单片机水位监测系统资料

上传人:仙*** 文档编号:229099669 上传时间:2023-08-22 格式:DOC 页数:29 大小:652.04KB
收藏 版权申诉 举报 下载
单片机水位监测系统资料_第1页
第1页 / 共29页
单片机水位监测系统资料_第2页
第2页 / 共29页
单片机水位监测系统资料_第3页
第3页 / 共29页
资源描述:

《单片机水位监测系统资料》由会员分享,可在线阅读,更多相关《单片机水位监测系统资料(29页珍藏版)》请在装配图网上搜索。

1、 毕业设计论文湖南科技工业职业技术学院毕业设计论文设计课题: 水位监控系统 班 级: 姓 名: 学 号: 专 业: 机电一体化 教 研 室: 指导老师: 联系电话: E-mail: 水位监控系统目录摘要31 前言41.1 课题背景41.2 国内外研究的现状41.3 使用单片机实现水体液位控制的优点51.4 系统的总体研究方案51.4.1 系统硬件总体方案51.4.2 系统软件总体方案61.4.3 设计的研究进程62 系统硬件设计72.1 核心芯片AT98C51单片机72.2 液位传感器设计102.3 压力传感器的基本特性 132.4 ADC0832 A/D 转换器162.4.ADC0832转换

2、芯片182.5.LED显示管的设计203 软件的设计223.1 软件设计流程图 233.2 水位检测的主程序. 244 结论26致谢27参考文献 28摘要 本文主要设计了一种液位控制器,它以AT89C51作为控制器,通过AT89C51单片机和模数转换器等硬件系统和软件设计方法,实现具有液位检测报警和控制双重功能,并对液位值进行显示。本系统是基于单片机的液位控制,在设计中主要有水位检测、按键控制、水位控制、显示部分、故障报警等几部分组成来实现液位控制。主要用水位传感器检测水位,用六个控制按键来实现按健控制,用三位7段LED显示器来完成显示部分,用变频器来控制循环泵的转速,并且通过模数转换把这些信

3、号送入单片机中。把这些信号与单片机中内部设定的值相比,以判断单片机是否需要进行相应的操作,即是否需要开启补水泵或排水泵,来实现对液面的控制,从而实现单片机自动控制液面的目的。本设计用单片机控制,易于实现液位的控制,而且有造价低、程序易于调试、一部分出现故障不会影响其他部分的工作、维修方便、等优点。关键词: AT89C51单片机; 模数转换; 水位控制; 自动控制 1 前言1.1 课题背景液位控制系统是以液位为被控参数的控制系统,它在工业生产的各个领域都有广泛的应用。在工业生产过程中,有很多地方需要对容器内的介质进行液位控制,使之高精度地保持在给定的数值,如在建材行业中,玻璃窑炉液位的稳定对窑炉

4、的使用寿命和产品的质量起着至关重要的作用。液位控制一般指对某一液位进行控制调节,使其达到所要求的控制精度。液体的液位的自动控制,是近年来新开发的一项新技术,它是微型计算机软件、硬件、自动控制等几项技术紧密结合的产物,工程作业采用的是微机控制和原有的仪表控制,微机控制有以下明显优势:1)直观而集中的显示各运行参数,能显示液位状态。2)在运行中可以随时方便的修改各种各样的运行参数的控制值,并修改系统的控制参数,可以方便的改变液位的上限、下限。3) 具有水体控制过程的自动化处理以及监控软件良好的人机界面,操作人员在监控计算机上能根据控制效果及时修运行参数,这样能有效地减少工人的疲劳和失误,提高生产过

5、程的实时性、安全性综合以上的种种优点可以预见采用计算机控制系统是行业的大势所趋。单片机是在一块芯片上集成了一片微型计算机所需的CPU、存储器、输入、输出等部件。单片机自问世以来,性能不断提高和完善,体积小、速度快、功耗低的特点使它的应用领域日益广泛。一般,工业控制系统的工作环境差,干扰强,利用单片机控制就能克服这些缺点,因此单片机在控制领域得到广泛的应用,使用单片机控制液体液位是很好的选择。1.2 国内外研究的现状目前我国在单片机测控装置研究、生产、应用中,取得了很大的成绩,总结了很多经验,但是各行业仍处于发展期,经调查,更多科研究所在这方面开展的工作更看重的是理论和算法,数年来这方面的研究的

6、论文较多,着重生产实际的很少。在上海,新型的单片机测控装置与系统研究的生产基础较雄厚,在生产过程中需要新型的测控装置与系统,因此在不断的努力研究与开发。上海的工程技术研究人员更着重的是生产实际研究,对理论、算法和成果的论文较少;深圳在研制新型的测控装置与系统领域也比较有成就,尽管与其他国家比较尚有差距,但是,深圳的高校、研究院所的最大的特点就是实际,与生产实际应用项目无关的问题基本不去考虑,主要考虑选取什么材料,测控什么物理量,优点是什么,与机器设备的通讯接口等等。一些发达国家在单片机新型系统研究、制造和应用上,已积累了很多经验,奠定了基础,进入了国际市场。我国在新型测控装置与系统研究、制造、

