典型型系统跟随指标与参数关系 h 3 4 5 6 7 8 9 10% 52.6% 43.6

40、% 37.6% 33.2% 29.8% 27.2% 25.6% 23.3%rtT 2.4 2.65 2.85 3.0 3.1 3.2 3.3 3.35s 12.15 11.6 9.55 10.45 11.30 12.25 13.25 14.20 辽宁科技大学本科毕业设计(论文) 第 16 页 5 3 2 2 1 1 1 1 1 典型型系统跟随指标与参数关系表 3.3 中 h 是斜率为-20dB/dec 的中频段的宽度, 称中频宽。以 T 为时间基准,对不同的 h 值,可以获得典型型系统的超调量 %、上 升时间 、调节时间 、振荡次数 。 rtst 表 3.4 典型型系统抗扰指标与参数关系 h

41、3 4 5 6 7 8 9 10 Cm ax / Z 72.2% 77.5% 81.2% 84.0% 86.3% 88.1% 89.6% 90.8%mtT 2.45 2.7 2.85 3.0 3.15 3.25 3.3 3.4f 13.6 10.45 8.8 12.95 16.85 19.80 22.8 25.85 典型型系统抗扰指标与参数关系表 3.4 中 h 是中频宽,T 为对象固有时间常数, 、 分别为扰动点前后的增益,F 为阶跃扰动。以 T 为时间基准,动态降落以 =1K2 Z 为基准,对不同的 值,可以获得典型型系统的最大动态降落 Cmax / Z 及Th 其产生时刻 ,恢复时间 。

42、mtftT 3.4 励磁控制系统的设计 将调节器与校正对象串联,可将系统校正成以上典型型或型系统。 图 3.4 励磁反馈控制结构图 辽宁科技大学本科毕业设计(论文) 第 17 页 3.4.1 PID 电压调节器参数整定 系统的传递函数如式 3.6 所示 ()()pidobjWss (3.6) 由于系统的被控对象已求出为 390().1)(.6251)objWsss (3.7) 根据调节器的设计方法参照式 3.2 对系统的传递函数进行整定 12()(pKsKTs (3.8) 其中 , , , , 。1390K1.625T0.12h21 对式 3.8 进行进一步的处理分析得到式 3.9 12()(

43、)pKhTsWs (3.9) 此时本系统的传递函数就已经整定成型系统故只需确定 PID 的参数即可 根据式 3.9 可确定 ,为了满足系统的性能指标取 ,经过推导得12pKTh 5K ,故可以得出 PID 调节器的传递函数如下 :510pK 0.8(.6251)()pidsWs (3.10) 辽宁科技大学本科毕业设计(论文) 第 18 页 4 开关式自并励励磁系统的硬件设计 如前文所示,系统采用机端电压闭环控制,在机端电压和控制电流之间可以建立 数学模型,通过对励磁电流的控制实现机端电压的恒定。当机端电压小于给定时,增 大励磁电流提高电压,反之减小励磁电流。根据负反馈控制理论,要保持哪一个量不

44、 变,就要引入此物理量的负反馈。因此,自动励磁调节装置的输入信号是在线检测的 电压互感器和电流互感器的数值,输出的信号是相应的占空比脉冲信号。其调节规律 依据系统的数学模型,按照工程设计法进行设计反馈装置。 4.1 同步发电机励磁自动控制策略 图 4.1 励磁控制系统闭环控制结构框图 4.2 控制器的设计与应用 为了实励磁控制系统的斩波闭环控制,本文采用 PWM 专用生成芯片 SG3525 和功率 辽宁科技大学本科毕业设计(论文) 第 19 页 驱动芯片 M57962 来搭建控制回路。 4.2.1 PWM 调制器 SG3525 是用于驱动 N 沟道功率 MOSFET。该产品在生产实践中被广泛运

45、用。下面我 们对 SG3525 各项参数、工作原理及内部结构进行介绍。 SG3525 是电流控制型 PWM 控制器,所谓电流控制型脉宽调制器是按照接反馈电流 来调节脉宽的。在脉宽比较器的输入端直接用流过输出电感线圈的信号与误差放大器 输出信号进行比较,从而调节占空比使输出的电感峰值电流跟随误差电压变化而变化。 由于结构上有电压环和电流环双环系统,因此,无论开关电源的电压调整率、负载调 整率和瞬态响应特性都有提高,是目前比较理想的新型控制器。 (1)SG3525 芯片简介 6 SG3525PWM 控制器采用新型模数混合集成电路,性能优越,稳定可靠,无需过多的 辅助元件它的主要特点是:输出级采用推

