计量经济学---一元线性回归实用全套PPT



《计量经济学---一元线性回归实用全套PPT》由会员分享,可在线阅读,更多相关《计量经济学---一元线性回归实用全套PPT(21页珍藏版)》请在装配图网上搜索。
1、Click to edit Master title style,,Click to edit Master text styles,,Second level,,Third level,,Fourth level,,Fifth level,,*,,*,单击此处编辑母版标题样式,,单击此处编辑母版文本样式,,第二级,,第三级,,第四级,,第五级,,,,*,*,单击此处编辑母版标题样式,,单击此处编辑母版文本样式,,第二级,,第三级,,第四级,,第五级,,,,单击此处编辑母版标题样式,,单击此处编辑母版文本样式,,第二级,,第三级,,第四级,,第五级,,,,*,计量经济学 一元(yī yuá
2、n)线性回归,,第一页,共21页。,回归分析是要通过样本(yàngběn)所估计的参数来代替总体的真实参数,或者说是用样本(yàngběn)回归线代替总体回归线。,尽管从统计性质上已知,如果有足够多的重复 抽样,参数的估计值的期望(均值)就等于其总体的参数真值,但在一次抽样中,估计值不一定就等于该真值。,,那么,在一次抽样中,参数的估计值与真值的差异有多大,是否显著,这就需要进一步进行统计检验。,,主要包括拟合优度检验、变量的显著性检验及参数的区间(qū jiān)估计。,第二页,共21页。,一、拟合(nǐ hé)优度检验,拟合优度检验:对样本回归直线与样本观测值之间拟合程度(chéngdù)
3、的检验。,,度量拟合优度的指标:判定系数(可决系数)R2,问题:采用普通最小二乘估计方法,已经保证了模型(móxíng)最好地拟合了样本观测值,为什么还要检验拟合程度?,第三页,共21页。,如果存在这样(zhèyàng)一个区间,称之为置信区间(confidence interval);,,变量的显著性检验所应用的方法是数理统计学中的假设检验。,,(1)增大样本容量n,因为在同样的置信水平下,n越大,t分布表中的临界值越小;,,一、拟合(nǐ hé)优度检验,,给定显著性水平,查t分布表得临界值,,|t1,说明家庭可支配收入在95%的置信度下显著,即是消费支出的主要解释变量;,,已知由一组样
4、本(yàngběn)观测值(Xi,Yi),i=1,2…,n得到如下样本(yàngběn)回归直线,,如果Yi=Ŷi 即实际(shíjì)观测值落在样本回归“线”上,则拟合最好。,,1-称为置信系数(置信度)(confidence coefficient), 称为显著性水平(level of significance);,,若 |t| t /2(n-2),则拒绝H1 ,接受H0 ;,,若 |t|> t /2(n-2),则拒绝H0 ,接受H1 ;,,度量拟合优度的指标:判定系数(可决系数)R2,,计量经计学中,主要是针对变量的参数(cānshù)真值是否为零来进行显著性检
5、验的。,,由于置信区间一定程度(chéngdù)地给出了样本参数估计值与总体参数真值的“接近”程度(chéngdù),因此置信区间越小越好。,,回归(huíguī)平方和(Explained Sum of Squares),1、总离差平方和的分解(fēnjiě),已知由一组样本(yàngběn)观测值(Xi,Yi),i=1,2…,n得到如下样本(yàngběn)回归直线,第四页,共21页。,如果Yi=Ŷi 即实际(shíjì)观测值落在样本回归“线”上,则拟合最好。,,可认为,“离差”全部来自回归线,而与“残差”无关。,第五页,共21页。,对于所有样本(yàngběn)点,则需考虑这些点与
6、样本(yàngběn)均值离差的平方和,可以证明:,,记,总体(zǒngtǐ)平方和(Total Sum of Squares),回归(huíguī)平方和(Explained Sum of Squares),残差平方和,(,Residual Sum of Squares,,),第六页,共21页。,TSS=ESS+RSS,Y的观测值围绕其均值的总离差(total variation)可分解为两部分:一部分来自回归线(ESS),另一部分则来自随机(suí jī)势力(RSS)。,在给定样本中,TSS不变,,,如果实际观测点离样本回归线越近,则ESS在TSS中占的比重越大,因此(yīncǐ),,拟