7、应用和经验上,与其他发达国家相比还存在差距,但是我国的研究人员已经克服很多困难,并在不断的摸索中前进,有望在相关领域赶上甚至超过发达国家的技术水平,这是发展趋势。1.3 使用单片机实现水体液位控制的优点使用单片机实现水体液位控制具有较高的实用价值和稳定性好等特点。采用高亮二极管和光敏三级管所组成的液位传感器测量水位,可有效保证水位的自动控制,能更好地对水体水位进行自动化控制,避免了工作人员在现场进行检测操控,方便了人员对液位系统的控制,控制方便且系统稳定性能好;单片机不仅有体积小,安装方便,功能较齐全等优点,而且有很高的性价比,应用前景广,同时有助于发现可能存在的故障,通过微机实现给水系统的自

8、动控制与调节,维持稳定系统,保证安全经济运行。本文就是采用8051单片机为核心芯片的一种水体水位控制系统,具有较高的实用价值和优越性。本系统与PLC控制系统相比大大降低了使用成本,提高了控制运行速度。根据仿真模拟运行的结果表明,该系统能很好的运行,将液位控制在给定的范围内,对过高和过低进行安全报警,稳定性能好,容易操作和控制,保证了生产的正常进行。1.4 系统的总体研究方案本设计是采用8051单片机为核心芯片,及其相关硬件来实现的水体液位控制系统,在用液位传感器测液位的同时, CPU循环检测传感器输出状态,并用3位七段LED显示示液位高度,检测液位数据,实施报警安全提示,当水体液位低于用户设定

9、的值时,系统自动打开泵上水,当水位到达设定值时,系统自动关闭水泵或打开排水泵。1.4.1 系统硬件总体方案系统的原理是采用高亮二极管和光敏三级管所组成的液位传感器对液面进行控制,通过四对传感器分别安装在现场的四个不同的位置,由上至下测量水体的液位值,。并把这四个液位状态通过模数转换器ADC0809传到单片机中,在通过3位七段LED显示器显示出液位的四种状态及报警安全提示。用LED显示是因为它具有显示清晰、亮度高、使用电压低、光电转换效能高、寿命长等特点,根据当前的液位值和用户设定的水位决定是否进行开、关水泵,需要是否开启和关闭驱动阀门的电动机。本设计主要运用了液位传感器测液位,第三章将着重介绍

10、。1.4.2 系统软件总体方案水位检测是通过四对由高亮二极管和光敏三极管所组成的液位传感器分别安装在四个不同的位置,由上至下四个输出端口分别接单片机的P1.0、P1.1、P1.2、P1.3口,实时对水位进行检测。当水位到达某一光敏三极管的位置时,其输出端口就向单片机输出高电平;当水位低于此光敏三极管的位置时,其输出端口就向单片机输出低电平。由上至下的第一个位置为水位上限报警线,即当水位高于此位置时,开水阀控制系统就会自动报警,提醒工作人员注意,加水电磁阀有可能出故障;第二个位置是自动停止加水线,即当水位高于此位置时,控制系统会自动关闭加水电磁阀,停止加水;第三个位置是自动加水线,即当水位低于此

11、位置时,控制系统会自动接通加水电磁阀,开始加水;第四个位置是水位下限报警线,即当水位低于此位置时,控制系统就会自动报警,提醒工作人员注意,加水电磁阀可能出故障。本系统所使用的传感器性能稳定,测量准确,大大简化现场安装,具有较高的性价比,有较大的工程应用价值,而且利用计算机与组态软件技术对工业生产过程进行自动控制有着重要的意义。其优越性主要在于:首先,通过对水体液位进行的简易方便的操纵,可以准确得控制水泵进行添加水或放水以适应工作的需要,操作简单,经济效益好。其次,水体控制过程的自动化处理以及监控软件良好的人机界面,操作人员在监控计算机上能根据控制效果及时修运行参数,这样能有效地减少工人的疲劳和

12、失误,提高生产过程的实时性、安全性。随着计算机控制技术应用的普及、可靠性的提高及价格的下降,工业以及其他方面的微机控制必将得到更加广泛的应用。1.4.3 设计的研究进程 本设计第二章对系统进行硬件分析,主要介绍了本设计所使用的核心芯片AT89C51,重要对其端口进行介绍,介绍其功能与用途,还介绍了液位传感器、数模转换ADC0832、执行设备、LED显示和报警装置,介绍了他们的原理、结构和电路连接,另外我着重介绍了本设计所使用的传感器,因为传感器的性能在整个系统中起着非常重要的作用,尤其对检测精确度起着重要的作用。第三章我介绍了整个系统的软件设计。2 系统硬件设计广泛的液位控制系统包括对水体的液