46、挽输出,双通道输出,占空比 0-50%可调.每一 通道的驱动电流最大值可达 200mA,电流峰值可达 500mA。可直接驱动功率管,工作频 率高达 400kHz,具有欠压锁定、过压保护和软启动等功能。该电路由基准电压源、震 荡器、误差放大器、PWM 比较器与锁存器、分相器、欠压锁定输出驱动级,软启动及关 断电路等组成,可正常工作的温度范围是 0-700 摄氏度。基准电压为 5.1 V 士 1%,工 作电压范围很宽,为 8V 到 35 V。 其管脚如图 4.2 所示: 图 4.2 SG3525 管脚图 管脚说明: 辽宁科技大学本科毕业设计(论文) 第 20 页 1. Inv.input(引脚 1

47、):误差放大器反向输入端。在闭环系统中,该引脚接反馈信 号。在开环系统中,该端与补偿信号输入端(引脚 9)相连,可构成跟随器。 2. Noninv.input(引脚 2):误差放大器同向输入端。在闭环系统和开环系统中, 该端接给定信号。根据需要,在该端与补偿信号输入端(引脚 9)之间接入不同类型的 反馈网络,可以构成比例、比例积分和积分等类型的调节器。 3. Sync(引脚 3):振荡器外接同步信号输入端。该端接外部同步脉冲信号实现与 外电路同步。 4. OSC.Output(引脚 4):振荡器输出端。 5. (引脚 5):振荡器定时电容接入端。 TC 6. (引脚 6):振荡器定时电阻接入端

48、。 R 7. Discharge(引脚 7):振荡器放电端。该端与引脚 5 之间外接放电电阻,构成放 电回路。 8. (引脚 8):软启动电容接入端。该端通常接一只 5 的软启动电容。 SoftarC 9. Compensation(引脚 9):PWM 比较器补偿信号输入端。在该端与引脚 2 之间接入 不同类型的反馈网络,可以构成比例、比例积分和积分等类型调节器。 10. Shutdown(引脚 10):外部关断信号输入端。该端接高电平时控制器输出被禁 止。该端可与保护电路相连,以实现故障保护。 11. Output A(引脚 11):输出端 A。引脚 11 和引脚 14 是两路互补输出端。

49、12. Ground(引脚 12):信号地。 13. Vc(引脚 13):输出级偏置电压接入端。 14. Output B(引脚 14):输出端 B。引脚 14 和引脚 11 是两路互补输出端。 15. Vcc(引脚 15):偏置电源接入端。 16. Vref(引脚 16):基准电源输出端。该端可输出稳定性极好的基准电压。 (2)SG3525 内部结构图 如图 4.3 所示为 SG3525 内部结构图: 辽宁科技大学本科毕业设计(论文) 第 21 页 SG3525 (3)SG3525 工作原理 SG3525 内置了 5.1V 精密基准电源,微调至 1.0%,在误差放大器共模输入电压范 围内,无

50、须外接分压电组。SG3525 还增加了同步功能,可以工作在主从模式,也可以 与外部系统时钟信号同步,为设计提供了极大的灵活性。在 CT 引脚和 Discharge 引脚 之间加入一个电阻就可以实现对死区时间的调节功能。由于 SG3525 内部集成了软启动 电路,因此只需要一个外接定时电容。 SG3525 的软启动接入端(引脚 8)上通常接一个软启动电容。通电过程中,由于 电容两端的电压不能突变,因此与软启动电容接入端相连的 PWM 比较器反向输入端处 于低电平,PWM 比较器输出高电平。此时,PWM 锁存器的输出也为高电平,该高电平通 过两个或非门加到输出晶体管上,使之无法导通。只有软启动电容

