室内巡视机器人设计和仿真实现n大学论文

上传人:无*** 文档编号:229304684 上传时间:2023-08-22 格式:DOC 页数:18 大小:351.50KB
收藏 版权申诉 举报 下载
室内巡视机器人设计和仿真实现n大学论文_第1页
第1页 / 共18页
室内巡视机器人设计和仿真实现n大学论文_第2页
第2页 / 共18页
室内巡视机器人设计和仿真实现n大学论文_第3页
第3页 / 共18页
资源描述:

《室内巡视机器人设计和仿真实现n大学论文》由会员分享,可在线阅读,更多相关《室内巡视机器人设计和仿真实现n大学论文(18页珍藏版)》请在装配图网上搜索。

1、使用LabVIEW FPGA模块开发可编程自动化控制器学院: 通信与电子工程学院 班级: 电子071 学号: 姓名: Building Programmable Automation Controllers with LabVIEW FPGAOverviewProgrammable Automation Controllers (PACs) are gaining acceptance within the industrial control market as the ideal solution for applications that require highly integrate

2、d analog and digital I/O, floating-point processing, and seamless connectivity to multiple processing nodes. National Instruments offers a variety of PAC solutions powered by one common software development environment, NI LabVIEW. With LabVIEW, you can build custom I/O interfaces for industrial app

3、lications using add-on software, such as the NI LabVIEW FPGA Module. With the LabVIEW FPGA Module and reconfigurable I/O (RIO) hardware, National Instruments delivers an intuitive, accessible solution for incorporating the flexibility and customizability of FPGA technology into industrial PAC system

4、s. You can define the logic embedded in FPGA chips across the family of RIO hardware targets without knowing low-level hardware description languages (HDLs) or board-level hardware design details, as well as quickly define hardware for ultrahigh-speed control, customized timing and synchronization,

5、low-level signal processing, and custom I/O with analog, digital, and counters within a single device. You also can integrate your custom NI RIO hardware with image acquisition and analysis, motion control, and industrial protocols, such as CAN and RS232, to rapidly prototype and implement a complet

6、e PAC system.Table of Contents1. Introduction 2. NI RIO Hardware for PACs 3. Building PACs with LabVIEW and the LabVIEW FPGA Module 4. FPGA Development Flow 5. Using NI SoftMotion to Create Custom Motion Controllers 6. Applications 7. Conclusion Introduction You can use graphical programming in LabV

7、IEW and the LabVIEW FPGA Module to configure the FPGA (field-programmable gate array) on NI RIO devices. RIO technology, the merging of LabVIEW graphical programming with FPGAs on NI RIO hardware, provides a flexible platform for creating sophisticated measurement and control systems that you could

8、previously create only with custom-designed hardware.An FPGA is a chip that consists of many unconfigured logic gates. Unlike the fixed, vendor-defined functionality of an ASIC (application-specific integrated circuit) chip, you can configure and reconfigure the logic on FPGAs for your specific appl

9、ication. FPGAs are used in applications where either the cost of developing and fabricating an ASIC is prohibitive, or the hardware must be reconfigured after being placed into service. The flexible, software-programmable architecture of FPGAs offer benefits such as high-performance execution of cus

10、tom algorithms, precise timing and synchronization, rapid decision making, and simultaneous execution of parallel tasks. Today, FPGAs appear in such devices as instruments, consumer electronics, automobiles, aircraft, copy machines, and application-specific computer hardware. While FPGAs are often u

11、sed in industrial control products, FPGA functionality has not previously been made accessible to industrial control engineers. Defining FPGAs has historically required expertise using HDL programming or complex design tools used more by hardware design engineers than by control engineers.Withinthet

12、est-fixturethetxoutputofthetransmittermoduleisloopedbacktotherxinputofthereceivermodule.Thisallowsthetransmittermoduletobeusedastestsignalgeneratorforthereceivermodule.Datacanbewritteninparallelformattothetransmittermoduleandloopedbackinserialformattotherxinputofthereceivermodule,anddatareceivedcanf

13、inallybereadoutinparallelformatfromthereceivermodule.InordertoautomatethetestingoftheUARTasmuchaspossible,treeindependentVerilogtaskswerewrittenasfollows.TheVerilog task“write_to_transmitter”holdsallnecessarystatementsrequiredtogenerateasingleparalleldatawritesequencetothetransmittermodule.Datathata

14、rewrittentothetransmitteruponexecutionofthe“write_to_transmitter”task,getlatchedinternaltothetest-fixtureforlateranalysis.TheVerilogtask“read_out_receiver”holdsallnecessarystatementsrequiredtogenerateasingle paralleldatareadoutsequencefromthereceivermodule.Datathatarereadoutofthereceiveruponexecutio