13、位,压力等的控制,本系统只侧重于介绍液位的控制。液位控制是利用由高亮二级管和光敏三级管所组成的液位传感器,把液位的状态转换成模拟信号,再通过模数转换器ADC0832把输出状态直接接到单片机的I/O接口,单片机经过运算控制,输出数字信号,输出接口接LED进行显示,实现液位的报警和键盘的显示与控制;下图即是液位控制系统:CPULED显示传感器其他装置控制执行装置图2-1 基于单片机的液位控制系统 由上图可观察到传感器通过对液面进行测量,输出模拟信号,再通过模数转换器把输入的模拟信号转换成数字信号,通过AT89C51单片机的运算控制,在通过LED进行显示,通过报警装置进行报警,报警显示之后再通过对阀

14、门的开启实现对水体的液位进行调节控制,阀门的驱动设备是电动机。计算机芯片MCS-51是一个电脑晶片,英特尔公司生产系列。它是在MCS-48系列的基础上发展的高性能的8位单片机。所出的系列产品有8051、8031、8751。其代表就是AT89C51。其他系列的单片机都以它为核心,所以本设计采用的核心芯片是AT89C51单片机。CPU是它的核心设备,从功能上看,CPU包括两个部分:运算器和控制器,它执行对输入信号的分析和处理。整个系统电控部分以ATMEL公司的AT89C51为核心芯片,控制信号采集、处理、输出三个过程。这种芯片内置4KEPROM,因为系统要求控制线较多,如果采用AT89C51外置E

15、PROM程序控制结构,则造成控制线不够;而AT89C51却可以利用P0、P2口作控制总线,大大简化了硬件结构,并可以直接控制键盘参数输入、LED数据显示,方便现场调试和维护,使整个系统的通用性和智能化得到了很大的提高。系统的原理是采用液位式传感器测量液体的液位值,通过单片机的转换与分析在LED上显示及输出控制;根据当前的液位值和用户设定的水位决定是否进行开关电动机,否到达危险高、低水位,需要关闭电动机。2.1 核心芯片AT89C51单片机单片机是早期Single Chip Microcomputer的直译,它反映了早期单片机的形态和本质。然后,按照面向对象,突出控制功能,在片内集成了许多外围电

16、路及外设接口,突破了传统意义上的计算机结构,发展成microcontroller的体系结构,目前国外已普遍称之为微控制器MCU(Microcontroller Unit)。鉴于它完全作嵌入应用,故又称为嵌入式微控制器(Embedded Microcontroller)。大多数单片机采用哈佛(Harvard)结构体系,即数据存储空间与程序存储空间相互独立的结构体系。它不同于一般通用计算机系统结构,即程序和数据共用一个空间的冯诺伊曼(Von Neumann)结构。AT89C51单片机温度测控仪采用Atmel公司的AT89C51单片机,采用双列直插封装(DIP),有40个引脚。该单片机采用Atmel

17、公司的高密度非易失性存储技术制造,与美国Intel公司生产的MCS51系列单片机的指令和引脚设置兼容。其主要特征如下:8位CPU内置4K字节可重复编程Flash,可重复擦写1000次完全静态操作:0Hz24Hz,可输出时钟信号三级加密程序存储器128B8的片内数据存储器(RAM)32根可编程I/O线2个16位定时/计数器中断系统有6个中断源,可编为两个优先级一个全双工可编程串行通道可编程串行UART通道具有两种节能模式:闲置模式和掉电模式(1)单片机的基本组成它由CPU、存储器(包括RAM和ROM)、I/O接口、定时/计数器、中断控制功能等均集成在一块芯片上,片内各功能通过内部总线相互连接起来

18、。输入/输出引脚P0、P1、P2、P3的功能:图2-1为AT89C51的引脚图:图2-1 AT89C51的引脚图P0口(P0.0-P0.7):P0口是一个8位漏极开路型双向I/O端口。在访问片外存储器时,它分时作低8位地址和8位双向数据总线用。在EPROM编程时,由P0输入指令字节,而在验证程序时,则输出指令字节。验证程序时,要求外接上拉电阻。P0能以吸收电流的方式驱动8个LSTTL负载。在Flash编程时,P0口接收指令字节,而在程序校验时,输出指令字节,校验时,要求外接上拉电阻。P1口(P1.0-P1.7(1-8脚): P1口是一上带内部上拉电阻的8位双向I/O口。在EPROM编程和验证程

19、序时,由它输入低8位地址。P1能驱动4个LSTTL负载。在AT89C51中,P1.0还相当于专用功能端T2,即定时器的计数触发输入端;P1.1还相当于专用功能端T2EX,即定时器T2的外部控制端。Flash编程和程序校验期间,P1接收低8位地址。P2口(P2.0-P2.7(21-28脚):P2也是一上带内部上拉电阻的8位双向I/O口,P2口的输出缓冲级可驱动(吸收或输出电流)4个TTL逻辑门电路。对端口写“1”,通过内部的上拉电阻把端口拉到高电平。在访问外部存储器时,由它输出高8位地址。在对EPROM编程和程序验证时,由它输入高8位地址。P驱动4个LSTTL负载。在访问外部程序存储器或16位地