51、充电至其上的电压 使引脚 8 处于高电平时,SG3525 才开始工作。由于实际中,基准电压通常是接在误差 放大器的同相输入端上,而输出电压的采样电压则加在误差放大器的反相输入端上。 当输出电压因输入电压的升高或负载的变化而升高时,误差放大器的输出将减小,这 将导致 PWM 比较器输出为正的时间变长,PWM 锁存器输出高电平的时间也变长,因此输 出晶体管的导通时间将最终变短,从而使输出电压回落到额定值,实现了稳态。反之 亦然。 外接关断信号对输出级和软启动电路都起作用。当 Shutdown(引脚 10)上的 图 4.3 SG3525 内部结构 图 辽宁科技大学本科毕业设计(论文) 第 22 页

52、信号为高电平时,PWM 锁存器将立即动作,禁止 SG3525 的输出,同时,软启动电容将 开始放电。如果该高电平持续,软启动电容将充分放电,直到关断信号结束,才重新 进入软启动过程。注意,Shutdown 引脚不能悬空,应通过接地电阻可靠接地,以防止 外部干扰信号耦合而影响 SG3525 的正常工作。 欠电压锁定功能同样作用于输出级和 软启动电路。如果输入电压过低,在 SG3525 的输出被关断同时,软启动电容将开始放 电。 此外,SG3525 还具有以下功能,即无论因为什么原因造成 PWM 脉冲中止,输出都 将被中止,直到下一个时钟信号到来,PWM 锁存器才被复位。 (4)PWM 控制的斩波

53、器的数学模型 根据工作原理,当控制电压改变时,PWM 变换器输出电压要到下一个周期才能发生 改变,因此可以把其等效成为一个惯性环节,输入量是脉冲电压,输出量是 PWM 变换 器输出电压 ,当整个系统开环频率特性截止频率满足 时(T 为开关周期时fU13c 间) ,将滞后环节近似成一阶惯性环节,其传递函数为: (4.1)PWM1KGsT 为脉宽调制器和 PWM 变换器的放大系数PWMK 4.2.2 驱动电路 驱动电路就是将信息电子电路传来的信号按控制目标的要求,转换为相应的驱动 信号。 开关型功率器件的驱动分为两种形式:一是电流型驱动,如 GTR ;二是电压型 驱动,如功率 MOSFET、IGB

54、T。无论是哪种驱动电路,在设计时都必须考虑以下两点: 最优化驱动特性和自动快速保护。所谓最优化特性就是以理想的控制极驱动电流(或电 压、或两者兼有) 去控制功率器件的开关过程,以提高开关速度、减小开关损耗;自 动快速保护则是在驱动电路故障状态下快速自动地切断控制极信号,避免功率管遭到 损坏,在主回路故障状态时能及时自动切断与主回路的联系的能力。本文使用的驱动 芯片为 M57962,其管脚图如图 4.4 所示: 辽宁科技大学本科毕业设计(论文) 第 23 页 图 4.4 M57962 管脚图 管脚说明: 1 IGBT 电流检测端,接 IGBT 的集电极。 2 盲区时间设定端。 3 未连接。 4

55、驱动器的辅助电源 Vp 的正端,Vcc(+15v)。 5 驱动器输出端,接 IGBT 的栅极。 6 驱动器的辅助电源 Vp 的负端,Vee(-12v)。 7 未连接。 8 故障信号输出端。 9 短路保护后再次启动时间设定端。 10 软关断时间设定端。 11、12 空脚。 13 信号输入端地端(与 SG3525 共地)。 14 信号输入端。 励磁控制系统硬件电路图如图 4.5: 辽宁科技大学本科毕业设计(论文) 第 24 页 图 4.5 励磁控制系统硬件电路图 4.3 机械功率输出部分的设计与应用 作为该励磁控制系统的机械功率输出部分,笔者选用与同步发电机同轴的直流电 动机作为该励磁控制系统的原

56、动机。 该直流电动机的技术参数具体如下 额定功率 - ;P2.kW 额定电压 -220 ;V 额定电流 -12.4 ;A 额定转速 -1500 ;nr 额定励磁电流 0.41 。 直流电动机电枢回路的电压平衡方程式为: (4.2)aUEIR 电枢反电势为: eECn (4.3) 由以上两式得转速特性方程如下: (4.4)aeUIRnC 辽宁科技大学本科毕业设计(论文) 第 25 页 由式(4.3)可知直流电动机的调速方式为电枢回路串电阻、减弱电机励磁磁通 、 改变电动机端电压调速等三种。 在该励磁控制系统实验中,笔者用电枢回路串电阻的方法对直流电动机进行调速 控制。 由式(4.3)可知随着总电