15、nofthe“read_out_receiver”task,getlatchedinternaltothetest-fixtureforlateranalysis.TheVerilogtask“compare_data”holdsallnecessarystatementsrequiredtocomparethepreviousdatawrittentothetransmittermodule,to thecorrespondingandmostrecentdatareceivedandreadoutfromthereceivermodule.Ifanydiscrepancyoccurs,th

16、e“compare_data”taskflagsforanerrorbywritingoutthedatavaluesthatwerewrittentothetransmittermodule,aswellasthecorrespondingdatavaluesthatwerereceivedbyandreadoutfromthereceivermodule.Thesimulationisimmediatelystoppedbythe“compare_data”taskifanydiscrepancyoccurs.BesidesthetreeabovementionedVerilogtasks

17、,thetest-fixtureholdsthestatementstogeneratethemclkx16,themasterresetsignalsaswellasthe“txtorx”loopbackfeature.Thestatementsareconsideredtrivial,andwillnotbeillustratedhere,butcanbereferredtowithinthetest-fixtureitself.Thecoreofthetest-fixtureisabehaviorallevel“forloop”thatexecutesthetreeabovementio

18、nedVerilogtasksinordertowriteallpossibledatacombinationstothetransmitterandverifythatsamedatagetsproperlyreceivedbythereceiver.Theforloopisshowed below in figure 21.Nexttoportdefinitionscomesportdirections.Directionsarespecifiedasinput,outputorinout(bidirectional),andcanbereferredtointable1.Nexttoth

19、e specificationofportdirectionscomesdeclarationofinternalsignals.InternalsignalsinVerilogaredeclaredas“wire”or“reg”datatypes.Signalsofthe“wire”typeareusedforcontinuosassignments,alsocalledcombinatorialstatements.Signalsofthe“reg”typeareusedforassignmentswithintheVerilog“always”block,oftenuseforseque

20、ntiallogicassignments,butnotnecessarily.ForfurtherexplanationseeaVerilogreferencebook.Datatypesoftheinternalsignalsofthemodulecanbereferredtointable3.Wehavenowpassedbyallnecessarydeclarations,andarenowreadytolookattheactualimplementation.Usinghardwaredescriptionlanguageallowsusto describethefunction

21、ofthetransmitterinamorebehavioralmanner,ratherthanfocusonitsactualimplementationatgatelevelInsoftwareprogramminglanguage, functionsandproceduresbreakslargerprogramsintomorereadable,manageableandcertainlymaintainablepieces.TheVeriloglanguageprovidesfunctionsandtasksasconstructs,analogoustosoftwarefun

22、ctionsandprocedures.AVerilogfunctionand taskareusedastheequivalenttomultiplelinesofVerilogcode,wherecertaininputsorsignalsaffectscertainoutputsorvariables.Theuseoffunctionsandtasksusuallytakesplacewheremultiplelinesofcodearerepeatedlyusedinadesign,andhencemakesthedesigneasiertoreadandcertainlymainta

23、in.AVerilogfunction canhavemultipleinputs,butalwayshaveonlyoneoutput,whiletheVerilogtaskcanhavebothmultipleinputs,andmultipleoutputsandeveninsomecases,nonofeach.BelowisshowntheVerilogtask,thatholdallnecessarysequentialstatements,todescribethetransmitterinthe“shift”modeWith the LabVIEW FPGA Module an

24、d NI RIO hardware, you now can use LabVIEW, a high-level graphical development environment designed specifically for measurement and control applications, to create PACs that have the customization, flexibility, and high-performance of FPGAs. Because the LabVIEW FPGA Module configures custom circuit

25、ry in hardware, your system can process and generate synchronized analog and digital signals rapidly and deterministically. Figure 1 illustrates many of the NI RIO devices that you can configure using the LabVIEW FPGA Module.Figure 1. LabVIEW FPGA VI Block Diagram and RIO Hardware Platforms NI RIO H

26、ardware for PACs Historically, programming FPGAs has been limited to engineers who have in-depth knowledge of VHDL or other low-level design tools, which require overcoming a very steep learning curve. With the LabVIEW FPGA Module, NI has opened FPGA technology to a broader set of engineers who can

27、now define FPGA logic using LabVIEW graphical development. Measurement and control engineers can focus primarily on their test and control application, where their expertise lies, rather than the low-level semantics of transferring logic into the cells of the chip. The LabVIEW FPGA Module model work

28、s because of the tight integration between the LabVIEW FPGA Module and the commercial off-the-shelf (COTS) hardware architecture of the FPGA and surrounding I/O components.National Instruments PACs provide modular, off-the-shelf platforms for your industrial control applications. With the implementa

29、tion of RIO technology on PCI, PXI, and Compact Vision System platforms and the introduction of RIO-based CompactRIO, engineers now have the benefits of a COTS platform with the high-performance, flexibility, and customization benefits of FPGAs at their disposal to build PACs. National Instruments P