20、址的外部数据存储器(例如执行MOVX DPTR指令)时,P2口送出高8位地址数据。在访问8位地址的外部数据存储器(例如执行MOVX RI指令)时,P2口线上的内容(也即特殊功能寄存器SFR区中R2寄存器的内容),在整个访问期间不改变。Flash编程或校验时,P2亦接收高位地址和其它控制信号。P3口(P3.0-P3.7(10-17脚):P3口是一组带有内部上拉电阻的8 位双向I/O口。P3 口输出缓冲级可驱动(吸收或输出电流)4 个TTL 逻辑门电路。对P3 口写入“1”时,它们被内部上拉电阻拉高并可作为输入端口。此时,被外部拉低的P3 口将用上拉电阻输出电流(IIL)。P3口除了作为一般的I/

21、O口线外,更重要的用途是它的第二功能,如表1-1所示:表1-1 AT89C51的P3口特殊功能口管脚备选功能P3.0RXD(串行输入口)P3.1TXD(串行输出口)P3.2/INT0(外部中断0)P3.3/INT1(外部中断1)P3.4T0(定时/计数器0外部输入)P3.5T1(定时/计数器1外部输入)P3.6/WR(外部数据存储器写选通)P3.7/RD(外部数据存储器读选通)P3口还接收一些用于Flash闪速存储器和程序校验的控制信号。(2)MCS-51的寻址方式:(1)、立即寻址如:MOVA,#40H(2)、直接寻址如:MOVA,3AH(3)、寄存器寻址如:MOVA,Rn(4)、寄存器间接

22、寻址如:MOVA,Rn(5)、基址加变址寻址如:MOVCA,A+DPTR(6)、相对寻址如:SJMP08H(7)、位寻址MOV20H,C (3)指令:MOV:片内RAM传送MOVX:片外RAM传送MOVC:ROM传送XCH:交换(和A交换)SWAP:A内半字节交换ADD:不带进位加ADDC:带进位加SUBB:带进位减INC:加1 DEC:减1 MUL:乘法DIV:除法DAA:调整(4)计数初值的计算定时或计数方式下计数初值如何确定,定时器选择不同的工作方式,不同的操作模式其计数值均不相同。若设最大计数值为M,各操作模式下的M值为:模式0:M=213=8192模式1:M=216=65536模式2

23、:M=28=256模式3:M=256,定时器T0分成2个独立的8位计数器,所以TH0、TL0的M均为256。因为AT89C51的两个定时器均为加1计数器,当初到最大值(00H或0000H)时产生溢出,将TF位置1,可发出溢出中断,因此计数器初值X的计算式为:X=M-计数值式中的M由操作模式确定,不同的操作模式计数器的长不相同,故M值也不相同。而式中的计数值与定时器的工作方式有关。(a)计数工作方式计数工作方式时,计数脉冲由外部引入,是对外部冲进行计数,因此计数值根据要求确定。其计数初值:X=M-计数值例如:某工序要求对外部脉冲信号计100次,X=M-100(b)定时工作方式定时工作方式时,因为

24、计数脉冲由内部供给,是对机器周期进行计数,故计数脉冲频率为fcont=fosc1/12 (式1-1)计数周期T=1/fcont=12/fosc定时工作方式的计数初值X等于: X=M-计数值=M-t/T=M-(fosct)/12 (式1-2)式中:fosc为振荡器的振荡频率,t为要求定时的时间。 定时器有两种工作方式:即定时和计数工作方式。由TMOD的D6位和D2位选择,其中D6位选择T1的工作方式,D2位选择T0的工作方式。=0工作在定时方式,=1工作在计数方式。并有四种操作模式:1、模式0:13位计数器,TLi只用低5位。2、模式1:16位计数器。3、模式2:8位自动重装计数器,THi的值在

25、计数中不变,TLi溢出时,THi中的值自动装入TLi中。4、模式3:T0分成2个独立的8位计数器,T1停止计数。MCS-51有5个中断源,可分为2个中断优先级,即高优先级和低优先级,中断自然优先级:外部中断0;定时器0中断;外部中断1;定时器1中断;串行口中断;定时器2中断(a)同级或高优先级的中断正在进行中;(b)现在的机器周期还不是执行指令的最后一上机器周期,即正在执行的指令还没完成前不响应任何中断;(c)正在执行的是中断返回指令RET1或是访问专用寄存器IE或IP的指令,换而言之,在RETI或者读写IE或IP之后,不会马上响应中断请求,至少要在执行其它一要指令之扣才会响应。(5)中断响应

26、的条件CPU响应中断的条件有:(a)有中断源发出中断请求;(b)中断总允许位EA=1,即CPU开中断;(c)申请中断的中断源的中断允许位为1,即没有被屏蔽。(6)串行口工作方式及帧格式MCS-51单片机串行口可以通过软件设置四种工作方式:方式0:这种工作方式比较特殊,与常见的微型计算机的串行口不同,它又叫同步移位寄存器输出方式。在这种方式下,数据从RXD端串行输出或输入,同步信号从TXD端输出,波特率固定不变,为振荡率的1/12。该方式是以8位数据为一帧,没有起始位和停止位,先发送或接收最低位。方式2:采用这种方式可接收或发送11位数据,以11位为一帧,比方式1增加了一个数据位,其余相同。第9

