自适应滤波器原理第四讲NLMS算法.课件

上传人:痛*** 文档编号:232557059 上传时间:2023-09-21 格式:PPT 页数:33 大小:694KB
收藏 版权申诉 举报 下载
自适应滤波器原理第四讲NLMS算法.课件_第1页
第1页 / 共33页
自适应滤波器原理第四讲NLMS算法.课件_第2页
第2页 / 共33页
自适应滤波器原理第四讲NLMS算法.课件_第3页
第3页 / 共33页
资源描述:

《自适应滤波器原理第四讲NLMS算法.课件》由会员分享,可在线阅读,更多相关《自适应滤波器原理第四讲NLMS算法.课件(33页珍藏版)》请在装配图网上搜索。

1、2023/9/21自适应信号处理1第四讲 归一化最小均方(NLMS)自适应滤波算法 Y.J.Pang第1页,共33页。自适应信号处理22023/9/21CONTENTnNLMS算法推导过程nNLMS算法稳定性nNLMS算法在回声消除中的应用第2页,共33页。自适应信号处理32023/9/21为什么归一化?如何归一化及归一化的稳定性回声消除应用仿射投影滤波器应用第3页,共33页。自适应信号处理42023/9/21为什么归一化?为什么归一化?由第五章的传统的LMS滤波器的标准形式从上式可以看出n+1次迭代中应用于滤波器抽头权向量的失调为w(n+1)-w(n)由以下三点影响:1.步长参数 u (由设

2、计者控制)2.抽头输入向量u(n)(由信息源提供)3.实数据的估计误差e(n)或复数据估计误差e*(n)(n次迭代计算的结果)可知失调与抽头输入向量u(n)成正比。我们在调整滤波器的权向量使滤波器达到稳定状态的过程中,应当使权向量以最小方式改变,这样才能的得到最优解。当u(n)较大时,出现梯度噪声放大问题。归一化:n+1次迭代时对抽头权向量的失调相对于n次迭代时抽头输入向量u(n)的平方欧式范数进行归一化。第4页,共33页。自适应信号处理52023/9/214.1.归一化归一化LMS滤波器作为约束最优化问题滤波器作为约束最优化问题的解的解(1)在结构上,归一化LMS滤波器与标准LMS滤波器完全

3、一样,都是横向滤波器。区别在于权值控制器的机理,如下图横向滤波器w(n)自适应控制算法+输出信号y(n)期望响应d(n)误差信号e(n)输入向量u(n)自适应横向滤波器框图第5页,共33页。自适应信号处理62023/9/21最小化干扰原理最小化干扰原理:从一次迭代到下一次中,自适应滤波器的权向量应从一次迭代到下一次中,自适应滤波器的权向量应从一次迭代到下一次中,自适应滤波器的权向量应从一次迭代到下一次中,自适应滤波器的权向量应当以最小方式改变,而且受到更新的滤波器输出所施加的约束。当以最小方式改变,而且受到更新的滤波器输出所施加的约束。当以最小方式改变,而且受到更新的滤波器输出所施加的约束。当

4、以最小方式改变,而且受到更新的滤波器输出所施加的约束。归一化LMS滤波器设计准则表述为约束优化问题。即给定抽头输入向量u(n)和目标响应d(n),确定更新的抽头向量w(n+1),使得增量的欧式范数最小化,并受制于以下约束条件我们应用拉格朗日乘子法来解决这个约束优化问题。代价函数为 其中Re.表示取实部运算,约束对代价函数的贡献是实值的;为复数拉格朗日乘子,*表示复共轭;表示欧式范数的平方运算,其结果也是实值的。因此代价函数J(n)是实值的二次函数,且表示为第6页,共33页。自适应信号处理72023/9/21为了得到代价函数为最小的最优更新权向量,推到如下:第一步;代价函数对w(n+1)求导,得

5、:令其为零,得最优解为第二步;将第一步的结果带入式(2)得第7页,共33页。自适应信号处理82023/9/21对 求解得其中是误差信号。第三步;由上两步的结果,表示增量变化的最优值。故归一化LMS算法抽头权向量期望的递归结果为第8页,共33页。自适应信号处理92023/9/21为了对一次迭代到下一次迭代抽头权向量的增量变化进行控制而不改变向量的为了对一次迭代到下一次迭代抽头权向量的增量变化进行控制而不改变向量的方向,引入了一个正的实数标度因子方向,引入了一个正的实数标度因子 。故得到归一化抽头权向量的递归方程以上便是解决了当u(n)较大时,造成的LMS滤波器的梯度噪声放大的问题。而当而当u(n