57、阻 R 的增大,机械特性曲线斜率越大,机械特性越软. 若负载转矩 对应所需的电枢电流为 则负载大小不变时总电阻越大,转速越低。由LTaLI 于电阻耗能大,机械特性软,调速范围窄,不能实现无级平滑调速,只用于一些要求 不高的场合。 由于在该次实验中运用了变电阻调速的方式且直流电机调速控制系统为开环系统, 因此同步发电机的转速不能得到有效的控制,励磁控制系统所发出交流电的频率不能 得到保证,对频率的控制也没有作为本次实验的目标。其串电阻调速的作用只是保证 了直流电机的安全启动。 直流电动机的调速电路如图 4.7: 图 4.7 直流电动机调速控制电路图 辽宁科技大学本科毕业设计(论文) 第 26 页

58、 4.4 开关式并励励磁系统功率主回路的设计与应用 4.4.1 降压斩波电路简介 降压斩波电路 8(Buck Chopper)的工作原理和波形,如图 4.8 所示。电路中 是全控器件 ,图中续流二极管 是在 关断时,给负载续流的通道。QIGBTVDQ 由图 4-8 b 中 Q 的栅射电压 波形可知,在 时刻 处于导通状态,电源 给in0tinV 负载提供电压 ,负载电流 呈凸曲线上升。0V0 当 时,开关 断开,负载电流通过二极管 给电路续流,负载电压几乎为零,1t V 负载电流呈凹曲线衰减。为了避免负载电流断续,通常串接 L 值较大的电感。 一个周期 T 结束之后,再让 导通,重复上个周期的

59、步骤。当电路稳定工作时,Q 在每个周期内负载电流平均值相等,如图 2.1(c)所示。由此知电压平均值为: (4.5)onon0iiinfttVVT 式中, 为 Q 处于通态的时间; 为 Q 处于断态的时间;T 为开关周期; 为导ont oft 通时间与周期时间之比,简称占空比。由此可知,输出到负载的电压平均值 最大值oV 为 ,若减小占空比 ,则 随之减小。因此称为降压斩波电路(也称 BUCK 变换器)RLV0V 负载电流平均值: (4.6)00RLI 若负载中 L 值较小,则在 关断后,到了 时刻,如图 4.8c 所示,负载电流已衰Q2t 减至零,会出现负载电流断续的情况。 根据对输出电压平

60、均值进行调制的方式不同,斩波电路可有三种控制方式: 1)保持开关周期 T 不变调节开关导通时间 ,称为脉冲宽度调制( Pulse ont Width Modulation,缩写 PWM)或脉冲调宽型。 2)保持开关导通时间不变,改变开关周期 T,称为频率调制或调频型。 3) 和 T 都可调,使占空比改变,称为混合型。ont 辽宁科技大学本科毕业设计(论文) 第 27 页 a 原理图 b 电流连续时的波形 c 电流断续时的波形 图 4.8 降压斩波电路原理图及波形 4.4.2 功率回路分析 主回路作为励磁控制系统的执行机构,是对 BUCK 电路的简单应用,其执行元件为 IGBT,主回路原理图如图

61、 4.9 所示。 辽宁科技大学本科毕业设计(论文) 第 28 页 图 4.9 控制主回路原理图 作为一只电子开关,串接在发电机励磁回路中。励磁变压器原边取自发电网电压, Lf 为发电机转子绕组,电感量为 L,D1-D6 一构成三相不可控整流桥,经电容滤波后向 发电机转子绕组提供直流电压。 当 IGBT 导通时,续流二极管 D 截止,转子电流经转子绕组、而增大。当 IGBT 截 止时,转子绕组中的电流将减小。Lf 中产生感应电压使续流二极管导通,给转子续流, 来维持转子绕组的励磁电流。当增大量等于减少量时,Lf 中的平均电流不变,达到稳 定运行工作状态。 励磁电压、励磁电流的计算: 为了保护系统