27、个数据即D8位具有特别的用途,可以通过软件搂控制它,再加特殊功能寄存器SCON中的SM2位的配合,可使MCS-51单片机串行口适用于多机通信。方式2的波特率固定,只有两种选择,为振荡率的1/64或1/32,可由PCON的最高位选择。方式3:方式3与方式2完全类似,唯一的区别是方式3的小组特率是可变的。而帧格式与方式2-样为11位一帧。所以方式3也适合于多机通信。随着大规模集成电路的出现及其发展,将计算机的CPU、RAM、ROM、定时/数器和多种I/O接口集成在一片芯片上,形成芯片级的计算机,因此单片机早期的含义称为单片微型计算机,直译为单片机。(7)掉电模式:在掉电模式下,振荡器停止工作,进入

28、掉电模式的指令是最后一条被执行的指令,片内RAM和特殊功能寄存器SFR的内容在终止掉电模式前被冻结,退出掉电模式的唯一方法是硬件复位,复位后将重新定义全部特殊功能寄存器但不改变RAM中的内容,在VCC恢复到正常工作电平前,复位应无效,且必须保持一定时间以使振荡器重启动并稳定工作。1、基本复位电路复位电路的基本功能是:系统上电时提供复位信号,直至系统电源稳定后,撤销复位信号。为可靠起见,电源稳定后还要经一定的延时才撤销复位信号,以防电源开关或电源插头分-合过程中引起的抖动而影响复位。图1所示的RC复位电路可以实现上述基本功能,图3为其输入-输出特性。但解决不了电源毛刺(A点)和电源缓慢下降(电池

29、电压不足)等问题而且调整 RC常数改变延时会令驱动能力变差。左边的电路为高电平复位有效右边为低电平Sm为手动复位开关 Ch可避免高频谐波对电路的干扰2.时钟电路单片机本身是一个复杂的同步时序系统,为了保证同步工作方式的实现,单片机必须有时钟信号,以使系统在时钟信号的控制下按时协调工作。而所谓时序,则是指指令执行过程中各信号之间的相互时间关系。MPX4115压力传感器压力传感器对于系统至关重要,需要综合实际的需求和各类压力传感器的性能参数加以选择。一般要选用有温度补偿作用的压力传感器,因为温度补偿特性可以克服半导体压力传感器件存在的温度漂移问题。本设计要实现的数字气压计显示的是绝对气压值,同时为

30、了简化电路,提高稳定性和抗干扰能力,要求使用具有温度补偿能力的压力传感器。经过综合考虑,本设计选用美国摩托罗拉公司的集成压力传感器。MPX4115可以产生高精度模拟输出电压。数据采集模块由压力传感器MPX4115构成。其中1脚是输出信号端,输出的是与气压值相对应的模拟电压信号。数据采集模块的原理如图、气压传感器MPX4115的原理MPX4115系列压电电阻传感器是一个硅压力传感器。这个传感器结合了高级的微电机技术,薄膜镀金属。还能为高水准模拟输出信号提供一个均衡压力。在0-85的温度下误差不超过1.5%,温度补偿是-40-125。ADC0832ADC0832 是美国国家半导体公司生产的一种8

31、位分辨率、双通道A/D转换芯片。由于它体积小,兼容性,性价比高而深受单片机爱好者及企业欢迎,其目前已经有很高的普及率。学习并使用ADC0832 可是使我们了解A/D转换器的原理,有助于我们单片机技术水平的提高。ADC0832 特点8位分辨率; 双通道A/D转换; 输入输出电平与TTL/CMOS相兼容; 5V电源供电时输入电压在05V之间; 工作频率为250KHZ,转换时间为32S; 一般功耗仅为15mW; 8P、14PDIP(双列直插)、PICC 多种封装; 商用级芯片温宽为0C to +70C,工业级芯片温宽为40to+85C; 芯片接口说明: CS_ 片选使能,低电平芯片使能。 CH0 模

32、拟输入通道0,或作为IN+/-使用。 CH1 模拟输入通道1,或作为IN+/-使用。 GND 芯片参考0 电位(地)。 DI 数据信号输入,选择通道控制。 DO 数据信号输出,转换数据输出。 CLK 芯片时钟输入。 Vcc/REF 电源输入及参考电压输入(复用)。 ADC0832 为8位分辨率A/D转换芯片,其最高分辨可达256级,可以适应一般的模拟量转换要求。其内部电源输入与参考电压的复用,使得芯片的模拟电压输入在05V之间。芯片转换时间仅为32S,据有双数据输出可作为数据校验,以减少数据误差,转换速度快且稳定性能强。独立的芯片使能输入,使多器件挂接和处理器控制变的更加方便。通过DI 数据输

