DD5-c9-高频电感和变压器的设计讲解课件

上传人:29 文档编号:240604384 上传时间:2024-04-24 格式:PPT 页数:57 大小:1.67MB
收藏 版权申诉 举报 下载
DD5-c9-高频电感和变压器的设计讲解课件_第1页
第1页 / 共57页
DD5-c9-高频电感和变压器的设计讲解课件_第2页
第2页 / 共57页
DD5-c9-高频电感和变压器的设计讲解课件_第3页
第3页 / 共57页
资源描述:

《DD5-c9-高频电感和变压器的设计讲解课件》由会员分享,可在线阅读,更多相关《DD5-c9-高频电感和变压器的设计讲解课件(57页珍藏版)》请在装配图网上搜索。

1、Chapter 9:Design of High-Frequency Inductors and Transformers9-1 Introduction9-2 Basics of Magnetic Design9-4 Area-Product Method9-5 Design Example of an Inductor9-6 Design Example of a Transformer for a Forward Converter9-7 Loss mechanisms in magnetic circuitsFrom Reference 2-First Course on Power

2、Electronics19-1 Introduction High-frequency inductors and transforms are generally not available off-the-shelf,and must be designed based on the application specifications.So far,we have mostly considered analysis.Design is more challenging,and is partly an art.In this chapter,a simple and a commonl

3、y used approach called Area-Product method is presented,where the thermal considerations are ignored.(A detailed design discussion is presented in Chapter 30 of the Textbook)29-2 BASICS OF MAGNETIC DESIGN In designing high frequency inductors and transforms,a designer is faced with countless choices

4、,including:Core materials(permeability is dependent of materials)Core shape(some offer better thermal conduction whereas others offer better shielding to stray flux)Cooling methods(natural convection versus forced cooling)Losses(lower losses offer higher efficiency at the expense of higher size and

5、weight)31 Design consists of:(1)Selecting appropriate core material,geometry,and size(2)Selecting appropriate copper winding parameters:wire type,size,and number of turns.Core(double E)Winding Bobbin Assembled core and winding42 Overview of core material:(1)Iron-based alloy laminated cores(often ter

6、med magnetic steels):comprised of alloys principally of iron and small amounts of other elements,including:Various compositions Fe-Si(few percent Si)Fe-Cr-Mn Important properties lower Resistivity=(10100)Cu large values of saturation flux density Bs=11.8T Used in low-frequency applications.5(2)Powde

7、red iron alloy cores:consist of small iron particles electrically isolated from each other.Various compositions Fe-Si(few percent Si)Fe-Cr-Mn Important properties have larger effective resistivity than laminated cores6(3)Ferrite cores Various compositions Iron oxides Fe-Ni-Mn oxides Important proper

8、ties Resistivity very large(insulator)-no ohmic losses and hence skin effect problems at high frequencies.Bs=0.3T(T=tesla)7Core materials comparison83 Magnetic core shapes Ferrite cores available as U,E,and I shapes as well as pot cores and toroids.Laminated(conducting)materials available in E,U,and

9、 I shapes as well as tape wound toroids and C-shapes.insulating layer magnetic steel lamination91011 Open geometries such as E-core make for easier fabrication and better thermal conduction but more stray flux and hence potentially more severe EMI problems.Closed geometries such as pot cores make fo

10、r more difficult fabrication and worse thermal conduction but much less stray flux and hence EMI problems.124 Two basic quantities need being calculated in design-optimization problems:The peak flux density Bmax in the magnetic core(we most not exceed the allowed flux density of the material.BmaxBsa

11、t)to limit core losses,andThe peak current density Jmax in the winding conductors(wine must thick enough to carry current without overheating)to limit conduction losses.In general,JmaxBmax25 A pot core 2616,which is shown in Fig.9-4 for a laboratory experiment,has the core Area Acore=93.1 mm2 and th

12、e window Area Awindow=39mm2.Therefore,we will select this core,which has an Area-Product Ap=93.139=3631mm4 3583mm4.Soluction:3 selecting core shape to ensure practical Apcalculated Ap.26Soluction:4 calculating N.Winding wire cross sectional area Acond=Irms/Jmax=5.0/6.0=0.83mm2.We will use five stran

13、ds of American Wire Gauge AWG 25 wires 3,each with a cross-sectional area of 0.16mm2,in parallel.Soluction:5 selecting Acond.27Soluction:6 calculating lg.289-6 DESIGN EXAMPLE OF A TRANSFORMER FOR A FORWARD CONVERTER The required electrical specifications for the transformer in a Forward converter ar

14、e as follows:fs=100kHz and V1=V2=V3=30V.Assume the rms value of the current in each winding to be 2.5 A.We will choose the following values for this design:Bmax=0.25T,Jmax=5A/mm2,kw=0.5,kconv=0.5.29Soluction:1 Calculating Ap.Soluction:2 selecting core shape to ensure practical Apcalculated ApSelect

15、pot core 2213,Acore=63.9mm2,Awindow=29.2mm2,and therefore Ap=1866mm41800mm4.30Soluction:3 calculating N31Use three strands of AWG 25 wires 3,each with a cross-sectional area of 0.16mm2,in parallel for each winding.Soluction:4 selecting Acond329-7 Loss mechanisms in magnetic circuits The size of a ma