30、CI and PXI R Series plug-in devices provide analog and digital data acquisition and control for high-performance, user-configurable timing and synchronization, as well as onboard decision making on a single device. Using these off-the-shelf devices, you can extend your NI PXI or PCI industrial contr

31、ol system to include high-speed discrete and analog control, custom sensor interfaces, and precise timing and control. NI CompactRIO, a platform centered on RIO technology, provides a small, industrially rugged, modular PAC platform that gives you high-performance I/O and unprecedented flexibility i

32、n system timing. You can use NI CompactRIO to build an embedded system for applications such as in-vehicle data acquisition, mobile NVH testing, and embedded machine control systems. The rugged NI CompactRIO system is industrially rated and certified, and it is designed for greater than 50 g of shoc

33、k at a temperature range of -40 to 70 C.NI Compact Vision System is a rugged machine vision package that withstands the harsh environments common in robotics, automated test, and industrial inspection systems. NI CVS-145x devices offer unprecedented I/O capabilities and network connectivity for dist

34、ributed machine vision applications.NI CVS-145x systems use IEEE 1394 (FireWire) technology, compatible with more than 40 cameras with a wide range of functionality, performance, and price. NI CVS-1455 and NI CVS-1456 devices contain configurable FPGAs so you can implement custom counters, timing, o

35、r motor control in your machine vision application.Building PACs with LabVIEW and the LabVIEW FPGA ModuleWith LabVIEW and the LabVIEW FPGA Module, you add significant flexibility and customization to your industrial control hardware. Because many PACs are already programmed using LabVIEW, programmin

36、g FPGAs with LabVIEW is easy because it uses the same LabVIEW development environment. When you target the FPGA on an NI RIO device, LabVIEW displays only the functions that can be implemented in the FPGA, further easing the use of LabVIEW to program FPGAs. The LabVIEW FPGA Module Functions palette

37、includes typical LabVIEW structures and functions, such as While Loops, For Loops, Case Structures, and Sequence Structures as well as a dedicated set of LabVIEW FPGA-specific functions for math, signal generation and analysis, linear and nonlinear control, comparison logic, array and cluster manipu

38、lation, occurrences, analog and digital I/O, and timing. You can use a combination of these functions to define logic and embed intelligence onto your NI RIO device.Figure 2 shows an FPGA application that implements a PID control algorithm on the NI RIO hardware and a host application on a Windows m

39、achine or an RT target that communicates with the NI RIO hardware. This application reads from analog input 0 (AI0), performs the PID calculation, and outputs the resulting data on analog output 0 (AO0). While the FPGA clock runs at 40 MHz the loop in this example runs much slower because each compo

40、nent takes longer than one-clock cycle to execute. Analog control loops can run on an FPGA at a rate of about 200 kHz. You can specify the clock rate at compile time. This example shows only one PID loop; however, creating additional functionality on the NI RIO device is merely a matter of adding an

41、other While Loop. Unlike traditional PC processors, FPGAs are parallel processors. Adding additional loops to your application does not affect the performance of your PID loop.Figure 2. PID Control Using an Embedded LabVIEW FPGA VI with Corresponding LabVIEW Host VI. FPGA Development Flow After you

42、create the LabVIEW FPGA VI, you compile the code to run on the NI RIO hardware. Depending on the complexity of your code and the specifications of your development system, compile time for an FPGA VI can range from minutes to several hours. To maximize development productivity, with the R Series RIO

43、 devices you can use a bit-accurate emulation mode so you can verify the logic of your design before initiating the compile process. When you target the FPGA Device Emulator, LabVIEW accesses I/O from the device and executes the VI logic on the Windows development computer. In this mode, you can use

44、 the same debugging tools available in LabVIEW for Windows, such as execution highlighting, probes, and breakpoints.Once the LabVIEW FPGA code is compiled, you create a LabVIEW host VI to integrate your NI RIO hardware into the rest of your PAC system. Figure 3 illustrates the development process fo

45、r creating an FPGA application. The host VI uses controls and indicators on the FPGA VI front panel to transfer data between the FPGA on the RIO device and the host processing engine. These front panel objects are represented as data registers within the FPGA. The host computer can be either a PC or

46、 PXI controller running Windows or a PC, PXI controller, Compact Vision System, or CompactRIO controller running a real-time operating system (RTOS). In the above example, we exchange the set point, PID gains, loop rate, AI0, and AO0 data with the LabVIEW host VI.Figure 3. LabVIEW FPGA Development F

47、lowThe NI RIO device driver includes a set of functions to develop a communication interface to the FPGA. The first step in building a host VI is to open a reference to the FPGA VI and RIO device. The Open FPGA VI Reference function, as seen in Figure 2, also downloads and runs the compiled FPGA cod