62、安全,设三相不可控整流桥整流滤波后的直流电压为 ,E40VU 的最大值为 0.8。导通时间为 ,截止时间为 。导通时,转子两端压降为 40CKONTOFT ,截止时,转子电压等于续流二极管压降,忽略为零。则转子电压的平均值:V (4.7)ONLEFUT 占空比为 CK (4.8)ONCFT 即 (4.9)LCEUK 励磁电流的平均值: 辽宁科技大学本科毕业设计(论文) 第 29 页 (4.10)CELKUIR 式中 R 为转子回路的直流电阻。 根据系统的设置情况及其特点计算可得,最大的励磁电压为 ,最大励磁电流32V 。2.3A 由此可见,我们根据发电机机端电压,转子电流或无功负荷等因素的变化

63、改变 ,CK 亦即改变 IGBT 驱动方波的占空比,即可改变励磁绕组两端的电压,从而达到调节发电 机输电电压的目的。 4.5 检测控制单元 检测单元由降压变压器、整流桥、滤波电路和分压电路组成。因为发电机端电压 较高,为了保证工作人员的安全,并对强电和弱电进行隔离,所以需要降压变压器进 行测量和隔离。 本文因为控制对象单一,控制目标简单,基于现有的实验条件,采用单相降压、 整流、采样法对机端电压进行采样。本次实验采用的测量变压器为(380 25 )降V 压变压器,经过整流、滤波转换成与发电机端电压成比例的直流电压,输出到比较整 定环节。为了能够实现较好的整流效果我们采用了单相不控桥整流芯片 。

64、根GBU10 据现场实验测试结果能够满足测量需要。图 4.10 是检测控制单元的原理图。 图 4.10 检测单元原理图 其平均电压值为 式中 为变压器副边电压。 d20.9U2 5 励磁自动控制系统的仿真及结果分析 本文设计的同步发电机励磁自动控制系统在设计和调试完成后在实验室的小型同 辽宁科技大学本科毕业设计(论文) 第 30 页 步发电机上进行了试验。实验内容包括系统动态特性试验和稳态抗扰动特性试验两部 分,以检测系统的动态特性和抗扰动性能。系统实验结构图为图 5.1。 图 5.1 同步发电机励磁控制系统结构图 5.1 动态特性试验 动态特性试验主要检测系统的动态特性,本试验采用直流电源起

65、励方式,发电机 在空载、10%阶跃响额定转速下运行时,闭合励磁开关进行零起升压。它的实验参数包 括:直流电机为 2.2KV,额定转速为 1500r/min,同步发电机为 2KW,额定励磁电流是 3.5A,额定电压 400V,额定功率是 50HZ,控制器是 PWM 控制芯片 SG3525 及外围元器 件组成,驱动是 M57962。 5.2 直流电源起励方式 对于自并励励磁系统,在机组起动后转速接近额定值,残压值约为额定电压的 1%- 2%时提供发电机的初始励磁,在发电机达到初步稳定运行的电压后再切断该励磁回路, 这一过程称为起励。起励试验主要目的是为了检查励磁系统的接线和控制的正常与否, 得出励

66、磁控制系统的起励特性。 5.2.1 起励流程 1、起励标志的设置 辽宁科技大学本科毕业设计(论文) 第 31 页 (1) 发电机尚未起励,机组转速为 0,导叶开度 3%,机组停机; (2) 开机后,发电机转速达到额定转速的 95%; (3) 同时满足以上 2 个条件时,设置起励标志,开始记录发电机的机端电压。 2、起励 当起励标志有效后,励磁系统执行以下任务:开始计时(当计时超过一定时间便认 为起励失败) ,投入起励电源,使发电机建立初始电压,发电机开始起励。 3、起励标志的清除 (1)具有起励标志; (2)起励成功或起励失败或有灭磁标志; (3)同时满足以上两个条件时,清除起励标志。 起励成功后,起励标志清除,则起励过程结束。在收到起励命令后,投入起励电 源,使发电机建立初始电压,同时不断检测发电机的机端电压(或励磁电流),如果在 给定的时间内(一般给定时间为 5 秒) ,发电机发电机电压(或励磁电流)未能达到设 定值,则判定起励过程失败。若采用恒发电机电压进行起励,即发电机端电压闭环运 行正常起励设定值一般是额定发电机电压。若采用恒励磁电流进行起励,即转子电流 闭环运行,最小起励设

展开阅读全文
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!