33、入端,可以轻易的实现通道功能的选择。单片机对ADC0832 的控制原理正常情况下ADC0832 与单片机的接口应为4条数据线,分别是CS、CLK、DO、DI。但由于DO端与DI端在通信时并未同时有效并与单片机的接口是双向的,所以电路设计时可以将DO和DI 并联在一根数据线上使用。当ADC0832未工作时其CS输入端应为高电平,此时芯片禁用,CLK 和DO/DI 的电平可任意。当要进行A/D转换时,须先将CS使能端置于低电平并且保持低电平直到转换完全结束。此时芯片开始转换工作,同时由处理器向芯片时钟输入端CLK 输入时钟脉冲,DO/DI端则使用DI端输入通道功能选择的数据信号。在第1 个时钟脉冲

34、的下沉之前DI端必须是高电平,表示启始信号。在第2、3个脉冲下沉之前DI端应输入2 位数据用于选择通道功能,其功能项见官方资料。 如资料 所示,当此2 位数据为“1”、“0”时,只对CH0 进行单通道转换。当2位数据为“1”、“1”时,只对CH1进行单通道转换。当2 位数据为“0”、“0”时,将CH0作为正输入端IN+,CH1作为负输入端IN-进行输入。当2 位数据为“0”、“1”时,将CH0作为负输入端IN-,CH1 作为正输入端IN+进行 输入。到第3 个脉冲的下沉之后DI端的输入电平就失去输入作用,此后DO/DI端则开始利用数据输出DO进行转换数据的读取。从第4个脉冲下沉开始由DO端输出

35、转换数据最高位DATA7,随后每一个脉冲下沉DO端输出下一位数据。直到第11个脉冲时发出最低位数据DATA0,一个字节的数据输出 DC0832封装以及各端子(1张)完成。也正是从此位开始输出下一个相反字节的数据,即从第11个字节的下沉输出DATA0。随后输出8位数据,到第19 个脉冲时数据输出完成,也标志着一次A/D转换的结束。最后将CS置高电平禁用芯片,直接将转换后的数据进行处理就可以了。 作为单通道模拟信号输入时ADC0832的输入电压是05V且8位分辨率时的电压精度为19.53mV。如果作为由IN+与IN-输入的输入时,可是将电压值设定在某一个较大范围之内,从而提高转换的宽度。但值得注意

36、的是,在进行IN+与IN-的输入时,如果IN-的电压大于IN+的电压则转换后的数据结果始终为00H。ADC0832 与单片机的接口电路ADC0832 为 8 位分辨率 A/D 转换芯片,其最高分辨可达 256 级,可以适应一般的模拟量转换要求。其内部电源输入与参考电压的复用,使得芯片的模拟电压输入在 05V 之间。芯片转换时间仅为 32S,据有双数据输出可作为数据校验,以减少数据误差,转换速度快且稳定性能强。独立的芯片使能输入,使多器件挂接和处理器控制变的更加方便。通过 DI 数据输入端,可以轻易的实现通道功能的选择。单片机对 ADC0832 的控制原理:正常情况下 ADC0832 与单片机的

37、接口应为 4 条数据线,分别是 CS、CLK、DO、DI。但由于 DO 端与 DI 端在通信时并未同时有效并与单片机的接口是双向的,所以电路设计时可以将 DO 和 DI 并联在一根数据线上使用。(见图 3)当 ADC0832 未工作时其 CS 输入端应为高电平,此时芯片禁用,CLK 和DO/DI 的电平可任意。当要进行 A/D 转换时,须先将 CS 使能端置于低电平并且保持低电平直到转换完全结束。此时芯片开始转换工作,同时由处理器向芯片时钟输入端 CLK 输入时钟脉冲,DO/DI 端则使用 DI 端输入通道功能选择的数据信号。在第 1 个时钟脉冲的下沉之前 DI 端必须是高电平,表示启始信号。

38、在第 2、3 个脉冲下沉之前 DI 端应输入 2 位数据用于选择通道功能,其功能项见表 1。如表 1 所示,当此 2 位数据为“1”、“0”时,只对 CH0 进行单通道转换。当 2 位数据为“1”、“1”时,只对 CH1 进行单通道转换。当 2 位数据为“0”、“0”时,将 CH0 作为正输入端 IN+,CH1 作为负输入端 IN-进行输入。当 2 位数据为“0”、“1”时,将 CH0 作为负输入端 IN-,CH1 作为正输入端 IN+进行输入。到第 3 个脉冲的下沉之后 DI 端的输入电平就失去输入作用,此后 DO/DI端则开始利用数据输出 DO 进行转换数据的读取。从第 4 个脉冲下沉开始

39、由 DO端输出转换数据最高位 DATA7,随后每一个脉冲下沉 DO 端输出下一位数据。直到第 11 个脉冲时发出最低位数据 DATA0,一个字节的数据输出完成。也正是从此位开始输出下一个相反字节的数据,即从第 11 个字节的下沉输出 DATD0。随后输出 8 位数据,到第 19 个脉冲时数据输出完成,也标志着一次 A/D 转换的结束。最后将 CS 置高电平禁用芯片,直接将转换后的数据进行处理就可以了。 更详细的时序说明请见表 2。ADC0832 芯片接口程序的编写:为了高速有效的实现通信,我们采用汇编语言编写接口程序。由于 ADC0832 的数据转换时间仅为 32S,所以 A/D 转换的数据采

