stanford大学-大数据挖掘-advertising-19



《stanford大学-大数据挖掘-advertising-19》由会员分享,可在线阅读,更多相关《stanford大学-大数据挖掘-advertising-19(36页珍藏版)》请在装配图网上搜索。
1、Click to edit Master title style,Click to edit Master text styles,Second level,Third level,Fourth level,Fifth level,*,CS 345Data Mining,Online algorithms,Search advertising,Online algorithms,Classic model of algorithms,You get toseethe entireinput,then computesomefunctionof it,In this context,“offli
2、nealgorithm,”,”,Online algorithm,You get toseethe inputone pieceat atime,andneedto make irrevocabledecisionsalongtheway,Similar todatastream models,Example:Bipartite matching,1,2,3,4,a,b,c,d,Girls,Boys,Example:Bipartite matching,1,2,3,4,a,b,c,d,M=(1,a),(2,b),(3,d)is amatching,Cardinality ofmatching=
3、|M|=3,Girls,Boys,Example:Bipartite matching,1,2,3,4,a,b,c,d,Girls,Boys,M=(1,c),(2,b),(3,d),(4,a)is a,perfect matching,Matching Algorithm,Problem:Find amaximum-cardinalitymatchingfor agiven bipartite graph,A perfectone if itexists,Thereis apolynomial-time offlinealgorithm(Hopcroftand Karp 1973),But w
4、hat if wedonthavetheentire graph upfront?,Online problem,Initially,we are given the set Boys,In each round,one girlschoices are revealed,At that time,we have todecide toeither:,Pairthe girl with aboy,Dontpairthegirlwithany boy,Example ofapplication:assigning tasksto servers,Online problem,1,2,3,4,a,
5、b,c,d,(1,a),(2,b),(3,d),Greedy algorithm,Pairthe new girl with any eligibleboy,If thereisnone,dontpairgirl,Howgoodisthealgorithm?,CompetitiveRatio,Forinput I,supposegreedyproducesmatching M,greedy,while anoptimalmatching isM,opt,Competitiveratio=,min,allpossibleinputsI,(|M,greedy,|/|M,opt,|),Analyzi
6、ng the greedyalgorithm,ConsiderthesetG of girlsmatchedin M,opt,butnotin M,greedy,Thenitmustbethecasethat everyboyadjacenttogirls inG is already matched inM,greedy,There must be atleast|G|suchboys,Otherwise the optimal algorithmcould not have matched all the Ggirls,Therefore,|M,greedy,|,|G|=|M,opt,-M
7、,greedy,|,|M,greedy,|/|M,opt,|,1/2,Worst-case scenario,1,2,3,4,a,b,c,(1,a),(2,b),d,Historyof web advertising,Banner ads(1995-2001),Initial formof web advertising,Popular websites chargedX$for every 1000,“,“impressions”ofad,Called,“,“CPM”rate,Modeled similar toTV,magazine ads,Untargeted to demographi
8、callytageted,Low clickthrough rates,low ROI foradvertisers,Performance-basedadvertising,Introduced by Overture around2000,Advertisers,“,“bid”on search keywords,When someonesearches for thatkeyword,the highest biddersad isshown,Advertiser is charged only ifthe adis clickedon,Similar model adopted byG
9、oogle withsomechanges around 2002,Called,“,“Adwords”,Ads vs.search results,Web 2.0,Performance-basedadvertisingworks!,Multi-billion-dollar industry,Interestingproblems,What ads toshow for a search?,If Iman advertiser,which search terms shouldI bidon andhow much tobid?,Adwords problem,A stream ofquer
10、ies arrives atthe searchengine,q1,q2,Several advertisers bidon each query,When query q,i,arrives,search engine must pick a subsetof advertisers whose adsare shown,Goal:maximize search enginesrevenues,Clearly we need anonline algorithm!,Greedyalgorithm,Simplest algorithmis greedy,Its easy tosee that
11、the greedy algorithmis actuallyoptimal!,Complications(1),Each ad hasa differentlikelihood of being clicked,Advertiser 1bids$2,click probability=0.1,Advertiser 2bids$1,click probability=0.5,Clickthroughratemeasured historically,Simplesolution,Instead of raw bids,usethe“expected revenue per click”,The
12、 AdwordsInnovation,Advertiser,Bid,CTR,Bid*CTR,A,B,C,$1.00,$0.75,$0.50,1%,2%,2.5%,1 cent,1.5 cents,1.125cents,The AdwordsInnovation,Advertiser,Bid,CTR,Bid*CTR,A,B,C,$1.00,$0.75,$0.50,1%,2%,2.5%,1 cent,1.5 cents,1.125cents,Complications(2),Each advertiser has a limitedbudget,Searchengine guaranteestha
13、tthe advertiser will notbe charged more than their daily budget,Simplified model(for now),Assumeall bids are 0 or1,Each advertiser has thesame budgetB,One advertiser perquery,Letstry the greedy algorithm,Arbitrarilypick an eligible advertiser for eachkeyword,Bad scenariofor greedy,Two advertisers Aa
14、nd B,A bidson query x,B bids on xand y,Both have budgetsof$4,Querystream:xxxxyyyy,Worstcase greedychoice:BBBB_,Optimal:AAAABBBB,Competitiveratio=,Simpleanalysis shows this isthe worst case,BALANCE algorithmMSVV,Mehta,Saberi,Vazirani,andVazirani,For each query,pick theadvertiserwith the largest unspe
15、ntbudget,Breakties arbitrarily,Example:BALANCE,Two advertisers Aand B,A bidson query x,B bids on xand y,Both have budgetsof$4,Querystream:xxxxyyyy,BALANCE choice:ABABBB_,Optimal:AAAABBBB,Competitiveratio=,Analyzing BALANCE,Consider simple case:two advertisers,A,1,and A,2,eachwithbudgetB(assume B,1),
16、Assumeoptimal solutionexhausts both advertisers budgets,BALANCE mustexhaust atleastone advertisers budget,If not,we can allocatemore queries,AssumeBALANCE exhaustsA,2,s budget,Analyzing Balance,A,1,A,2,B,x,y,B,A,1,A,2,x,Opt revenue=2B,Balance revenue=2B-x=B+y,We have y,x,Balance revenue isminimum forx=y=B/2,Minimum Balance revenue=3B/2,CompetitiveRatio=3/4,Queries allocatedto A,1,in optimal solution,Queries allocatedto A,2,in optimal solution,General Result,In thegeneral case,worst competitive r
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。