6、)较小时,不得不用较小的平方范数除以)较小时,不得不用较小的平方范数除以 ,以致有可能出现数值计,以致有可能出现数值计算困难。故将递归方程修改为;算困难。故将递归方程修改为;其中第9页,共33页。自适应信号处理102023/9/214.2归一化LMS滤波器的稳定性期望响应d(n)多重回归模型控制,重写如下加权误差向量为 于是从w中减去式得到以均方偏差为基础,进行稳定性分析。对式两边取平方欧式范数,并取期望值得:其中是无干扰误差信号第10页,共33页。自适应信号处理112023/9/21由式看做 为变量的一元二次函数 则当满足如下条件归一化LMS滤波器在均方误差意义下是稳定的。最优步长参数为0u

7、第11页,共33页。自适应信号处理122023/9/21特殊情况:复数据 实数据为便于计算最优步长提出三个假设:假设一假设一:从一次迭代到下一次迭代的输入信号能量的波动足够小满足第12页,共33页。自适应信号处理132023/9/21从而得到简化的最优步长假设二假设二:无干扰误差信号与期望响应d(n)的多重回归模型干扰(噪声)v(n)无关第五章中,干扰信号e(n)与无干扰信号有关。最优步长第13页,共33页。自适应信号处理142023/9/21假设三假设三:输入信号u(n)的谱内容在比加权误差向量每一个分量所占频带更宽的频带上基本上是平坦的,因此证实了如下近似:(低通滤波作用)最优步长第14页

8、,共33页。自适应信号处理152023/9/214.3回声消除中的步长控制 几乎所有的谈话都在存在回声的情况下进行。根据是否可察觉是有所涉及的时延决定。语音与回声之间时延较短,不容易察觉。(频谱失真频谱失真)时延较长,(超过几十毫秒),就能感觉到。现实生活中很常见;电话电路电话电路:电路中的混合变换器的桥式电路,当平衡不好时,输入与输 出之间存在耦合现象,引起回声。免提电话免提电话:啸叫声。这是由于麦克风得到了扬声器的语音信号和 机壳反射的回波信号。听到自己的延迟的声音。经系统环绕-往返时间延迟造 成的。第15页,共33页。自适应信号处理162023/9/21回声消除中的步长控制扬声器-机壳-

9、麦克风环境(LEM)横向滤波器w(n)自适应和步长控制器期望响应d(n)u(n)远处说话者的信号u(n)误差信号e(n)+合成回声y(n)回声消除器 回声控制系统的结构框图回声控制系统的结构框图第16页,共33页。自适应信号处理172023/9/21步长控制多重回归模型的干扰v(n)误差e(n)增大步长参数的上界下降可能过大回声滤波器不稳定1.本地说话者语音信号导致的干扰。(双说话)2.永久的本地噪声(汽车内的背景噪声)3.需要长的滤波器长度,但不能满足的话,不能考虑全部脉冲响应,而不能建模的那部分系统的剩余回声成为本地噪声4.定点数字信号处理器中的定点计算的量化噪声。本地干扰大时,步长参数u

10、可能很高(滤波器不稳定)本地干扰小时,步长参数u很小 (降低了滤波器收敛速率)因此应用时变步长参数因此应用时变步长参数u(n)来代替不变参数)来代替不变参数u第17页,共33页。自适应信号处理182023/9/21对最优步长的估计由上式可变为下列三个独立的估计:1.误差信号功率估计,即Ee2(n)2.输入信号功率估计,即Eu2(n)3.均方偏差的估计,即D(n)(由于表征LEM环境的多重回归模型 参数w未知)(人工时延方法人工时延方法)(凸组合思想表示一阶递归凸组合思想表示一阶递归 )r取值一般在0.9,0.999 内如图中远端说话者信号被延迟了MD个样值。用自适应横向滤波器模型,故对应的人工