40、样频率可以很快,从而也保证的某些场合对 A/D转换数据实时性的要求。数据读取程序以子程序调用的形式出现,方便了程序的移植。程序占用资源有累加器 A,工作寄存器 R7,通用寄存器 B 和特殊寄存器 CY。通道功能寄存器和转换值共用寄存器 B。在使用转换子程序之前必须确定通道功能寄存器 B 的值,其赋值语句为“MOV B,#data(00H03H)。运行转换子程序后的转换数据值被放入 B 中。子程序退出后即可以对 B 中数据处理。ADC0832 数据读取程序流程: 开始 使能芯片产生时钟信号通道输入控制字 读取2节字数字 字节数据效验将值输入到指定的寄储器 结束LED显示模块采用LED动态扫描显示

41、原理如下: (1)P23、P22、P21、P20输出高电平,关闭所有数码管; (2)显示个位把要显示的数据送到P10P17,P23送低电平,延时5豪秒(时间不能太长,否则数码管会闪烁),P23送高电平; (3)显示十位把要显示的数据送到P10P17,P22送低电平,延时5豪秒(时间不能太长,否则数码管会闪烁),P22送高电平; (4)显示百位把要显示的数据送到P10P17,P21送低电平,延时5豪秒(时间不能太长,否则数码管会闪烁),P21送高电平; (5)显示千位把要显示的数据送到P10P17,P20送低电平,延时5豪秒(时间不能太长,否则数码管会闪烁),P20送高电平。 (6)以此顺序循环

42、,把它做成子程序,在主循环中调用。 现已DS8为个位来讨论,十、百、千为分别为DS7、DS6、DS5。 1、首先要了解的是此数码管为共阴极数码管,即三极管Q16、Q15、Q14、Q13导通时数码管才能点亮,亦即相应的单片机P23、P22、P21、P20为低电平。 2、动态扫描显示原理如下: (1)P23、P22、P21、P20输出高电平,关闭所有数码管; (2)显示个位把要显示的数据送到P10P17,P23送低电平,延时5豪秒(时间不能太长,否则数码管会闪烁),P23送高电平; (3)显示十位把要显示的数据送到P10P17,P22送低电平,延时5豪秒(时间不能太长,否则数码管会闪烁),P22送

43、高电平; (4)显示百位把要显示的数据送到P10P17,P21送低电平,延时5豪秒(时间不能太长,否则数码管会闪烁),P21送高电平; (5)显示千位把要显示的数据送到P10P17,P20送低电平,延时5豪秒(时间不能太长,否则数码管会闪烁),P20送高电平。 (6)以此顺序循环,把它做成子程序,在主循环中调用继电器简介继电器是具有隔离功能的自动开关元件,在我们设计当中主要来做自动控制作用,我们采用+5V的直流电来控制220V的交流电,以达到控制水泵的作用,因为是在这里是以一种弱电来控制强电所以安装和使用的过程当中我们一定要注意用电安全注意事项。电磁式继电器一般由铁芯、线圈、衔铁、触点簧片等组

44、成的。只要在线圈两端加上一定的电压,线圈中就会流过一定的电流,从而产生电磁效应,衔铁就会在电磁力吸引的作用下克服返回弹簧的拉力吸向铁芯,从而带动衔铁的动触点与静触点(常开触点)吸合。当线圈断电后,电磁的吸力也随之消失,衔铁就会在弹簧的反作用力返回原来的位置,使动触点与原来的静触点(常闭触点)吸合。这样吸合、释放,从而达到了在电路中的导通、切断的目的。对于继电器的“常开、常闭”触点,可以这样来区分:继电器线圈未通电时处于断开状态的静触点,称为“常开触点”;处于接通状态的静触点称为“常闭触点”6:系统总体电路图(三)软件设计流程图开始系统初始化数据采集处理读到的数据送LED显示结束开始初始化函数A

45、/D转换器进行A/D转换将转换后的电压转换为压力返回系统总流程图 A/D转换程序流程图开始系统初始化调用压力子程序调用显示子程序调用扫描按键程序开始将压力数据写入到LED读取压力值显示压力值返回显示流程图 主函数流程图压力测试仪系统描述; 输入 15-115kPA压力信号 输出 00h-ffh数字信号(adc0832) 在LED上显示实际的压力值,如果超限则报警线性区间标度变换公式: y=(115-15)/(243-13)*X+15kpa 主程序*/#include #include intrins.h#define uint unsigned int#define uchar unsigne

46、d char/ADC0832的引脚sbit ADCS =P20; /ADC0832 chip seclectsbit ADDI =P37; /ADC0832 k insbit ADDO =P37; /ADC0832 k outsbit ADCLK =P36; /ADC0832 clock signalunsigned char dispbitcode8=0xf7,0xfb,0xfd,0xfe,0xef,0xdf,0xbf,0x7f; /位扫描unsigned char dispcode11=0xC0,0xF9,0xA4,0xB0,0x99,0x92,0x82,0xF8,0x80,0x90,0x