7、合优度:回归平方和ESS/Y的总离差TSS,第七页,共21页。,2、可决系数(xìshù)R2统计量,称 R2 为(样本)可决系数(xìshù)/判定系数(xìshù)(coefficient of determination)。,可决系数的取值范围:[0,1],,R2越接近1,说明实际(shíjì)观测点离样本线越近,拟合优度越高。,第八页,共21页。,,在例的收入(shōurù)-消费支出例中,,注:可决系数是一个非负的统计量。它也是随着(suí zhe)抽样的不同而不同。为此,对可决系数的统计可靠性也应进行检验,这将在第3章中进行。,第九页,共21页。,二、变量(biànliàng)的显
8、著性检验,回归分析是要判断解释变量X是否是被解释变量Y的一个显著性的影响(yǐngxiǎng)因素。,,在一元线性模型中,就是要判断X是否对Y具有显著的线性性影响(yǐngxiǎng)。这就需要进行变量的显著性检验。,变量的显著性检验所应用的方法是数理统计学中的假设检验。,,计量经计学中,主要是针对变量的参数(cānshù)真值是否为零来进行显著性检验的。,第十页,共21页。,,1,、假设检验,,所谓假设检验,就是事先对总体参数或总体分布形式作出一个假设,然后利用样本信息来判断原假设是否合理,即判断样本信息与原假设是否有显著差异,从而决定是否接受或否定原假设。,,假设检验采用的逻辑推理方法是反
9、证法。,,先假定原假设正确,然后根据(gēnjù)样本信息,观察由此假设而导致的结果是否合理,从而判断是否接受原假设。,,判断结果合理与否,是基于“小概率事件不易发生”这一原理的,第十一页,共21页。,2、变量(biànliàng)的显著性检验,第十二页,共21页。,检验(jiǎnyàn)步骤:,(1)对总体(zǒngtǐ)参数提出假设,,H0: 1=0, H1:10,(2)以原假设(jiǎshè)H0构造t统计量,并由样本计算其值,(,3,)给定显著性水平,,查,t,分布表,得临界值,t,/2,(n-2),(4),比较,判断,,若,|t|>,t,/2,
10、(n-2),,则拒绝,H,0,,,接受,H,1,,;,,若,|t|,,,t,/2,(n-2),,则拒绝,H,1,,,接受,H,0,,;,第十三页,共21页。,对于一元线性回归方程中的0,可构造(gòuzào)如下t统计量进行显著性检验:,,在上述收入(shōurù)-消费支出例中,首先计算2的估计值,第十四页,共21页。,t统计(tǒngjì)量的计算结果分别为:,给定显著性水平,查t分布表得临界值,,t,,|t1,说明家庭可支配收入在95%的置信度下显著,即是消费支出的主要解释变量;,,|t2|<,表明在95%的置信度下,无法拒绝(jùjué)截距项为零的假设。,第十五页,共21页
11、。,假设检验可以通过一次抽样的结果检验总体参数可能的假设值的范围(如是否为零),但它并没有指出在一次抽样中样本参数值到底离总体参数的真值有多“近”。,,要判断样本参数的估计值在多大程度上可以“近似”地替代总体参数的真值,往往需要通过构造一个以样本参数的估计值为中心的“区间”,来考察它以多大的可能性(概率)包含着真实的参数值。这种方法就是(jiùshì)参数检验的置信区间估计。,三、参数(cānshù)的置信区间,第十六页,共21页。,,如果存在这样(zhèyàng)一个区间,称之为置信区间(confidence interval); 1-称为置信系数(置信度)(confidence coef
12、ficient), 称为显著性水平(level of significance);置信区间的端点称为置信限(confidence limit)或临界值(critical values)。,第十七页,共21页。,一元(yī yuán)线性模型中,i (i=1,2)的置信区间:,在变量(biànliàng)的显著性检验中已经知道:,意味着,如果(rúguǒ)给定置信度(1-),从分布表中查得自由度为(n-2)的临界值,那么t值处在(-t/2, t/2)的概率是(1- )。表示为:,即,,第十八页,共21页。,于是(yúshì)得到:(1-)的置信度下, i的置信区间是,在上述收入-
13、消费(xiāofèi)支出例中,如果给定 ,查表得:,由于(yóuyú),,于是,,,1,、,0,的置信区间分别为:,,(,0.6345,0.9195),,,,(),,第十九页,共21页。,由于置信区间一定程度(chéngdù)地给出了样本参数估计值与总体参数真值的“接近”程度(chéngdù),因此置信区间越小越好。,要缩小置信区间,需,,(1)增大样本容量n,因为在同样的置信水平下,n越大,t分布表中的临界值越小;同时,增大样本容量,还可使样本参数估计量的标准差减小;,,(2)提高模型的拟合优度,因为样本参数估计量的标准差与残差平方和呈正比(zhèngbǐ),模型拟合优度越高,残差平方和应越小。,第二十页,共21页。,谢谢(xiè xie)观看,第二十一页,共21页。,
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。