11、时延的参数向量w为0,可令将自适应滤波器趋向均匀地将加权误差向量扩展到它的M个抽头上。将均方偏差近似为第18页,共33页。自适应信号处理192023/9/21 本地激励引起的误差信号e(n)增大时,步长参数减小,稳定。系统卡滞,阻断了滤波器的自适应和延迟系数。用LEM的附加检测器来解决第19页,共33页。自适应信号处理202023/9/214.4 实数据时收敛过程的几何考虑权向量调整量用于n+1次迭代的归一化滤波器得1)调整量的方向与输入向量u(n)的方向一致。2)调整量的大小取决于输入向量u(n)与u(n-1)的样值相关系数。对实数据,该系数为 是所有权向量 的集合,它作用于输入向量u(n)

12、以产生输出y(n),同理两个超平面的夹角就是输入向量u(n)和u(n-1)的夹角。由空间理论可知,第20页,共33页。自适应信号处理212023/9/21a)当 (即输入向量u(n)与u(n-1)正交)时,归一化LMS滤波器收敛速度最快。b)当 =0 或180(输入向量u(n)与u(n-1)处于相同方向或相反方向)时,归一化LMS滤波器的收敛速度最慢。为防止b)让收敛速率基本上为常数,独立于输入向量u(n)与u(n-1)的夹角。我们使用放射投影滤波器。图(a)权值空间内,w(n+1)与w(n)的连线正交与图(b)正交于第21页,共33页。自适应信号处理222023/9/21第22页,共33页。

13、自适应信号处理232023/9/21第23页,共33页。自适应信号处理242023/9/21特点特点LMS滤波器简易,稳定收敛速率慢自适应常数u有反功率量纲模型独立性,性能有鲁棒性归一化LMS滤波器减轻了当u(n)过大时梯度噪声收敛速率快于传统LMS自适应常数没有量纲的较LMS计算复杂均方意义上稳定收敛仿射投影自适应滤波器归一化LMS的推广收敛性最好计算难度大第24页,共33页。自适应信号处理252023/9/214.5仿射投影滤波器归一化LMS滤波器为仿射投影自适应的一个特例,N=1,仿射投影自适应滤波器阶数为N个约束个数的约束最优准则。权值增量约束条件代价函数N M 数据矩阵A(n),其埃

14、尔米特转置为:AH(n)=u(n),u(n-1),.u(n-N+1)N 1期望响应向量,它的埃尔米特转置为:dH(n)=d(n),d(n-1,.d(n-N+1)第25页,共33页。自适应信号处理262023/9/21由上式重新写代价函数:对权向量微分:令其为0得由式 得 由式 移项并求第26页,共33页。自适应信号处理272023/9/21代入式 并为保证权向量迭代控制的方向不变引入步长参数得到所期望的仿射投影滤波器的更新方程如下将公式代入上式得定义投影算子定义投影算子P=第27页,共33页。自适应信号处理282023/9/21仿射投影自适应滤波器的稳定性分析以均方偏差D(n)的基础上,得到若

15、稳定须满足最优步长第28页,共33页。自适应信号处理292023/9/21假设4:从一个迭代到下一次迭代,矩阵乘积A(n)AH(n)之逆的波动足够小以使得最优步长近似为假设5:无干扰误差向量与干扰误差向量不相关。在复数据中第29页,共33页。自适应信号处理302023/9/21第30页,共33页。自适应信号处理312023/9/21仿射投影滤波器中的实际考虑1.在噪声环境下,(A(n)AH(n))-1 可能发生计算困难.正则化(防止近端防止近端噪声过大噪声过大)2.当投影维数N增大时,上式的得到w(n)的收敛上升。但是计算复杂度太大。快速实现(是它与滤波器的阶数是它与滤波器的阶数M成线性关系成线性关系)第31页,共33页。自适应信号处理322023/9/21小结特点特点LMS滤波器简易,稳定收敛速率慢自适应常数u有反功率量纲模型独立性,性能有鲁棒性归一化LMS滤波器减轻了当u(n)过大时梯度噪声收敛速率快于传统LMS自适应常数没有量纲的较LMS计算复杂均方意义上稳定收敛仿射投影自适应滤波器归一化LMS的推广收敛性最好计算难度大第32页,共33页。自适应信号处理332023/9/21LMSNLMS第33页,共33页。

展开阅读全文
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

相关资源

更多
正为您匹配相似的精品文档
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!