47、ff; /共阳数码管字段码unsigned char dispbuf4;uint temp;uchar getdata; /获取ADC转换回来的值void delay_1ms(void) /12mhz delay 1.01ms unsigned char x,y; x=3; while(x-) y=40; while(y-); void display(void) /数码管显示函数 char k; for(k=0;k1)&0x1; _nop_(); _nop_(); ADCLK=0;/拉低CLK端,形成下降沿3 ADDI=1;/控制命令结束 _nop_(); _nop_(); dat=0; f

48、or(i=0;i8;i+) dat|=ADDO;/收数据 ADCLK=1; _nop_(); _nop_(); ADCLK=0;/形成一次时钟脉冲 _nop_(); _nop_(); dat=1; if(i=7)dat|=ADDO; for(i=0;i8;i+) j=0; j=j|ADDO;/收数据 ADCLK=1; _nop_(); _nop_(); ADCLK=0;/形成一次时钟脉冲 _nop_(); _nop_(); j=j7; ndat=ndat|j; if(i=1; ADCS=1;/拉低CS端 ADCLK=0;/拉低CLK端 ADDO=1;/拉高数据端,回到初始状态 dat=8; d

49、at|=ndat; return(dat); /return ad kvoid main(void) while(1) unsigned int temp; float press; getdata=Adc0832(0); if(14getdata243) /当压力值介于15kpa到115kpa之间时,遵循线性变换 int vary=getdata;/y=(115-15)/(243-13)*X+15kpapress=(10.0/23.0)*vary)+9.3;/测试时补偿值为9.3temp=(int)(press*10); /放大10倍,便于后面的计算dispbuf3=temp/1000; /

50、取压力值百位dispbuf2=(temp%1000)/100; /取压力值十位dispbuf1=(temp%1000)%100)/10; /取压力值个位dispbuf0=(temp%1000)%100)%10;/取压力值十分位display(); 程序完!致谢 此毕业论文设计我得到了很多老师和同学的帮助,其中我的论文杨可以老师、刘丹老师、肖跃安老师对我的关心和支持尤为重要。每次遇到难题,我最先做的就是向杨老师、刘老师、肖跃安老师寻求帮助,而杨老师每次不管忙或闲,总会抽空来找我面谈,然后一起商量解决的办法。还在学业上给我以精心指导,同时还在思想给我以无微不至的关怀。而刘老师平日里工作繁多,但我做

51、毕业设计的每个阶段,从选题到查阅资料,论文提纲的确定,中期论文的修改,后期论文格式调整等各个环节中都给予了我悉心的指导。肖老师,在软件的选择给我很大的帮助,避免了胡乱寻找资料,节约了大量的时间。 此谨向杨老师、刘老师、肖老师诚挚的谢意和崇高的敬意。同时,本篇毕业论文的写作也得到了许多的同学和网友的的热情帮助。感谢在整个毕业设计期间和我密切合作的同学,和曾经在各个方面给予过我帮助的伙伴们,在此,我再一次真诚地向帮助过我的老师和同学表示感谢!参考文献1 王文琦.工业锅炉的检测与控制技术M.成都:四川科学技术出版社,1986.2 王骥程.化工过程控制工程M.北京:化学工业出版社,1981.3 王文琦

52、.工业锅炉的检测与控制技术M.成都: 四川科学技术出版社,1986.4 王骥程.化工过程控制工程M.北京: 化学工业出版社,1981.5 谢自美.电子线路设计、实验与测试M.华中科技大学出版社,2003.6 杨国志,王立峰,杨东光,王辉林等.实用电子制作实例M.福建科学技术出版社,2000.7 金伟正.单线数字温度传感器的原理及用M.电子工业出版社,2000.8 王永平,陈建华.基于S7200PLC的高性能电热锅炉控制系统J.仪表技术与传感器,2002.9 潘新民,王艳芳微.型计算机控制技术M.高等教育出版社,2002.10 谈振藩.自动控制专业英语M.哈尔滨工程大学出版社,1999.11 杨智,明丽萍. 21世纪燃气锅炉在中国的发展前景J.自动化学报,2001.12 袁希光等.传感器技术手册M.北京国防工业出版社,1986.13 张洪润,张亚凡.传感技术与应用教程M.清华大学出版社,2005.14 李光飞,楼然苗.单片机课程设计实例指导M.北京航空航天大学出版社,2004.15 李明,徐向东.用容错技术提高锅炉控制系统的可靠性J.清华大学学报,1999.16 吴春旺.锅炉汽包水位调节控制系统设计A.北京:机械工业出版社,2006.17 何立民.MCS-51系列单片机应用系统设计系统配置与接口技术M.北京:北京航空航天大学出版社,2001.18 周航慈.单片机应用程序设计技术

展开阅读全文
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!