Current-Enhancement-In-Three-Dimensional-MetalWaterMetal-在三维metalwatermetal电流增强课件

上传人:文**** 文档编号:240605361 上传时间:2024-04-24 格式:PPT 页数:44 大小:1.95MB
收藏 版权申诉 举报 下载
Current-Enhancement-In-Three-Dimensional-MetalWaterMetal-在三维metalwatermetal电流增强课件_第1页
第1页 / 共44页
Current-Enhancement-In-Three-Dimensional-MetalWaterMetal-在三维metalwatermetal电流增强课件_第2页
第2页 / 共44页
Current-Enhancement-In-Three-Dimensional-MetalWaterMetal-在三维metalwatermetal电流增强课件_第3页
第3页 / 共44页
资源描述:

《Current-Enhancement-In-Three-Dimensional-MetalWaterMetal-在三维metalwatermetal电流增强课件》由会员分享,可在线阅读,更多相关《Current-Enhancement-In-Three-Dimensional-MetalWaterMetal-在三维metalwatermetal电流增强课件(44页珍藏版)》请在装配图网上搜索。

1、Electronic Tunneling through Dissipative Molecular BridgesUri Peskin Department of Chemistry,Technion-Israel Institute of TechnologyMusa Abu-Hilu(Technion)Alon Malka(Technion)Chen Ambor(Technion)Maytal Caspari(Technion)Roi Volkovich(Technion)Darya Brisker(Technion)Vika Koberinski(Technion)Prof.Shamm

2、ai Speiser(Technion)Thanking:OutlineMotivation:Controlled electron transport in molecular devices and in biological systems.Background:ET in Donor-Acceptor complexes:The Golden Rule,the Condon approximaton and the spin-boson Hamiltonian.ET in Donor-Bridge-Acceptor complexes:McConnells formula for th

3、e tunneling matrix elements.The problem:Electronic-nuclear coupling at the molecular bridge and the breakdown of the Condon approximation.The model system:Generalized spin-boson Hamiltonians for dissipative through-bridge tunneling.Results:The weak coupling limit:Langevin-Schroedinger formulation,si

4、mulations and interpretation of ET through a dissipative bridgeBeyond the weak coupling limit:An analytic formula for the tunneling matrix element in the deep tunneling regime.Conclusions:Promotion of tunneling through molecular barriers by electronic-nuclear coupling.The effect of molecular rigidit

5、y.Motivation:Electron Transport Through MoleculesMolecular ElectronicsResonant tunneling through molecular junctions Tans,Devoret,Thess,Smally,Geerligs,Dekker,Nature(2019)Reichert,Ochs,Beckmann,Weber,Mayor,Lohneysen,Phys.Rev.Lett.(2019).Long-range Electron Transport In NatureThe Photosynthetic React

6、ion CenterDeep(off-resonant)tunneling through molecular barriers Electron transfer is controlled by molecular bridges Tunneling pathway between cytochrome b5 and methaemoglobinControlled tunneling through molecules?Minor changes to the molecular electronic density High sensitivity(exponential)to the

7、 molecular parameters A potential for a rational design based on chemical knowledgeResonant tunnelingDeep(off resonant)tunnelingWhy Off-Resonant(deep)Tunneling?Electron Transfer in Donor-Acceptor PairsDonor AcceptorElectronic tunneling matrix elementNuclear factor:Frank-Condon weighted density of st

8、atesThe role of electronic nuclear coupling?The case of through bridge tunneling:Theory:Electron Transfer in Donor-Acceptor PairsThe electronic Hamiltonian:Diabatic electronic basis functions:The Hamiltonian matrix:Theory:Electron Transfer in Donor-Acceptor PairsA Spin Boson Hamiltonian:The Harmonic

9、 approximation:Theory:Electron Transfer in Donor-Acceptor PairsThe Condon approximationDonor AcceptorThe golden rule expression for the rate An electronic tunneling matrix elementA nuclear factorMcConnell(1961):Introducing a set of bridge electronic states;The direct tunneling matrix element vanishe

10、sDonor AcceptorLong Range Electronic TunnelingThe donor and acceptor sites are connected via an effective tunneling matrix element through the bridgeMcConnells Formula:A tight binding modelThe deep tunneling regime:First order perturbation theoryA simple expression for the effective tunneling matrix

11、 element Tunneling oscillations at a frequency:Superexchange dynamics througha symmetric uniform bridgeH.M.McConnell,J.Chem.Phys.35,508(1961)Deep tunneling through a molecular bridgeThe role of bridge nuclear modes?Validity of the Condon approximation?Davis,Ratner and Wasielewski(J.A.C.S.2019).Molec