16、gnetic component is often determined by loss.Generally,the losses can be divided into 2 components:winding associated loss and core associated loss.331 Winding loss At low frequency(including dc),winding loss is just due to the dc resistance in the winding and is easy to calculate.Pdiss=(irms)2Rwire

17、At higher frequency,there are additional effect we must consider of:skin effect and proximity effect.34Skin effectSkin effect is the“self-shielding”effect of conductors:Due to eddy currents generated by changes in magnetic field of an ac current,the fields and currents may not penetrate inside a con

18、ductor at high frequency.I(t)H(t)I(t)J(t)J(t)0Eddy currentsraa(a)(b)(c)Time-varying current i(t)Magnetic fields H(t)Eddy currents35According to Lenzs law,magnetic fields within the core induce currents(“eddy currents”)to flow within the core.The eddy currents flow such that they tend to generate a f

19、lux which opposes changes in the core flux(t).The eddy currents tend to prevent flux from penetrating the core.36Eddy Currents Increase Winding Losseseddy currents cause a nonuniform current density in the conductor.Effective resistance of conductor increased over dc value.For sinusoidal currents:cu

20、rrent density is an exponentially decaying function of distance into the conductor,with characteristic length known as the penetration depth or skin depth.37Numerical example using copper at 100C.Frequency50Hz5kHz20kHz500kHzSkin Depth10.6mm1.06mm0.53mm0.106mmFor copper at room temperature:38 So,if w

21、e need to carry high frequency current,wine of radiusis not useful,since the current will be carried only on the surface of the wine.The solution to this problem is to parallel isolated wire of thickness.Each layer carries net current i(t).40Proximity effect causes significant power loss in the wind

22、ings of high-frequency transformers and ac inductors,especially in multi-layer windings.The solution to minimize proximity losses is:In inductors,windings can be with single-layer construction.In transforms,windings can be interleaved and avoided highs of layer.41Example:a two-winding transformerPri

23、mary turns are wound in three layers,assume that each layer is one turn.The secondary is a similar three-layer winding.Each layer carries net current i(t).Portions of the windings that lie outside of the core window are not illustrated.Each layerhas thickness h.42(1)Distribution of currents on surfa

24、ces of conductors:Skin effect causes currents to concentrate on surfaces of conductors Surface current inducesequal and opposite currenton adjacent conductor Net conductor current isequal to i(t)for each layer,since layers are connected in series Circulating currents within layers increase with the

25、numbers of layers43(2)Estimating proximity loss:high-frequency limitThe current i(t)having rms value I is confined to thickness on the surface of layer 1.Hence the effective“ac”resistance of layer 1 is:Rac=(h/)RdcThis induces copper loss P1 in layer 1:P1=I2Rac44Power loss P2 in layer 2 is:P2=P1+4P1=

26、5P1Power loss P3 in layer 3 is:P3=(22+32)P1=13P145Add up losses in each layer:Compare with dc copper loss:If foil thickness were H=,then at dc each layer would produce copper loss P1.The copper loss of M-layer winding would be Pdc=I2MRdcSo the proximity effect increases the copper loss by a factor o

27、f:46The solution to minimize proximity losses is:In inductors,windings can be with single-layer construction.In transforms,windings can be interleaved and avoided highs of layer.47(3)Two-winding transformer MMF diagramWinding layoutMMF diagram(a)without proximity effect48(b)with proximity effect49(c

28、)Interleaving the windings:MMF diagramGreatly reduces the peak MMF,leakage flux,and proximity losses502 Core loss=Eddy current loss+hysteresis lossSkin effectdB/dt through core generates voltage which drive eddy currents around core,these eddy currents flow such that they tend to generate a flux whi

29、ch oppose change core flue!xdx-xLdwBsin(wt)xyzEddy current flow path51xdx-xLdwBsin(wt)xyzEddy current flow pathTime-varying magnetic fields B(t)Eddy currents Secondary magnetic fields that oppose the applied magnetic field.52Eddy Currents effects(1)Cause eddy current losses!(2)Cause the flux to be r

30、ejected from the core!The total magnetic field in the core decays exponentially with the distance into the core.BB/2.7yskin depth:53 The solution to this problem is to increase the resistivity of the core(adding small percentage of silicon to the iron),and to use core that made from stacks of many t

31、hin laminations.Magnetic steel laminationInsulator0.05 tt(typically 0.3 mm)54Magnetic steel laminationInsulator0.05 tt(typically 0.3 mm)Cores made from conductive magnetic materials must be made of many thin laminations.Lamination thickness skin depth.Stacking factor kstack=t/(t+0.05t)55Hysteresis l

32、ossBHMinor hysteresis loopBs-BsCore losses(hysteresis,eddy currents)increase as B2(or greater)Area encompassed by hysteresis loop equals work done on material during one cycle of applied ac magnetic field.Area times frequency equals power dissipated per unit volume.56Typical waveforms of flux density,B(t)versus time,in an inductor.Only Bac contributes to hysteresis loss.tBac0t0B(t)BavgBacFigure 30-1 Magnetic flux density waveforms57

展开阅读全文
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!