48、e during execution. After opening the reference, you read and write to the control and indicator registers on the FPGA using the Read/Write Control function. Once you wire the FPGA reference into this function, you can simply select which controls and indicators you want to read and write to. You ca

49、n enclose the FPGA Read/Write function within a While Loop to continuously read and write to the FPGA. Finally, the last function within the LabVIEW host VI in Figure 2 is the Close FPGA VI Reference function. The Close FPGA VI Reference function stops the FPGA VI and closes the reference to the dev

50、ice. Now you can download other compiled FPGA VIs to the device to change or modify its functionality.The LabVIEW host VI can also be used to perform floating-point calculations, data logging, networking, and any calculations that do not fit within the FPGA fabric. For added determinism and reliabil

51、ity, you can run your host application on an RTOS with the LabVIEW Real-Time Module. LabVIEW Real-Time systems provide deterministic processing engines for functions performed synchronously or asynchronously to the FPGA. For example, floating-point arithmetic, including FFTs, PID calculations, and c

52、ustom control algorithms, are often performed in the LabVIEW Real-Time environment. Relevant data can be stored on a LabVIEW Real-Time system or transferred to a Windows host computer for off-line analysis, data logging, or user interface displays. The architecture for this configuration is shown in

53、 Figure 4. Each NI PAC platform that offers RIO hardware can run LabVIEW Real-Time VIs.Figure 4. Complete PAC Architecture Using LabVIEW FPGA, LabVIEW Real-Time and Host PCWithin each R Series and CompactRIO device, there is flash memory available to store a compiled LabVIEW FPGA VI and run the appl

54、ication immediately upon power up of the device. In this configuration, as long as the FPGA has power, it runs the FPGA VI, even if the host computer crashes or is powered down. This is ideal for programming safety power down and power up sequences when unexpected events occur.Using NI SoftMotion to

55、 Create Custom Motion Controllers The NI SoftMotion Development Module for LabVIEW provides VIs and functions to help you build custom motion controllers as part of NI PAC hardware platforms that can include NI RIO devices, DAQ devices, and Compact FieldPoint. NI SoftMotion provides all of the funct

56、ions that typically reside on a motion controller DSP. With it, you can handle path planning, trajectory generation, and position and velocity loop control in the NI LabVIEW environment and then deploy the code on LabVIEW Real-Time or LabVIEW FPGA-based target hardware.NI SoftMotion includes functio

57、ns for trajectory generator and spline engine and examples with complete source code for supervisory control, position, and velocity control loop using the PID algorithm. Supervisory control and the trajectory generator run on a LabVIEW Real-Time target and run at millisecond loop rates. The spline

58、engine and the control loop can run either on a LabVIEW Real-Time target at millisecond loop rates or on a LabVIEW FPGA target at microsecond loop rates.Applications Because the LabVIEW FPGA Module can configure low-level hardware design of FPGAs and use the FPGAs within in a modular system, it is i

59、deal for industrial control applications requiring custom hardware. These custom applications can include a custom mix of analog, digital, and counter/timer I/O, analog control up to 125 kHz, digital control up to 20 MHz, and interfacing to custom digital protocols for the following: Batch control D

60、iscrete control Motion control In-vehicle data acquisition Machine condition monitoring Rapid control prototyping (RCP) Industrial control and acquisition Distributed data acquisition and control Mobile/portable noise, vibration, and harshness (NVH) analysisConclusion The LabVIEW FPGA Module brings

61、the flexibility, performance, and customization of FPGAs to PAC platforms. Using NI RIO devices and LabVIEW graphical programming, you can build flexible and custom hardware using the COTS hardware often required in industrial control applications. Because you are using LabVIEW, a programming langua

62、ge already used in many industrial control applications, to define your NI RIO hardware, there is no need to learn VHDL or other low-level hardware design tools to create custom hardware. Using the LabVIEW FPGA Module and NI RIO hardware as part of your NI PAC adds significant flexibility and functi

63、onality for applications requiring ultrahigh-speed control, interfaces to custom digital protocols, or a custom I/O mix of analog, digital, and counters.使用LabVIEW FPGA(现场可编程门阵列)模块开发可编程自动化控制器综述 工业控制上的应用要求高度集成的模拟和数字输入输出、浮点运算和多重处理节点的无缝连接。因为它对这些应用的理想解决方案,在工业控制市场上,可编程自动化控制器(PAC)正逐渐被接受。通过一种普通的软件开发环境NI LabVIEW,国家仪器公司提供各种可编程自动化控制器的解决方案。有了LabVIEW,你可以用像NI LabVIEW FPGA模块一样的附加软件为工业应用开发自定义输入输出界面。 为将FPGA技术的灵活性和可定制性并入工业PAC系统,国家仪器公司利用LabVIEW FPGA模块和实时输入输出(RIO)硬件提供

展开阅读全文
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!