12、ules 1-5Charge transfer is gated by bridge vibrations Electronic nuclear coupling at the bridge:Rigid bridges enable highly efficient electron energy transfer Lokan,Paddon-Row,Smith,La Rosa,Ghiggino and Speiser(J.A.C.S.2019).Breakdown of the Condon approximation!Structural(promoting)bridge modes:Ele

13、ctronically active(accepting)bridge modes:A generalized“spin-boson”model:The nuclear potential energy surface changes at the bridge electronic sitesHarmonic nuclear modes Linear e-nuclear coupling in the bridge modes The e-nuclear coupling is restricted to the bridge sites A Dissipative Superexchang

14、e Model:A symmetric uniform bridge Introducing nuclear modes with an Ohmic()spectral density The nuclear frequencies:10-500(1/cm)are larger than the tunneling frequency!and a uniform electronic-nuclear coupling:M.A-Hilu and U.Peskin,Chem.Phys.296,231(2019).Coupled Electronic-Nuclear DynamicsA mean-f

15、ield approximation:The coupled SCF equations:Mean-fields:The Langevin-Schroedinger equationA non-linear,non Markovian dissipation termFluctuationsAt zero temperature,R(t)vanishesInitial nuclear position and momentum Electronic bridge populationU.Peskin and M.Steinberg,J.Chem.Phys.109,704(2019).Numer

16、ical Simulations:Weak e-n couplingThe tunneling frequency increases!The tunneling is suppressed!Simulations:Strong e-n CouplingInterpretation:a time-dependent Hamiltonian The Instantaneous electronic energy:Weak coupling:Energy dissipation into nuclear vibrations lowers the barrier for electronic tu

17、nnelingA time-dependentMcConnell formulaInterpretation:a time-dependent Hamiltonian The Instantaneous electronic energy:Weak coupling:Energy dissipation into nuclear vibrations lowers the barrier for electronic tunnelingStrong coupling:“Irreversible”electronic energy dissipation Resonant TunnelingNu

18、merically exact simulations for a single bridge mode Tunneling suppression at strong couplingTunneling acceleration at weak coupling A dissipative-acceptor model:The acceptor population:Dissipation leads to a unidirectional ETThe tunneling rate Increases with e-n coupling at the bridge!Introducing a

19、 bridge modeA.Malka and U.Peskin,Isr.J.Chem.(2019).A dimensionless measure for the effective electronic-nuclear coupling:Interpretation:Nuclear potential energy surfacesDeep tunneling=weak electronic inter-site couplingEntangled electronic-nuclear dynamics beyond the weak coupling limitA small param

20、eter:The symmetric uniform bridge model:M.A.-Hilu and U.Peskin,submitted for publication(2019).A Rigorous Formulation The Donor/Acceptor HamiltonianThe Bridge HamiltonianThe coupling Hamiltonian(purely electronic!)Introducing vibrational eigenstates:Diagonalizing the tight-binding operator:Regarding

21、 the electronic coupling as a(second order)perturbation In the absence of electronic coupling the ground state is degenerate:The energy splitting temperature reads:Frank-Condon overlap factorsThe energy splitting:Expanding the denominators in powers ofand keeping the leading non vanishing terms give

22、sInterpretation:Effective electronic couplingEffective barrier for tunnelingMcConnells expression:Summation over vibronic tunneling pathways:Lower barrier for tunnelingMultiple“Dissipative”pathwaysThe effective tunneling barrier decreasesAn example(N=8)The tunneling frequency increases by orders of

23、magnitudewith increasing electronic nuclear coupling1/cm The“slow electron”adiabatic limit Considering only the ground nuclear vibrational state:A condition for increasing the tunneling frequency by increasing electronic-nuclear coupling:An example(N=8)The slow electron approximationSpectral densiti

24、esMolecular rigidity=small deviations from equilibriumconfigurationFlexible vs.Rigid molecular bridgesIncreasing rigidity A consistency constraint:Langevin-Schroedinger simulations:The tunneling frequency increases with bridge rigidity A rigorous treatment:The“slow electron”limitRigidity=larger Fran

25、k Condon factor!Summary and ConclusionsA rigorous calculation of electronic tunneling frequencies beyond the weak electronic-nuclear coupling limit,predicts acceleration by orders of magnitudes for some molecular parametersAn analytical approach was introduced and a formula was derived for calculati

26、ons of tunneling matrix elements in a dissipative McConnell model.A comparison with approximate methods for studying open quantum systems is suggested.The way for rationally designed,controlled electron transport in“molecular devices”is still long The effect of electronic-nuclear coupling in electro

27、nically active molecular bridges was studied using generalized McConnell models including bridge vibrations.Mean-field Langevin-Schroedinger simulations of the coupled electronic-nuclear dynamics suggest that weak electronicnuclear coupling promotes off-resonant(deep)through bridge tunneling谢谢你的阅读v知识就是财富v丰富你的人生

展开阅读全文
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!